CN105280928B - 一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 - Google Patents
一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 Download PDFInfo
- Publication number
- CN105280928B CN105280928B CN201510591655.5A CN201510591655A CN105280928B CN 105280928 B CN105280928 B CN 105280928B CN 201510591655 A CN201510591655 A CN 201510591655A CN 105280928 B CN105280928 B CN 105280928B
- Authority
- CN
- China
- Prior art keywords
- film
- polysulfones
- composite membrane
- membrane
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 82
- 229920002492 poly(sulfone) Polymers 0.000 title claims abstract description 46
- 125000000129 anionic group Chemical group 0.000 title claims abstract description 23
- 239000000446 fuel Substances 0.000 title claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 23
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 10
- 238000010345 tape casting Methods 0.000 claims abstract description 10
- 238000005266 casting Methods 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 10
- 238000007605 air drying Methods 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 9
- 238000005342 ion exchange Methods 0.000 claims description 9
- 239000003643 water by type Substances 0.000 claims description 9
- 238000013019 agitation Methods 0.000 claims description 8
- 230000010355 oscillation Effects 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 150000001450 anions Chemical class 0.000 abstract description 9
- 239000003513 alkali Substances 0.000 abstract description 7
- 238000002464 physical blending Methods 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000007654 immersion Methods 0.000 abstract description 2
- 229920002521 macromolecule Polymers 0.000 abstract description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract 2
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 abstract 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 abstract 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 abstract 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 abstract 1
- 229910021529 ammonia Inorganic materials 0.000 abstract 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 abstract 1
- 239000002585 base Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 abstract 1
- 239000004020 conductor Substances 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000012530 fluid Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical class [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract 1
- 230000008961 swelling Effects 0.000 abstract 1
- 150000001768 cations Chemical class 0.000 description 8
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- HRQGCQVOJVTVLU-UHFFFAOYSA-N bis(chloromethyl) ether Chemical compound ClCOCCl HRQGCQVOJVTVLU-UHFFFAOYSA-N 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007265 chloromethylation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明涉及一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜及其制备方法,属于燃料电池技术领域。以氯仿为溶剂,将具有刚性高分子骨架结构的聚砜(PSF)颗粒完全溶解,作为膜基液。采用单纯的物理共混方法,将导电材料Gemini分子(顺丁烯二酸二乙酯撑基双[(十二烷基二甲基)氨/溴化铵],名为G12‑2‑12)均匀掺杂到聚砜的氯仿铸膜液中。利用流延法在玻璃板上浇铸成膜,再将烘干的膜浸入氢氧化钾溶液中,制备氢氧根离子型复合模。本发明制备的阴离子膜具有超低的溶胀度,优异的耐碱性能、良好的机械性能,并有效的提高了膜的导电性能。解决了聚砜改性阴离子膜因为接枝率过高导致的耐碱性变差,溶胀过高,机械性能变差等问题。
Description
技术领域
本发明属于燃料电池技术领域,涉及阴离子交换膜燃料电池的膜电解质制备技术,具体涉及一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法。
背景技术
作为众多燃料电池中的一种,直接甲醇燃料电池(DMFCs)不仅拥有能量转化效率高、环境友好、几乎不排放氮氧化物和硫氧化物等特点,且体积小、结构简单,其燃料易于存储及运输,因此受到越来越多的重视。其中阴离子交换膜燃料电池 (AEMFCs),以非贵重金属为催化剂,成本低,可以提高燃料电池的效益,因此对其的研究已经掀起一股热潮。作为AEMFCs的核心,理想的阴离子交换膜必须具备较强的机械性能,高稳定性以确保燃料电池可以持久稳定的运行。聚砜(PSF)分子因其独特的刚性高分子骨架结构而具有优异的机械强度,耐碱性和热稳定性,并作为膜材料被广泛应用。遗憾的是,有研究表明,由于OH-较低的迁移率和解离常数,使得阴离子膜电导率存在天然劣势,因此,与其他以烃为骨架的阴离子膜一样,聚砜膜也存在电导率过低的问题。较低的电导率又会导致燃料电池电性能的降低,所以许多研究者开始着手于改进聚砜膜的电导率。目前,最常用的提高聚砜膜电导率的方法是通过接枝或官能化的手段,改性聚砜骨架,使其具有足够多的阳离子官能团。但接枝大量的阳离子,势必会破坏聚砜骨架的性质和结构,使其稳定性和耐碱性大大降低。已有研究将三甲铵阳离子(TMA+)接枝到聚砜骨架上,制备PSF-TMA+阴离子膜,此法虽然有效的提高了膜的电导率,但膜的耐碱性大大降低,60 oC时将阴离子膜浸泡在1M KOH溶液中24 h 后,电导率平均损失了37%。另外,大多接枝改性聚砜膜的方法复杂、费时、污染环境。多数研究以氯甲基化路线改性聚砜分子,过程中用到的氯甲醚及上面提到的三甲胺均为有毒致癌物,并且不利于环保。本发明中涉及的将G12-2-12通过物理共混掺杂到聚砜结构中制备具有超低溶胀度阴离子膜的方法尚未见报道。
发明内容
本发明针对上述现有技术中存在的问题,提供一种掺杂G12-2-12阳离子制备聚砜阴离子膜的方法,所制备的阴离子膜材料具有超低的溶胀度,优异的耐碱性和良好的机械性能,可用作碱性燃料电池的阴离子交换膜电解质。
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取3-8 g聚砜颗粒,加入到含有12-28 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型表面活性剂分子,使制得的阴离子膜中G12-2-12型表面活性剂分子的质量百分数为10-40%,继续常温下搅拌,直到完全溶解,超声波振荡20-40min,离心去泡;然后采用流延法在水平的玻璃板上浇铸成复合膜,待复合膜自然风干后将其揭下;
步骤2,将上述风干后的复合膜浸入100 mL去离子水中,每隔15-30 min换一次水,浸泡2-4 h后,擦干复合膜表面的去离子水,于室温下放置40-50 h,缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于70-90 oC烘箱内烘干至复合膜恒重;
步骤3,将上述烘干后的复合膜浸入0.5-2.0 M KOH水溶液中20- 30h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于70-90 oC烘箱内烘干至膜恒重。
本发明制备的阴离子膜具有超低的溶胀度,将膜浸泡在去离子水中24h后,溶胀度低于25%,见表1,而物理共混法将G12-2-12掺入聚砜膜后,阴离子膜依旧具有优异的耐碱性,将膜浸泡在1M KOH 溶液中120h 后,电导率损失量均小于2.5%,说明此方法对聚砜骨架的稳定性,影响较小。综上所述,本发明制备的掺杂G12-2-12分子的聚砜改性阴离子膜,与现有的燃料电池使用的复合膜相比,具有以下优点:
(1)在聚砜膜中掺入带双倍N+离子的G12-2-12分子后,提高了膜的离子交换量和电导率。
(2)物理共混法没有破坏聚砜的骨架结构,保持了聚砜原有的稳定性,同时得到的阴离子膜具有较低的溶胀度,优异的耐碱性和良好的机械性能。
附图说明
图1 为阴离子膜的制备过程图。
图2 为纯聚砜膜,G12-2-12型表面活性剂分子,实施例3的红外光谱图。
图3为纯聚砜膜,G12-2-12型表面活性剂分子,实施例1,实施例3阴离子膜在N2氛围中的热稳定性测定结果。
图4为实施例1,实施例2,实施例3,实施例4制备的阴离子膜在不同温度下的电导率测定结果。
表1为实施例1,实施例2,实施例3,实施例4制备的阴离子膜在室温下的溶胀度,含水率,拉伸强度,断裂伸长率的测定结果。
表2为实施例1,实施例2,实施例3,实施例4制备的阴离子膜室温条件下于1M KOH溶液中浸泡不同时间后电导率数值的变化情况。
具体实施方式
以下通过实施例进一步说明本发明的方法。
实施例1
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取5 g聚砜颗粒,加入到含有20 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型分子1.11g,使制得的阴离子膜中G12-2-12型分子的质量百分数为10 %,继续常温下搅拌,直到完全溶解,超声波振荡30min,离心脱泡。然后采用流延法在水平的玻璃板上浇铸成膜,待膜自然风干后将其揭下。
步骤2,将膜浸入100 mL去离子水中,每隔20 min换一次水,浸泡3 h后,擦干复合膜表面的去离子水,于室温下放置(48 h),缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重;
步骤3,将复合膜浸入1.0 M KOH水溶液中24 h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重。
实施例2
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取5 g聚砜颗粒,加入到含有20 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型分子2.5 g,使制得的阴离子膜中G12-2-12型分子的质量百分数为20 %,继续常温下搅拌,直到完全溶解,超声波振荡30min,离心脱泡。然后采用流延法在水平的玻璃板上浇铸成膜,待膜自然风干后将其揭下。
步骤2,将膜浸入100 mL去离子水中,每隔20 min换一次水,浸泡3 h后,擦干复合膜表面的去离子水,于室温下放置(48 h),缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重;
步骤3,将复合膜浸入1.0 M KOH水溶液中24 h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重。
实施例3
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取5 g聚砜颗粒,加入到含有20 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50% 的G12-2-12型分子4.30 g,使制得的阴离子膜中G12-2-12型分子的质量百分数为30 %,继续常温下搅拌,直到完全溶解,超声波振荡30min,离心脱泡。然后采用流延法在水平的玻璃板上浇铸成膜,待膜自然风干后将其揭下。
步骤2,将膜浸入100 mL去离子水中,每隔20 min换一次水,浸泡3 h后,擦干复合膜表面的去离子水,于室温下放置(48 h),缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重;
步骤3,将复合膜浸入1.0 M KOH水溶液中24 h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重。
实施例4
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取5 g聚砜颗粒,加入到含有20 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型分子6.67 g,使制得的阴离子膜中G12-2-12型分子的质量百分数为40 %,继续常温下搅拌,直到完全溶解,超声波振荡30min,离心脱泡。然后采用流延法在水平的玻璃板上浇铸成膜,待膜自然风干后将其揭下。
步骤2,将膜浸入100 mL去离子水中,每隔20 min换一次水,浸泡3 h后,擦干复合膜表面的去离子水,于室温下放置(48 h),缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重;
步骤3,将复合膜浸入1.0 M KOH水溶液中24 h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重。
实施例5
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取3 g聚砜颗粒,加入到含有12 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型表面活性剂分子,使制得的阴离子膜中G12-2-12型表面活性剂分子的质量百分数为10%,继续常温下搅拌,直到完全溶解,超声波振荡20min,离心去泡;然后采用流延法在水平的玻璃板上浇铸成复合膜,待复合膜自然风干后将其揭下;
步骤2,将上述风干后的复合膜浸入100 mL去离子水中,每隔15 min换一次水,浸泡2h后,擦干复合膜表面的去离子水,于室温下放置40 h,缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于70 oC烘箱内烘干至复合膜恒重;
步骤3,将上述烘干后的复合膜浸入0.5 M KOH水溶液中20h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于70 oC烘箱内烘干至膜恒重。
实施例6
掺杂G12-2-12阳离子聚砜改性阴离子膜的制备方法包括如下步骤:
步骤1,称取8 g聚砜颗粒,加入到含有28 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型表面活性剂分子,使制得的阴离子膜中G12-2-12型表面活性剂分子的质量百分数为40%,继续常温下搅拌,直到完全溶解,超声波振荡40min,离心去泡;然后采用流延法在水平的玻璃板上浇铸成复合膜,待复合膜自然风干后将其揭下;
步骤2,将上述风干后的复合膜浸入100 mL去离子水中,每隔30 min换一次水,浸泡4 h后,擦干复合膜表面的去离子水,于室温下放置50 h,缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于90 oC烘箱内烘干至复合膜恒重;
步骤3,将上述烘干后的复合膜浸入2.0 M KOH水溶液中30h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于90 oC烘箱内烘干至膜恒重。
Claims (2)
1.一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法,其特征在于包括如下步骤:
步骤1,称取3-8 g聚砜颗粒,加入到含有12-28 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型表面活性剂分子,使制得的阴离子膜中G12-2-12型表面活性剂分子的质量百分数为10-40%,继续常温下搅拌,直到完全溶解,超声波振荡20-40min,离心去泡;然后采用流延法在水平的玻璃板上浇铸成复合膜,待复合膜自然风干后将其揭下;
步骤2,将上述风干后的复合膜浸入100 mL去离子水中,每隔15-30 min换一次水,浸泡2-4 h后,擦干复合膜表面的去离子水,于室温下放置40-50 h,缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于70-90 oC烘箱内烘干至复合膜恒重;
步骤3,将上述烘干后的复合膜浸入0.5-2.0 M KOH水溶液中20- 30h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于70-90 oC烘箱内烘干至膜恒重。
2.根据权利要求1所述的一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法,其特征在于步骤如下:
步骤1,称取5 g聚砜颗粒,加入到含有20 mL的氯仿溶剂的烧杯中,在常温下进行磁力搅拌,至聚砜完全溶解后,加入纯度为50%的G12-2-12型分子1.11g,使制得的阴离子膜中G12-2-12型分子的质量百分数为10 %,继续常温下搅拌,直到完全溶解,超声波振荡30min,离心脱泡,然后采用流延法在水平的玻璃板上浇铸成膜,待膜自然风干后将其揭下;
步骤2,将膜浸入100 mL去离子水中,每隔20 min换一次水,浸泡3 h后,擦干复合膜表面的去离子水,于室温下放置48 h,缓慢蒸发复合膜中水分,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重;
步骤3,将复合膜浸入1.0 M KOH水溶液中24 h进行离子交换,再将复合膜固定在两块聚四氟乙烯板之间,置于80 oC烘箱内烘干至膜恒重。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510591655.5A CN105280928B (zh) | 2015-09-17 | 2015-09-17 | 一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510591655.5A CN105280928B (zh) | 2015-09-17 | 2015-09-17 | 一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105280928A CN105280928A (zh) | 2016-01-27 |
CN105280928B true CN105280928B (zh) | 2018-01-23 |
Family
ID=55149553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510591655.5A Expired - Fee Related CN105280928B (zh) | 2015-09-17 | 2015-09-17 | 一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105280928B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106397801B (zh) * | 2016-09-07 | 2019-05-24 | 辽宁石油化工大学 | 一种掺杂负载G8-2-8/NaSal胶束体系的介孔二氧化硅聚砜改性的燃料电池用阴离子膜的制备方法 |
CN106543458B (zh) * | 2016-11-08 | 2019-10-25 | 辽宁石油化工大学 | 一种基于反相胶束构筑oh-传输通道的阴离子膜制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928393A (zh) * | 2009-04-10 | 2010-12-29 | 株式会社东进世美肯 | 聚砜类聚合物及其制备方法、包含该聚合物的高分子电解质膜、膜电极组件及燃料电池 |
CN102921317A (zh) * | 2012-11-19 | 2013-02-13 | 杭州水处理技术研究开发中心有限公司 | 一种聚砜超滤膜的制备方法 |
-
2015
- 2015-09-17 CN CN201510591655.5A patent/CN105280928B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928393A (zh) * | 2009-04-10 | 2010-12-29 | 株式会社东进世美肯 | 聚砜类聚合物及其制备方法、包含该聚合物的高分子电解质膜、膜电极组件及燃料电池 |
CN102921317A (zh) * | 2012-11-19 | 2013-02-13 | 杭州水处理技术研究开发中心有限公司 | 一种聚砜超滤膜的制备方法 |
Non-Patent Citations (2)
Title |
---|
Study on adsorption properties of QCS/PS-G8-2-8 anion exchange membrane for Rhodamine B;Yang Zhang,et al.;《Journal of Molecular Structure》;20150219;第1089卷;第116-123页 * |
新型掺杂Gemini分子阴离子交换膜的制备与表征;张彩凤等;《精细石油化工》;20140531;第31卷(第3期);第58-63页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105280928A (zh) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103159974B (zh) | 一种交联型聚合物阴离子交换膜的制备方法 | |
CN109390617B (zh) | 交联型聚苯并咪唑碱性阴离子交换膜及其制备和应用 | |
CN103304979B (zh) | 磷酸化二氧化钛空心球填充磺化聚醚醚酮膜及制备和应用 | |
CN108987773B (zh) | 一种三甲胺功能化聚芳基吲哚阴离子交换膜及其制备方法 | |
CN102544547A (zh) | 具有耐碱稳定性的碱性阴离子交换复合膜及其制备和应用 | |
CN105733004B (zh) | 一种全互穿型季铵化壳聚糖阴离子交换膜的制备方法 | |
CN102504310A (zh) | 一种磺化聚酰亚胺/壳聚糖复合质子导电膜的制备方法 | |
CN103521276A (zh) | 一种碳纳米管掺杂型碱性阴离子交换复合膜及其制备方法和应用 | |
CN104861188A (zh) | 一种交联型聚合物阴离子膜及其制备方法 | |
CN102120829B (zh) | 一种聚合物碱性阴离子交换膜的制备方法 | |
Yu et al. | Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes | |
Yang et al. | Imidazolium-functionalized carbon nanotubes crosslinked with imidazole poly (ether ether ketone) for fabricating anion exchange membranes with high hydroxide conductivity and dimension stability | |
CN103772725B (zh) | 一种引入n-烷基双核咪唑阳离子的阴离子膜及其制备方法 | |
CN105280928B (zh) | 一种基于聚砜改性的具有超低水溶液溶胀度的燃料电池用阴离子膜的制备方法 | |
Samsudin et al. | Poly (vinyl alcohol)-Based Anion Exchange Membranes for Alkaline Direct Ethanol Fuel Cells. | |
CN101853947B (zh) | 燃料电池用复合交联型碱性聚合物膜、制备方法和应用 | |
Jang et al. | Robust anion exchange membranes based on ionic liquid grafted chitosan/polyvinyl alcohol/quaternary ammonium functionalized silica for polymer electrolyte membrane fuel cells | |
CN107353422B (zh) | 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法 | |
Mat et al. | Chitosan-poly (vinyl alcohol) and calcium oxide composite membrane for direct methanol fuel cell applications | |
CN106784949A (zh) | 一种交联QCS‑CM‑Guanidine全互穿型阴离子交换膜的制备方法 | |
CN103996865A (zh) | 高阻醇聚合物电解质膜及其制备方法 | |
CN103724649A (zh) | 一种等离子体接枝制备碱性阴离子交换膜的方法 | |
CN104371041B (zh) | 高效壳聚糖基碱性阴离子交换复合膜及其制备和应用 | |
CN116613362A (zh) | 一种用于钒电池的复合两性离子交换膜及其制备方法 | |
Kabir et al. | Highly proton conductive poly (vinyl acetate)/Nafion® composite membrane for proton exchange membrane fuel cell application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180123 |
|
CF01 | Termination of patent right due to non-payment of annual fee |