CN105251509A - 一种Pt-Co花状纳米催化剂的制备方法 - Google Patents

一种Pt-Co花状纳米催化剂的制备方法 Download PDF

Info

Publication number
CN105251509A
CN105251509A CN201510847424.6A CN201510847424A CN105251509A CN 105251509 A CN105251509 A CN 105251509A CN 201510847424 A CN201510847424 A CN 201510847424A CN 105251509 A CN105251509 A CN 105251509A
Authority
CN
China
Prior art keywords
flower
catalyst
reaction
acetylacetone
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510847424.6A
Other languages
English (en)
Other versions
CN105251509B (zh
Inventor
于晓飞
苏艳秋
李兰兰
赵建玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201510847424.6A priority Critical patent/CN105251509B/zh
Publication of CN105251509A publication Critical patent/CN105251509A/zh
Application granted granted Critical
Publication of CN105251509B publication Critical patent/CN105251509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明为一种Pt-Co花状纳米催化剂的制备方法,该方案包括以下步骤:(1)在反应釜中加入甲苯与油胺,然后再加入乙酰丙酮钴和三丁基氨硼烷络合物;搅拌15~30分钟后,将反应釜放入烘箱中;在140~160℃反应6~12小时,得到Co纳米颗粒;(2)在反应器中加入十八胺使其溶解,然后加入上步得到的Co纳米颗粒和三丁基氨硼烷络合物;搅拌0.5~2小时后再加入乙酰丙酮铂;将温度升高到150~170℃,反应0.5~2小时后停止加热,产物清洗后得到Pt-Co花状纳米催化剂。本发明采用两步反应制备了Pt-Co花状纳米催化剂,其催化性能比商业铂黑的催化活性要高很多。

Description

一种Pt-Co花状纳米催化剂的制备方法
技术领域
本发明属于功能材料技术领域,更加具体地说,涉及一种Pt-Co花状纳米催化剂的制备方法。
背景技术
铂是目前已知对燃料电池中所使用的各种燃料的吸附解离催化活性最好的金属元素,也是在燃料电池环境中性能最稳定的电极材料。然而,铂做为燃料电池的催化剂存在以下几个主要问题:一是贵金属铂属于稀缺资源,地球上的已知储量非常有限,所以高昂的价格很大程度上增加了燃料电池的成本,限制了商业化应用;二是各种燃料电池所采用的燃料,如甲酸,甲醇,乙醇等,在铂电极表面氧化所需要的超电势远大于它们的热力学电势,使得催化剂很容易中毒和失活。目前,降低催化剂用量、提高催化剂活性的途径主要有两条:一方面,在催化剂的研究设计中,通过适当添加第二、三金属组分,改善其性能。另一方面,通过控制催化剂的形貌,优化催化剂的活性。因此,制备具有特定形貌的贵金属合金纳米催化剂成为当前研究的一个热门领域。例如,花状/枝状金属纳米结构的比表面积大、边界和台阶原子多,因此,花状/枝状结构的催化活性大大提高,是目前研究者广泛研究的对象之一。
目前,花状/枝状纳米结构的合成方法主要有:(1)种子生长法,通过在种子上生长得到花状结构。作为种子的主要有金、银、钯等,在其上面生长同一种金属或者其他金属。在反应过程中,种子不参与反应,只是作为核。(2)刻蚀法,由于刻蚀剂的作用,球形纳米颗粒中的一部分粒子被刻蚀掉,因此形成花状结构。(3)表面活性剂的影响,由于表面活性剂在不同晶面上的吸附不同,表面活性剂作用弱的面更容易持续生长,从而导致花状纳米结构的形成。虽然采用上述这些方法可以制备出各种单质、合金的花状/枝状纳米结构,但是这些方法都存在一定的不足之处。例如,种子生长法在一种金属核上生长另一种金属时,得到的是异质结构,而不是元素分布均匀的合金。不仅这些已有的制备方法有待完善,在金属空心纳米结构的合成领域还存在一些难以解决的问题和挑战。由于纳米颗粒趋于形成由能量较低的面组成的稳定性更好的结构,制备活性面高的花状或者枝状纳米结构仍然具有很大挑战。
有鉴于此,提供一种操作简便、成本低廉、催化剂可回用、金属催化剂通用性好的制备方法是必要的。
发明内容
本发明的目的在于克服现有技术的不足,提供一种Pt-Co花状纳米催化剂的制备方法。本发明通过首先制备出Co纳米颗粒,然后再用乙酰丙酮铂中的Pt4+取代Co纳米颗粒中的部分Co,也就是Pt4+与Co发生电化学置换反应,得到最终产品Pt-Co花状纳米结构。该方法通过两步反应完成,操作简单,并且具有良好的可控性,符合工业发展的需要。
本发明的技术方案为:
一种Pt-Co花状纳米催化剂的制备方法,包括以下步骤:
(1)在反应釜中加入甲苯与油胺,然后再加入乙酰丙酮钴和三丁基氨硼烷络合物;搅拌15~30分钟后,将反应釜放入烘箱中;在140~160℃反应6~12小时,得到Co纳米颗粒,将其清洗后,浸入乙醇中备用;
其中,物料配比为体积比甲苯:油胺=10:0.5~1.5;质量比乙酰丙酮钴:三丁基氨硼烷络合物=1:3~4;每10ml甲苯加0.005~0.02g乙酰丙酮钴;
(2)在反应器中加入十八胺使其溶解,然后加入上步得到的Co纳米颗粒和三丁基氨硼烷络合物;搅拌0.5~2小时后再加入乙酰丙酮铂;将温度升高到150~170℃,反应0.5~2小时后停止加热,产物清洗后得到Pt-Co花状纳米催化剂。
其中,物料配比为质量比十八胺:Co纳米颗粒:三丁基氨硼烷络合物:乙酰丙酮铂=200~2000:4:2~4:1~3。
所述的步骤(1)和(2)中用于清洗的物质均为乙醇。
本发明的实质性特点为
本方法采用的也是两步法,但是与种子生长法、刻蚀法不同。
(1)与种子生长法不同,Co纳米颗粒不是种子,它参与了反应,与Pt金属盐发生了置换反应,最终形成了花状结构。
(2)与刻蚀法不同,刻蚀法是其中一部分被刻蚀掉,而本方法中是Co纳米颗粒中一部分Co被Pt取代,形成了Pt-Co合金花状纳米结构。
本发明的有益效果为:本发明采用两步反应制备了Pt-Co花状纳米催化剂,在国际上属于首次实现Pt-Co花状纳米催化剂的制备。所用设备为一般的烘箱和普通的反应器,原料为甲苯、十八胺和油胺等,方法简单易行。制备的Pt-Co花状结构催化甲醇氧化的电流为2.85mA/cm2,而商业铂黑催化甲醇氧化的电流是1.26mA/cm2,Pt-Co花状结构的活性大概是商业铂黑的2.26倍,说明Pt-Co花状结构比商业铂黑的催化活性要高得多。因此,在电催化领域Pt-Co花状结构比商业铂黑具有广阔的应用前景。
附图说明
图1是实施例1制得的Co纳米颗粒的透射电镜图。
图2是实施例1制得的Co纳米颗粒的X射线衍射图。
图3是实施例1制得的Pt-Co花状纳米结构的透射电镜图。
图4是实施例1制得的Pt-Co花状纳米结构的X射线衍射图。
图5是实施例7,8和9制得的无Pt-Co花状纳米结构的实验结果图
其中图5a为实施例7的结果,图5b为实施例8的结果,图5c为实施例9的结果。
图6是实施例1,10和11制得的Pt-Co花状纳米结构的透射电镜图。
其中图6a是温度为150℃的透射电镜图,图6b是温度为160℃的透射电镜图,图6c是温度为170℃的透射电镜图。
图7是实施例1,12和13制得的Pt-Co花状纳米结构的透射电镜图。
其中图7a是反应时间为0.5小时的透射电镜图,图7b是反应时间为1小时的透射电镜图,图7c是反应时间为2小时的透射电镜图。
图8是Pt-Co花状纳米结构与商业铂黑催化甲醇的循环伏安图。
其中图8a是Pt-Co花状纳米结构催化甲醇的结果,图8b是商业铂黑催化甲醇。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
本发明所用的主要物料的品质为乙酰丙酮铂(分子量:393.29,纯度:97%)、乙酰丙酮钴(分子量:356.26,纯度:98%),三丁基胺硼烷络合物(简称的TBAB,分子量:86.97,纯度:97%),甲苯(分子量:92.14,纯度:99.5%)和油胺(分子量:267.49,纯度:70%),但其不作为对本发明的限制。
实施例1:
1)在反应釜中加入10ml甲苯与0.5ml油胺,然后加入0.01g乙酰丙酮钴和0.03g三丁基氨硼烷络合物;搅拌20分钟后,将反应釜放入烘箱中;在150℃反应10小时。反应结束后,所得Co纳米颗粒用乙醇清洗3次,并放在乙醇中备用。
2)在60℃将5g十八胺溶解,然后加入0.02gCo纳米颗粒和0.015g三丁基氨硼烷络合物。搅拌大约1小时后,加入0.01g乙酰丙酮铂。将温度升到160℃,反应2小时后停止加热。产物用乙醇清洗3次,并存在乙醇当中。
实施例2,
其他步骤同实施例1,不同之处在于步骤2中的乙酰丙酮铂改为0.005g。
实施例3,
其他步骤同实施例1,不同之处在于步骤2中的乙酰丙酮铂改为0.015g。
实施例4,
其他步骤同实施例1,不同之处在于步骤2中的十八胺改为3.5g。
实施例5,
其他步骤同实施例1,不同之处在于步骤2中的十八胺改为7.0g。
实施例6,
其他步骤同实施例1,不同之处在于步骤2中不加三丁基氨硼烷络合物。
实施例7,
在60℃将5g十八胺溶解,然后加入0.02g乙酰丙酮钴和0.015g三丁基氨硼烷络合物。搅拌大约1小时后,将温度升到160℃,反应2小时后停止加热。
实施例8,
在60℃将5g十八胺溶解,然后加入0.02g乙酰丙酮铂和0.015g三丁基氨硼烷络合物。搅拌大约1小时后,将温度升到160℃,反应2小时后停止加热。
实施例9,
在60℃将5g十八胺溶解,然后加入0.02g乙酰丙酮钴和0.015g三丁基氨硼烷络合物。搅拌大约1小时后,加入0.01g乙酰丙酮铂。将温度升到160℃,反应2小时后停止加热。
实施例10,
其他步骤同实施例1,不同之处在于步骤2中的反应温度改为150℃。
实施例11,
其他步骤同实施例1,不同之处在于步骤2中的反应温度改为170℃。
实施例12,
其他步骤同实施例1,不同之处在于步骤2中的反应时间改为0.5小时。
实施例13,
其他步骤同实施例1,不同之处在于步骤2中的反应时间改为1小时。
测试结果:通过改变反应条件寻找最佳实验条件,测试结果分别如图1-7所示。图1是三丁基氨硼烷络合物还原乙酰丙酮钴得到平均粒径为16.0nm的Co纳米颗粒,而图2是Co纳米颗粒的XRD谱图,测试仪器为X射线衍射仪(RigakuUltimaIV),扫描范围为20-80度,扫描速率为12度/分。从谱图中出现的特征峰可以进一步判断产物为金属Co纳米颗粒。通过Co纳米颗粒与Pt金属盐在十八胺中的反应,即可得到Pt-Co花状纳米结构,其平均粒径为18.1nm,如图3所示。图4是Pt-Co纳米结构的XRD谱图,进一步证实了产物为合金结构。说明实施例1确实得到了Pt-Co花状纳米结构。
实施例2-5得到的产品同实施例1。
实施例6得不到同实验例1的产品,说明三丁基氨硼烷络合物的加入是形成Pt-Co花状纳米结构的重要因素。
实施例7-13为对比例。
在其他条件不变的情况下,单独的乙酰丙酮钴和乙酰丙酮铂都不能生成花状纳米结构,如图5a-b。而且,如果将反应中的Co纳米颗粒换成乙酰丙酮钴金属盐,反应也不能发生,如图5c。这些实验结果表明,Co纳米颗粒和乙酰丙酮铂是生成Pt-Co花状结构的关键所在。
图6为不同温度下得到的产物结构,从图中可以发现反应温度对形貌有较大影响。当反应温度为150℃,产物几乎都是球形纳米颗粒,没有花状结构产生。当反应温度为160℃时,产物全部为花状结构。但当反应温度升到170℃,产物的花状结构又变得不太明显。这可能是因为当反应温度低时,反应较慢,不能促使置换反应的发生。而当反应温度过高,又会发生还原反应,所以得不到理想的花状结构,只有在比较适中的温度下才能得到最佳形貌。
除了反应温度,反应时间对产物形貌也有影响,如图7所示。从产物随着时间的变化可以看出,当反应时间为0.5小时,反应体系中开始出现花状结构。随着反应时间的推移,产物的花状结构逐渐明显。当反应达到2小时,产物达到最佳形貌。
图8为Pt-Co花状结构作为催化剂催化甲醇氧化的循环伏安图。从电化学结果可以看出,Pt-Co花状结构的比活性为2.85mA/cm2,比铂黑的1.26mA/cm2要高得多,说明Pt-Co花状结构比商业铂黑的催化活性高。由此可知,通过改变实验条件可以得到催化性能优越的催化剂。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
本发明未尽事宜属公知技术。

Claims (2)

1.一种Pt-Co花状纳米催化剂的制备方法,其特征为包括以下步骤:
(1)在反应釜中加入甲苯与油胺,然后再加入乙酰丙酮钴和三丁基氨硼烷络合物;搅拌15~30分钟后,将反应釜放入烘箱中;在140~160℃反应6~12小时,得到Co纳米颗粒,将其清洗后,浸入乙醇中备用;
其中,物料配比为体积比甲苯:油胺=10:0.5~1.5;质量比乙酰丙酮钴:三丁基氨硼烷络合物=1:3~4;每10ml甲苯加0.005~0.02g乙酰丙酮钴;
(2)在反应器中加入十八胺使其溶解,然后加入上步得到的Co纳米颗粒和三丁基氨硼烷络合物;搅拌0.5~2小时后再加入乙酰丙酮铂;将温度升高到150~170℃,反应0.5~2小时后停止加热,产物清洗后得到Pt-Co花状纳米催化剂;
其中,物料配比为质量比十八胺:Co纳米颗粒:三丁基氨硼烷络合物:乙酰丙酮铂=200~2000:4:2~4:1~3。
2.如权利要求1所述的Pt-Co花状纳米催化剂的制备方法,其特征为所述的步骤(1)和(2)中用于清洗的物质均为乙醇。
CN201510847424.6A 2015-11-26 2015-11-26 一种Pt‑Co花状纳米催化剂的制备方法 Active CN105251509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510847424.6A CN105251509B (zh) 2015-11-26 2015-11-26 一种Pt‑Co花状纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510847424.6A CN105251509B (zh) 2015-11-26 2015-11-26 一种Pt‑Co花状纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN105251509A true CN105251509A (zh) 2016-01-20
CN105251509B CN105251509B (zh) 2017-09-12

Family

ID=55091605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510847424.6A Active CN105251509B (zh) 2015-11-26 2015-11-26 一种Pt‑Co花状纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN105251509B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887196A (zh) * 2016-04-15 2016-08-24 中国科学技术大学先进技术研究院 一种Pt3Co纳米晶体及其催化剂、制备方法和应用
CN107051429A (zh) * 2017-04-10 2017-08-18 广东工业大学 一种可调控结构的铂基双金属纳米催化剂及其制备方法和应用
CN107069047A (zh) * 2016-12-31 2017-08-18 北京化工大学 一种超低活性位点间距的超小高活性钯‑镍‑磷三元合金纳米材料的制备及应用
CN113629258A (zh) * 2021-08-19 2021-11-09 无锡威孚高科技集团股份有限公司 一种表面富铂的铂钴合金催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357403A (zh) * 2007-07-30 2009-02-04 三星电机株式会社 用于制造金属纳米颗粒的方法
CN102009186A (zh) * 2010-12-30 2011-04-13 南京大学 一种低成本的树枝状Co-Pt核壳结构双金属材料及其制备方法
CN102921956A (zh) * 2012-11-01 2013-02-13 河南大学 一种有机相制备Au和Agx(Au)1-x纳米晶的方法
KR101338534B1 (ko) * 2011-12-27 2013-12-09 숭실대학교산학협력단 연료전지 촉매용 백금-니켈 합금 나노수지상입자
CN104307512A (zh) * 2014-10-14 2015-01-28 武汉大学苏州研究院 一种负载型钯催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357403A (zh) * 2007-07-30 2009-02-04 三星电机株式会社 用于制造金属纳米颗粒的方法
CN102009186A (zh) * 2010-12-30 2011-04-13 南京大学 一种低成本的树枝状Co-Pt核壳结构双金属材料及其制备方法
KR101338534B1 (ko) * 2011-12-27 2013-12-09 숭실대학교산학협력단 연료전지 촉매용 백금-니켈 합금 나노수지상입자
CN102921956A (zh) * 2012-11-01 2013-02-13 河南大学 一种有机相制备Au和Agx(Au)1-x纳米晶的方法
CN104307512A (zh) * 2014-10-14 2015-01-28 武汉大学苏州研究院 一种负载型钯催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KYUNGWON LEE等: "One-Pot Synthesis of Monodisperse 5 nm Pd − Ni Nanoalloys for Electrocatalytic Ethanol Oxidation", 《 ACS APPL. MATER. INTERFACES》 *
毕夏: "单分散NiPd双金属纳米材料的合成及其性能研究", 《万方数据学位数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887196A (zh) * 2016-04-15 2016-08-24 中国科学技术大学先进技术研究院 一种Pt3Co纳米晶体及其催化剂、制备方法和应用
CN107069047A (zh) * 2016-12-31 2017-08-18 北京化工大学 一种超低活性位点间距的超小高活性钯‑镍‑磷三元合金纳米材料的制备及应用
CN107069047B (zh) * 2016-12-31 2019-11-15 北京化工大学 一种超低活性位点间距的超小高活性钯-镍-磷三元合金纳米材料的制备及应用
CN107051429A (zh) * 2017-04-10 2017-08-18 广东工业大学 一种可调控结构的铂基双金属纳米催化剂及其制备方法和应用
CN113629258A (zh) * 2021-08-19 2021-11-09 无锡威孚高科技集团股份有限公司 一种表面富铂的铂钴合金催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN105251509B (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
CN101572316B (zh) 用于低温燃料电池的修饰型催化剂及其制备方法
CN104941674B (zh) 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
CN105431230B (zh) 在载体上形成贵金属纳米粒子的方法
CN104368357B (zh) 一种PdPtNi/C金属纳米催化剂及其制备方法和用途
CN112103520B (zh) 一种醇类燃料电池的阳极催化剂
CN113718281B (zh) 一种石墨烯量子点/MXene纳米片二维复合材料及其制备方法和应用
CN107552044B (zh) 一种有效素化贵金属并提升其电催化性能的制备方法
CN101740786A (zh) 一种PtRu/石墨烯纳米电催化剂及其制备方法
CN104307512A (zh) 一种负载型钯催化剂及其制备方法和应用
CN107188122A (zh) 过渡金属磷化物作为硼氢化物水解反应制氢催化剂的应用
CN105251509A (zh) 一种Pt-Co花状纳米催化剂的制备方法
CN101773828B (zh) 一种Pt-TiO2/CNTs催化剂及其制备方法
Zhang et al. Highly active carbon nanotube-supported Ru@ Pd core-shell nanostructure as an efficient electrocatalyst toward ethanol and formic acid oxidation
CN104607186B (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
CN104001525A (zh) 一种PtCu/C催化剂的制备方法
Farsadrooh et al. A new one-pot, and green strategy for the synthesis of networks of connected Pt nanoparticles decorated on MWCNTs as an excellent catalyst for anodic electrooxidation of methanol
CN110576189A (zh) 一种铑铂核壳双金属纳米枝的制备方法及应用
CN110575839A (zh) M2c/碳纳米片复合材料及其制备方法和应用
CN114164455B (zh) 一种通过电化学刻蚀提高贵金属基材料电催化性能的方法
Zhang et al. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation
CN112962109B (zh) 一种锑掺杂铜/氧化亚铜电催化材料的制备方法及其应用
CN108543541B (zh) 一种镍钴磷/氨基碳纳米管催化剂及其制备方法和应用
Thamer et al. Fabrication of highly dispersed bimetallic Ni-Mo@ CNFs by sol–gel assisted electrospinning for methanol oxidation electrocatalysis
CN106378153A (zh) 一种Pt‑Cu线状纳米催化剂的制备方法
Zhang et al. Palladium phosphide/black phosphorus heterostructures with enhanced ethanol oxidation activity and stability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant