CN105247695B - 半导体发光元件 - Google Patents

半导体发光元件 Download PDF

Info

Publication number
CN105247695B
CN105247695B CN201480031243.XA CN201480031243A CN105247695B CN 105247695 B CN105247695 B CN 105247695B CN 201480031243 A CN201480031243 A CN 201480031243A CN 105247695 B CN105247695 B CN 105247695B
Authority
CN
China
Prior art keywords
layer
semiconductor
side electrode
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480031243.XA
Other languages
English (en)
Other versions
CN105247695A (zh
Inventor
宫地护
斋藤龙舞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Publication of CN105247695A publication Critical patent/CN105247695A/zh
Application granted granted Critical
Publication of CN105247695B publication Critical patent/CN105247695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/337Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector having a structured surface, e.g. with facets or corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种半导体发光元件具有:半导体层合物,其包含n型半导体层、发光层和p型半导体层;多个过孔,其从所述半导体层合物的p型半导体层穿透发光层,所述多个过孔暴露n型半导体层;反光性p侧电极,其分别与p型半导体层和所述多个过孔的边缘隔离,p侧电极在p型半导体层上方延伸;绝缘层,其使所述多个过孔的底表面被暴露但是覆盖所述过孔的内侧面,所述绝缘层在第二半导体侧电极的边缘部分上方延伸;多个反光性n侧电极,其在所述多个过孔中的每个的底部与n型半导体层电连接,n侧电极跨过绝缘层在p型半导体层和p侧电极上方引出,并且布置为在平面图上与p侧电极重叠而没有间隙。

Description

半导体发光元件
技术领域
本发明涉及半导体发光元件和半导体发光器件。术语“GaN系半导体”是指含有作为III族元素的Ga和作为V族元素的N的III-V族化合物半导体。例如,提到了AlxGayInzN(0≤x<1,0<y≤1,0≤z<1且x+y+z=1)。
背景技术
对于n型半导体层、有源层和p型半导体层堆叠而成的半导体发光元件,需要与n型半导体层和p型半导体层电连接的n侧电极和p侧电极与n型半导体层和p型半导体层电连接的n侧电极和p侧电极。例如,透明电极形成在p型半导体层的整个表面上。p侧电极形成在透明电极的部分上并且被绝缘层覆盖。在形成穿透p型半导体层和有源层并且到达n型半导体层的过孔并且在过孔处暴露的n型半导体层上形成n侧穿通电极的情况下,n侧电极和p侧电极可设置在p型半导体层侧的同一表面上。
例如,已经提出将过孔处暴露的第一导电类型层的直径指定为10μm至30μm,将穿通电极的中心与中心距离(节距)指定为75μm至125μm,将穿通电极的总接触面积指定为半导体面积的5%或更小,特别地,2%或更小(例如,参照特许文献1、2)。
现有技术文献
特许文献
特许文献1:特开2011-066304公报
特许文献2:特表2011-517064号公报
发明内容
已经开发出允许半导体发光器件输出的光直接进入透镜并且将光施加到对象区域的车辆前照灯。在这样使用时,期望例如10W或更大的高驱动功率下的100lm/W的高功率转换效率、均匀亮度分布和均匀颜色分布的特性。
本发明的目的是提供适于应用于车辆前照灯等并且表现出高功率转换效率、均匀亮度分布和均匀颜色分布的半导体发光元件和半导体发光器件。
根据实施方式的观点,提供了一种半导体发光元件,该半导体发光元件包括:半导体层合物,其包含第一导电类型的第一半导体层、设置在上述第一半导体层上的发光层和设置在上述发光层上并且具有与上述第一导电类型相反的第二导电类型的第二半导体层;多个过孔,其从上述半导体层合物的上述第二半导体侧穿透上述发光层以暴露上述第一半导体层;第二半导体侧电极,其与上述第二半导体层和上述多个过孔的各边界边缘隔开,在上述第二半导体层上延伸,并且具有反光性;绝缘层,其暴露上述多个过孔中的每个的底部的至少部分,覆盖至少上述发光层和上述第二半导体层的上述过孔中的侧表面,延伸到上述第二半导体侧电极的周缘部分上;以及多个第一半导体侧电极,其在上述多个过孔中的每个的底部与上述第一半导体层电连接,在上述第二半导体层和上述第二半导体侧电极上方被引导使上述绝缘层在其间,被设置成在平面图上与上述第二半导体侧电极重叠而没有间隙,并且具有反光性。
可以以高驱动功率得到高功率转换效率。可使面内亮度分布和颜色分布均匀。
附图说明
图1A和图1B是示意性剖视图和示意性平面图,分别示出了在实施方式中在包含第一半导体层、有源层和第二半导体层的半导体层合物上形成第二半导体侧电极并且形成图案化掩模的状态。图1C和图1D是示意性剖视图和示意性平面图,分别示出了形成穿透第二半导体层和有源层的过孔并且形成与第一半导体层电连接的第一半导体侧电极的状态。图1E是示出结合支承基板的状态的示意性剖视图并且图1F是示出在结合支承基板之后剥离生长基板的状态的示意性剖视图。图1G是示出在包含一系列LED元件的发射表面上形成包含荧光体粉末的树脂层的状态的示意性剖视图,图1H是与图1G中示出的状态对应的状态的示意性平面图。
图2A至图2L是示出根据实施方式的半导体发光器件的制造步骤的示意性剖视图。
图3是n侧电极13附近的示意性剖视图。
图4A是示出因使用过孔而导致的n侧电极的节距变化的示意性平面图,图4B是示出功率转换效率变化-过孔节距变化的、计算值和测量值的曲线图。
图5A是示出基于模拟而确定的功率转换效率变化-n侧电极接触面积大小变化的曲线图,图5B是示出基于模拟而确定的功率转换效率变化-n侧电极接触面积与半导体层面积之比变化的曲线图。
图6A和图6B是示出根据应用示例的车辆照明灯具的示意性剖视图。
具体实施方式
常常通过在生长基板上堆叠外延生长层来形成半导体发光器件。例如,在蓝宝石基板上形成其中n型GaN系半导体层、GaN系发光层和p型GaN系半导体层堆叠的GaN系半导体层合物。蓝宝石基板是绝缘层,因此不可用作电极的部分。在GaN系半导体层合物上形成p侧电极和n侧电极。常常从蓝宝石基板侧取得发射的光。
蓝宝石的导热率并不高。可以说,蓝宝石基板在起到生长基板的作用之后不具有除了物理支承功能外的积极功能。已经开发出以下构造:其中在p型GaN系半导体层上键合导热率高的硅基板等,剥离用作生长基板的蓝宝石基板,允许输出光从n型GaN系半导体侧发出。去除蓝宝石基板,使得可改进散热特性,n型GaN系半导体层表面可经受微锥工作等,并且可形成具有更好特性的半导体发光器件。以下,将描述去除生长基板暴露n型半导体层的情况。
对于车辆前照灯而言,期望能够产生具有均匀亮度分布和均匀颜色分布的高输出光的半导体发光元件。剥离了生长基板并且被暴露的n型GaN系半导体层用作发光表面的半导体发光元件是有前景的。可通过在背表面侧在p型GaN系半导体层表面上大量形成反射电极来增大光输出。另外,至于n侧电极,其中形成穿透p型GaN系半导体层和发光层以暴露n型GaN系半导体层的过孔并且形成在过孔底部与n型GaN系半导体层接触的n侧电极以及将n侧电极引导至背表面侧的构造有可能给出适于这种使用的特性。
当驱动电流经过半导体层合物并且允许发光层发光时,光发射在每个方向上前进。在从n型GaN系半导体层侧取得输出光的情况下,为了有效取得从发光层前进到p型半导体层侧的光,期望在p型GaN系半导体层的外表面上设置反光器。为了增大驱动电流并且得到大输出光,期望形成反射电极的最大区域,该反射电极与具有尽可能低电阻的p型半导体层欧姆接触并且具有反光性。
至于形成在p型GaN系半导体层表面上的高反射率金属电极,已知的是Ag、Pt、Ni、Al、Pd及其合金。已知的是可通过添加Ni、Pt、Ti、Pd等来增强p型GaN系半导体层的欧姆性。还已知的是其中氧化铟锡(ITO)层形成为地层并且堆叠Ag层或Ag合金层的p侧电极可构成高性能的p侧反射电极。
银具有高反射率,但具有容易扩散(迁移)的性质。扩散的Ag造成不利现象,例如,产生漏电流。期望的是,在Ag层或Ag合金层上设置用于防止Ag扩散的扩散防止结构。
期望的是,用于n型GaN系半导体层的电极没有阻挡产生的光并且可以以尽可能低的电阻将电子供应到n型GaN系半导体层的各点。如果在n型GaN系半导体层上形成也用作电极的布线,则因为条带形状布线等,难以避免发光区减小。
可以在p型GaN系半导体层侧的外部中形成n侧布线,过孔穿透p型GaN系半导体层和发光层以暴露n型GaN系半导体层,并且在过孔中形成电极从而连接n型GaN系半导体层和n侧布线。n型GaN系半导体层的整个表面可被暴露。过孔中形成的n侧电极形成分布于半导体层的平面中的接触区域。发光区中n侧电极的有效面积可减小。
本发明的发明人已对以下的形成过孔的技术进行了研究开发:从生长的半导体层合物的p型半导体层表面穿透p型半导体层和发光层以暴露n型半导体层,在不包括过孔边界边缘的几乎整个p型半导体层上形成p型反射电极,形成与过孔处暴露的n型半导体层接触的n侧电极、并且将n侧电极连接到p型半导体层上方的布线层。P型反射电极在不包括要设置有n侧电极的大面积内与p型半导体层表面接触,使得减小接触电阻并且提高光提取效率。在用作输出光的发射表面的n型半导体层表面上没有形成电极。n侧电极引导到p型半导体层侧。可以使从n型半导体层上方看到的这种n侧电极的印记小。然而,半导体层的电阻分量按照与n侧电极的距离而增大并且可产生按照电阻分量倒数的亮度分布。
在p型半导体层上方设置用于p侧电极和n侧电极的布线层。例如,可采用各种图案,例如,平行设置的条带形电极和整个表面堆叠的电极,其中在相互绝缘的堆叠电极的半导体层侧电极中形成孔。
以下,将描述根据实施方式的GaN系半导体发光器件。
如图1A的剖视图中所示,在蓝宝石等生长基板1上,外延生长半导体层合物。例如,在蓝宝石基板1上生长半导体层合物,该半导体层合物包含GaN系半导体缓冲层2a、n型GaN系半导体层2b、多量子阱有源层3和p型GaN系半导体层4。可在没有掺杂任何n型杂质的情况下生产n型GaN系半导体层。
例如,通过掺杂用作n型杂质的Si等,形成膜厚度是大约5μm的n型GaN层2b。缓冲层2a不一定被掺杂n型杂质。缓冲层2a和n型GaN层2b可被统称为n型GaN层2。多量子阱有源层3包括例如交替堆叠的InGaN阱层和GaN势垒层。p型GaN系半导体层4由例如掺杂有用作p型杂质的Mg等的膜厚度是大约0.5μm的p型GaN层形成。
在p型GaN系半导体层4上,形成包含Ag作为主要组分的p侧反射电极层5。银表现出相对于可见光的高反射率。Ag原子的迁移(扩散)造成泄漏等。为了确保欧姆性并且抑制Ag的迁移,在Ag中添加Ti等。可在Ag层和p型GaN系半导体层之间形成透明导电层(例如,薄Ti层或氧化铟锡(ITO)层)。为了执行过孔蚀刻,在p侧反射电极层5上形成蚀刻掩模EM,例如,图案化的氧化硅膜。
图1B是p侧反射电极层5的平面图。在p侧反射电极层5上,形成具有布置成方形矩阵的开口HL的蚀刻掩模EM。用虚线指示蚀刻掩模的开口。如图1A中所示,例如,在蚀刻掩模的开口部分中执行用基于Cl的气体进行的干蚀刻,使得p侧反射电极层5、p型GaN系半导体层4和多量子阱有源层3被蚀刻,以形成暴露n型GaN系半导体层2b的过孔VH。
如图1C中所示,覆盖过孔VH的侧表面和p侧反射电极5的周缘部分并且在过孔VH底部暴露n型GaN系半导体层2的绝缘层12由氧化硅等形成。形成与在过孔VH底部暴露的n型GaN系半导体层欧姆接触的n侧反射电极13。例如,形成包含Ti/Ag层合物的n侧反射电极13。允许n侧反射电极13的边缘部分与p侧反射电极5的边缘部分重叠,当从生长基板1上方看时,没有间隙。n侧反射电极13界定具有遵循过孔VH的内表面的凹形形状的腔体部分CV。
图1D是与图1C中示出的状态对应的状态的平面图。用p侧反射电极5的虚线指示的开口(多个过孔)布置成方形矩阵并且n侧反射电极13被布置成覆盖这些过孔并且与周围的p侧反射电极5重叠。
如图1E中所示,在各LED元件的电极上,形成导电键合层14n和14p。设置有布线23n和23p的支承基板21在导电键合层14n和14p上方对准,将布线23n和23p键合到导电键合层14n和14p以结合支承基板。腔体部分CV被半导体基板和支承基板围绕。
出于方便的缘故,在附图中示出用于各LED元件的p侧电极和n侧电极中的每个的一个键合层。执行用于将生长基板上的半导体层合物划分成个体LED元件的街区蚀刻。例如,在形成其中四个LED元件串联连接的四套半导体发光器件的情况下,形成其中四个LED元件在一个方向上设置的图案。
如图1F中所示,在键合支承基板21之后,通过激光剥离(LLO)等剥离生长基板1。例如,在设置有绝缘膜(例如,氧化物膜)的支承基板21(例如,Si基板)上,形成数量比LED元件的数量大1的布线W(W1至W5)。通过键合层在其间将布线W键合到p侧反射电极5和n侧反射电极13并且结合支承基板21。四个LED元件LED 1至LED 4串联连接在两端的布线W1和布线W5之间。具有作为最顶层的光反射层的布线层W设置在相邻LED元件之间的区域中。此后,通过使用准分子激光,用例如激光剥离(LLO)去除生长基板1。必要时,用碱溶液等使n型GaN系半导体层2的表面经受微锥工作,使得形成微锥结构等。
如图1G中所示,执行引线键合等。施用包含荧光体颗粒的树脂层45从而覆盖四个LED元件,由此密封发射表面。例如,在发蓝光的LED元件的情况下,在密封树脂中混合黄色荧光体颗粒,以形成白光。
图1H是图1G中示出的构造的平面图。在LED元件之间的区域中,设置在最顶层具有光反射层的布线W2、W3和W4。在堆叠的半导体层中形成多个过孔,在包括过孔的区域中设置反射电极13。LED元件之间的区域和LED元件中的过孔的区域不包括发光层3,因此没有发光功能。然而,因为布线和电极具有光反射功能,所以提供光反射功能。存在覆盖半导体结构的包含荧光体颗粒的树脂层45。当从整个发光层3发射的蓝光被荧光体颗粒吸收时,生成作为荧光的黄光。LED元件之间的光反射布线W、遍及p型半导体层的几乎整个区域延伸的p侧反射电极5、覆盖分散的过孔区域的n侧反射电极13反射荧光。通过被反射的光来抑制局部亮度减小。
可通过增大n侧电极的分布密度并且减小从半导体层的各点到n侧电极的最大距离来抑制取决于与n侧电极的距离(电阻变化)的亮度分布。可通过限制所有n侧电极的总面积相对于半导体层面积的比例来抑制由于形成n侧电极而导致的发光区减小。如果单位面积的电流密度太大,则电流转换效率减小。可通过控制电流密度来抑制电流转换效率的减小。
图2A至图2L是示出根据实施方式的半导体发光器件的制造步骤的示意性剖视图。出于简化附图的目的,两个LED元件被作为示例示出,每个LED元件一个n侧电极被作为示例示出。
如图2A中所示,例如,将用作生长基板1的蓝宝石基板放入MOCVD装置中并且执行热清洁。在生长GaN缓冲层和未掺杂的GaN层之后,生长掺杂有Si等并且厚度是大约5μm的n型GaN层。GaN缓冲层、未掺杂的GaN层和n型GaN层被统称为n型GaN层2。
在n型GaN层2上生长发光层(有源层)3。至于发光层3,例如,可形成以下的多量子阱结构:阱层指定为InGaN层并且势垒层指定为GaN层。在发光层3上,生长掺杂有Mg等并且膜厚度是大约0.5μm的p型GaN层4。
生长基板1选自具有能够外延生长GaN的晶格常数并且对于362nm的光(即GaN的吸收边波长)而言透明以使可以在下游步骤中用激光剥离剥离基板的单晶基板。除了蓝宝石外,还可使用尖晶石、SiC、ZnO等。
在p型GaN层4上,形成具有反光性的p侧电极层5。为了允许p侧电极层5用作反射电极,优选地使用Ag、Pt、Ni、Al、Pd或其合金。当发光层3发射的向上移动的光到达p侧电极层5的下表面时,光被向下反射。例如,通过电子束蒸发来沉积厚度是200nm并且其中在Ag中添加诸如Ni、Pt、Ti和Pd的添加物的层,并且通过剥离执行图案化。在将设置有p侧电极层5的n侧电极的区域,形成穿透的开口HL。具体地,如图1D中所示,例如,多个开口HL大体设置成方形矩阵。
按照布线形成等的必要性,可略微变化开口布置(例如,一条线布置在端部部分)的部分。在这种情况下,大部分(例如,80%或更多或90%或更多)的开口形成方形矩阵。在这种情况下,开口的“关键部分”可形成方形矩阵。出于简化附图的目的,在图2A至图2L的附图中只示出一个开口。
实际上,p侧电极层5是遍及一个LED元件的p型半导体层的几乎整个表面延伸的层。在其平面上,如图1B和图1D中所示,形成多个开口HL,并且如图1D中所示,以覆盖各开口区域这样的方式设置n侧电极13。
以围绕p侧电极5这样的方式形成绝缘体的边缘层6。例如,通过在p侧电极5外部的p型GaN层4上进行溅射,沉积膜厚度等于p侧电极5的厚度的SiO2层,并且执行图案化。
如图2B中所示,通过堆叠p侧高反射层7和p侧扩散防止层8,形成p侧高反射覆盖层9。例如,通过溅射,在p侧电极5和边缘层6的上表面上以及p侧电极5和边缘层6之间的p型GaN层4上,沉积膜厚度是100nm并且用作高反射层7的Ag层和膜厚度是250nm/50nm/100nm/1,000nm/30nm并且用作扩散防止层8的TiW/Ti/Pt/Au/Ti层(在表现堆叠结构时,形成在基板侧和下侧的层在左边示出,下文中含义类似),并且通过剥离执行图案化。在p侧电极5或边缘层6上,设置高反射层7的外边缘。
p侧电极5包含诸如Ni、Pt、Ti和Pd的添加物,以得到与p型GaN层4的欧姆接触。另一方面,在p侧高反射层7中没有添加添加物。p侧高反射层7在被p侧电极5和边缘层6围绕的区域中与p型GaN层4接触。因此,抑制Ag从p侧高反射层7扩散。
p侧扩散防止层8是用于防止用于p侧电极5的材料向上扩散的层,并且在p侧电极5包含Ag的情况下,可使用Ti、W、Pt、Pd、Mo、Ru、Ir、Au及其合金。
例如,在开口HL的边缘附近,没有形成p侧高反射覆盖层9,p侧高反射覆盖层9的开口HL侧的边缘与开口HL的边缘隔开设置并且设置在开口HL的边缘外部的p侧电极5上。在平面图上,在p侧高反射覆盖层9的开口HL侧的边缘部分中,p侧扩散防止层8的边缘部分按以下方式形成:覆盖p侧高反射层7的边缘部分,p侧扩散防止层8的边缘布置在p侧高反射层7的边缘内。
p侧高反射覆盖层9的元件外边缘侧的边缘设置在边缘层6的上表面上,在此处p侧高反射层7和p侧扩散防止层8的边缘彼此重合。以p侧高反射覆盖层9的边缘部分位于边缘层6的上表面上(即,离开半导体层表面)的方式形成的结构用作p侧高反射覆盖层9中的Ag的泄漏阻挡件。
形成绝缘覆盖层10覆盖p侧高反射覆盖层9和p侧电极5。绝缘覆盖层10和边缘层6覆盖p侧高反射覆盖层9和p侧电极5,从而抑制Ag扩散。例如,通过溅射来沉积膜厚度是300nm的SiO2并且通过剥离执行图案化。至于图案化方法,除了剥离之外,可采用在整个表面上形成SiO2膜并且此后使用基于CF4的气体等执行干蚀刻的方法。
可使用绝缘材料(例如,SiO2或SiN)来形成绝缘覆盖层10。绝缘覆盖层10具有防止p侧电极5和p侧高反射覆盖层9的p侧高反射层7所使用的基于Ag的材料泄漏的功能。
绝缘覆盖层10也形成在开口HL的边缘附近并且以在p侧电极5的侧表面上延伸从而界定开口HL这样的方式形成。绝缘覆盖层10具有对应于开口HL的开口并且在开口底部暴露p型GaN层4。
如图2C中所示,通过例如反应离子蚀刻(RIE)去除在开口处暴露的p型GaN层4和其下方的发光层3,以形成凹形部分或腔体部分CV。跨过包括发光层3的pn结区域执行蚀刻达到电暴露n型半导体层2的深度。确保n型半导体层2的n侧电极的接触区域。
如图2D中所示,通过溅射来形成绝缘材料(例如,氧化硅或氮化硅)的绝缘浮层12,并且例如通过使用基于CF4的气体执行图案化。绝缘浮层12覆盖在凹形部分CV的侧表面处暴露的pn结区域并且在凹形部分CV的底部处具有暴露n型半导体层2的开口。绝缘浮层12也覆盖绝缘覆盖层10。在附图中,边缘层6的外周表面被覆盖,尽管不是不可缺少的。通过堆叠绝缘覆盖层10和绝缘浮层12来形成电极间绝缘层IS。
为了确保p侧电极的接触区域,通过例如用基于CF4的气体进行干蚀刻来蚀刻蚀刻掩模以及绝缘浮层12和绝缘覆盖层10,以形成暴露p侧高反射覆盖层9的部分的接触孔CH,该蚀刻掩模部分具有下方存在p侧高反射覆盖层9的区域中的开口。
如图2E中所示,形成高反射n侧电极13,覆盖凹形部分CV表面上的绝缘浮层12,与p侧电极5重叠。例如,通过利用电子束蒸发或溅射堆叠膜厚度是1/200/100/200/200(nm)的Ti/Ag/Ti/Pt/Au,并且通过剥离等执行图案化,在绝缘浮层12上以及在凹形部分CV的底部处暴露的n型半导体2上的区域中形成高反射n侧电极13。高反射n侧电极13用作在凹形部分CV的底部处与n型半导体层2接触的连接电极部分,并且除此之外,还用作相对于从附图下面入射的光的高反射反射镜。高反射n侧电极13以其边缘部分与p侧电极5的边缘部分在平面图上重叠从而界定开口HL这样的方式形成。如果作为最下层的Ti层厚,则反射率减小。因此,指定这个Ti层的膜厚度是5nm或更小(例如,1nm)。确保基于Ag层即从底部起算第二层的高反射率。
如图2F中所示,形成通过键合或熔融用作连接电极的覆盖层14n和14p。例如,通过利用电子束蒸发或溅射堆叠膜厚度是50/100/400(nm)的Ti/Pt/Au并且通过剥离等执行图案化来形成包括n侧覆盖电极14n和p侧覆盖电极14p的覆盖电极14。覆盖电极14的最下层是厚度是50nm并且具有高吸收率的Ti层。高反射电极13和覆盖层14n也可一齐被认为是n侧电极。n侧电极界定过孔的凹形部分CV中的腔体。
n侧覆盖电极14n连接到n侧电极13并且形成元件的n侧电极EN。p侧覆盖电极14p进入接触孔以与p侧高反射覆盖层9连接,此外,与n侧覆盖层14n隔离,其间具有间隙。p侧电极5、p侧高反射覆盖层9和p侧连接电极14p形成元件的p侧电极Ep。
如图2G中所示,使用覆盖LED元件区域并且具有暴露外部区域的开口的光致抗蚀剂掩模,并且例如,通过使用氯气的RIE来蚀刻p型半导体层4、发光层3和n型半导体层2,以暴露生长基板1。LED元件被图案化并且形成隔开相邻LED元件的街区ST。
图3是n侧电极13附近的示意性剖视图。
在p侧电极5中形成的开口中设置凹形部分CV,并且在底部暴露n型半导体层2。p侧电极5的开口边缘E5与p型半导体层4的边缘部分ECV隔开并且设置在p型半导体层4上。p侧高反射覆盖层9设置在p侧电极5的边缘部分的外侧。用RG指代不存在p侧高反射覆盖层9的区域。n侧电极13在凹形部分CV的底部与n型半导体层2接触,沿着凹形部分CV的侧表面延伸,跨过边缘,并且跨过p侧电极5的边缘部分E5,并且终止于区域RG上方。
n侧电极13被以在平面图上与p侧电极5的开口边缘部分重叠而没有间隙的方式形成。n侧电极13没有与p侧高反射覆盖层9重叠。在平面图上,n侧覆盖层14n与p侧高反射覆盖层9重叠。
电极间绝缘层IS在p侧高反射覆盖层9的边缘E9外部的区域中骑在p侧高反射覆盖层9的上表面上。骑在区域RG上形成的n侧电极13的边缘部分的上表面的高度低于边缘E9外部的区域中的电极间绝缘层IS上表面的高度。图3示出在下游步骤中结合设置有绝缘层22和电极23的支承基板21的状态。
可通过允许从发光层入射的光在开口中在n侧电极13处反射并且在开口外部在p侧电极Ep处反射来提高光提取效率。n侧电极13的边缘部分终止于区域RG上方,使得p侧电极Ep和n侧电极13之间的多次反射受到限制,由此,可抑制发光层边缘部分处的色相不匀等。
在元件中设置要与n型半导体层连接的多个n侧电极。例如,在具有大约0.6mm至0.8mm的短边长度和是短边长度的大约1.5倍至2.5倍的长边长度的发光表面中,n侧电极被布置成具有多行多列(例如,6行12列或8行16列)的矩阵。
通常,金属和半导体具有不同的热膨胀系数。在半导体层中形成多个过孔并且在各过孔中嵌入金属电极的情况下,施加到半导体层的应力可因为与元件操作关联的热变形而增大。
在使用如图3中所示的包括腔体CV的结构作为n侧电极的情况下,预期抑制应力并且释放产生的应力的效果。这些效果是除了改进LED光元件发射表面的亮度分布和颜色分布外的优点。
将参照图2H至图2L来继续说明根据实施方式的半导体发光器件的制造步骤。具有其中两个发光元件31A和31B串联连接的结构的两套发光器件将被描述为示例。可在必要时来变化LED芯片的数量。例如,还可形成四套半导体发光器件。
如图2H中所示,例如,指定支承基板21为硅基板,并且通过热氧化处理,在表面上形成由SiO2制成的绝缘层22。优选地,支承基板21由热膨胀系数接近蓝宝石的热膨胀系数(7.5×10-6/K)和GaN的热膨胀系数(5.6×10-6/K)且导热率高的材料形成。例如,可使用Si、AlN、Mo、W、CuW等。绝缘层22的膜厚度可以是可实现确保绝缘性质的目的的厚度。
随后,在绝缘层22上,形成用作支承基板侧布线或电极的熔融(或键合)层23。例如,通过耐热蒸发来沉积膜厚度是1μm的AuSn(Sn:20重量%)并且将其图案化成多个部分(LED的数量+1,这里,三个部分)。如图2I中所示,支承基板侧的布线或电极23被键合到元件侧的n侧电极14n和p侧电极14p。至于用作粘结n侧电极14n和p侧电极14p的键合层的支承基板侧电极23的材料,可使用能够熔融键合的包含Au-Sn、Au-In、Pd-In、Cu-Sn、Ag-Sn、Ag-In、Ni-Sn等的金属和能够扩散键合的包含Au的金属。
与发光元件31A的p侧电极14p连接的电极23p、与发光元件31A的n侧电极14n和发光元件31B的p侧电极14p连接的电极23np、与发光元件31B的n侧电极14n连接的电极23n在电隔离的同时形成在支承基板21上。
如图2I中所示,对准并且键合支承基板侧的电极23p、23np、23n和各元件的p侧电极14p和n侧电极14n。例如,引起在压力是3MP时的加压状态,执行加热到300℃,随后保持10分钟。此后,执行冷却至室温。以这种方式,通过热压缩键合来执行熔融键合。
形成电连接结构,其中,通过电极23p引导发光元件31A的p侧电极14p,通过电极23np串联连接发光元件31A的n侧电极14n和发光元件31B的p侧电极14p,并且通过电极23n引导发光元件31B的n侧电极14n。
如图2J中所示,通过激光剥离来剥离生长基板1。例如,从蓝宝石基板1的背表面侧施加UV准分子激光以热分解缓冲层。可使用蚀刻或其它方法来剥离或去除生长基板1。
然后,用热水等去除因激光剥离产生的Ga,用盐酸处理该表面。因此,暴露n型GaN层2。这个表面处理只需要蚀刻氮化物半导体并且还可使用酸、碱等的化学试剂(例如,磷酸、硫酸、KOH和NaOH)。通过利用Ar等离子体或基于氯的等离子体进行的干蚀刻、抛光等来执行表面处理。另外,n型GaN层2的表面经受使用干蚀刻设备(例如,RIE)进行的Cl、Ar处理或使用CMP设备进行的平滑处理,以去除激光迹线和激光损害层。
如图2K中所示,形成光提取结构或微锥结构。将n型GaN层2被暴露的表面浸入碱溶液(例如,KOH溶液)中,使n型GaN层2的表面经受粗糙化,从而造成晶体结构。光提取效率可提高。
在支承基板上的电极23p和23n的外边缘部分的区域中,在随后将经受供电引线键合的区域外部的区域中,形成眩光吸收层24。例如,通过电子束蒸发等来沉积厚度是200nm的Ti并且执行图案化。
在将经受引线键合的区域中形成开口,由此,暴露支承基板电极23的AuSn层。眩光吸收层24被形成为用Ti层覆盖开口的外部。Ti层比AuSn层容易吸收从随后覆盖元件而形成的荧光体层产生的黄光。因此,黄光被围绕引线键合的区域中的Ti层24吸收,使得可抑制发光器件边缘部分中的色相不匀或颜色分离。
例如,通过利用化学气相沉积(CVD)等在元件的整个上表面上沉积厚度是350nm的SiO2来形成全表面保护膜25。
为了减小热阻,通过研磨和抛光背表面侧,将支承基板21的厚度减小至例如300μm。为了确保安装基板和结合材料之间的粘附性,通过例如利用电子束蒸发沉积厚度是50nm/15nm/200nm的Ti/Pt/Au,在支承基板21的研磨和抛光表面上形成背金属层26。通过激光划线或切块27来划分支承基板21,使其用作半导体发光器件的单元。
如图2L中所示,与元件31A和31B结合的支承基板21经受晶粒键合。使用结合材料42(例如,Ag膏或AuSn)将支承基板21晶粒键合到封装基板41的容纳空间底部。此后,使用Au布线43p和43n执行引线键合,由此,元件31A的p侧电极和元件31B的n侧电极连接到分别设置在封装基板41侧壁上的供电焊盘44p和44n。
用树脂密封发光元件31A和31B并且进行固化,使得形成密封树脂层45。在密封树脂中混合用于变白的荧光体粉末。例如,在发蓝光元件的密封树脂层中混合发黄光荧光体。可按各种方式组合发射波长和荧光体。可混合蓝色和黄色这两种颜色、红色、绿色和蓝色这三种颜色等的荧光体。如上所述,形成半导体发光器件。
在上述构造中,n侧电极连接到穿透p型半导体层和发光层形成的大量过孔中的n型半导体层并且连接到在p侧电极上方延伸的连接电极14。在n型半导体层中,电阻分量按与n侧电极的距离而增大,电流密度可增大,并且亮度可减小。为了抑制亮度分布,增大n侧电极的密度并且减小从半导体层中的各点到最接近的n侧电极的距离可以是有效的。然而,在n侧电极的密度增大的情况下,半导体层中的n侧电极的印记增大并且发光区减小并不是优选的。如果半导体发光区的每单位面积的电流密度太大,则电流转换效率减小。为了得到高电流转换效率,控制半导体的每单位面积的电流密度是有效的。
如图4A中所示,考虑以下情况:在与n型半导体层的接触面积恒定的同时,在n侧电极布置成方形矩阵的构造中改变n侧电极的节距。通过模拟,计算当过孔(n侧电极)节距(中心与中心的距离)变成215μm、160μm、130μm、107μm、95μm和83μm时的功率转换效率。在附图中,只示出最接近的四个n侧电极的布置。大量n侧电极以相同节距垂直和水平地布置。如果电极节距减小,从这四个电极到最远中心位置的距离减小并且电阻分量减小。
图4B是示出功率转换效率变化-过孔节距变化的曲线图。水平轴指示过孔节距(单位:μm)并且竖直轴指示功率转换效率(任意单位)。功率转换效率已按最大值进行归一化。用符号Δ指示的图线表示计算得到的值。当过孔节距减小至215μm、160μm、130μm、107μm和95μm时,功率转换效率大体线性增大。考虑由于过孔节距减小而导致电阻分量减小并且功率转换效率提高。如果过孔节距进一步减小至83μm,出现了功率转换效率略微增大但几乎饱和的特性。考虑过孔节距减小、发光区减小、电流密度增大从而使功率转换效率减小,由此,由于电阻分量减小造成的优点被抵消。
然后,根据上述实施方式,实际形成其中布置成方形矩阵的n侧电极的节距变化为如上所述的215μm、160μm、130μm、107μm、95μm和83μm的样本,并且测量功率转换效率。在图4B中,用符号○指示的图线表示测量结果。可以说,计算值和测量值的特性整体彼此恰当相符,尽管在中间区域中存在差异。通过实验确认通过以短节距布置小电极来得到高功率转换效率。关于图4B中示出的特性,n侧电极的接触面积被指定成是恒定的,因此,n侧电极的所有接触压降相同。如果n侧电极的接触面积增大,n侧电极的接触压降减小,这造成功率转换效率提高。另一方面,n侧电极的接触面积的增大伴随着发光区的减小。这造成电力密度增大并且造成功率转换效率减小。通过计算来估计功率转换效率的n侧电极接触面积依赖性。可基于图4B中示出的结果和n侧电极的接触面积变化来估计在一个凹形部分CV底部中形成的n侧电极与n型半导体层之间的圆形接触区域的直径的情况下的电特性。另外,根据电流-光输出特性的实验结果来确定电流密度-光输出密度,并且根据所得特性,可以估计在通过改变n侧电极大小来改变发光区面积的情况下电流-光输出特性的行为。
图5A和图5B示出模拟的结果。在图5A中,水平轴指示n侧电极的接触面积大小(直径)(单位:μm),竖直轴指示归一化的功率转换效率(任意单位)。在图5B中,水平轴指示n侧电极的接触面积比例(单位:%),竖直轴指示归一化的功率转换效率(任意单位)。在这两个曲线图中,很明显,过孔节距被设置成83μm的样本S1和过孔节距被设置成95μm的样本S2的功率转换效率是优异的。n侧电极的接触面积大小(直径)优选地小于10μm(5μm或更大),进一步优选地是6μm至9μm。n侧电极的接触面积比例优选地小于1%(0.3%或更大),进一步优选地是0.35%至0.9%。这里,术语“至”是指包括两个端值的范围,也就是说,或更多,或更少。
将描述装有根据上述实施方式的LED的车辆照明灯具(前照灯)。图6A和图6B是示出根据应用示例的车辆照明灯具的示意性剖视图。
图6A中示出的车辆照明灯具50是使用照射透镜105作为照射光学系统51的示例。照射透镜105以LED阵列100的光源图像106投影到面对车辆前端部分的虚拟垂直屏幕(照射表面)107上这样的方式进行设置。
图6B示出具有其它照射光学系统51'的车辆照明灯具50的示例。如图6B中所示,照射光学系统51'可包括多重反射器(反射表面)103和照射透镜105。根据这个示例的车辆照明灯具50被构造成包括光源102和照射光学系统51',光源102由设置为覆盖LED阵列100的发光表面的荧光层(波长转换层)108形成,照射光学系统51'包括用作被划分成多个小反射区域的多重反射器的反射表面103、灯罩104和照射透镜105。
如图6B中所示,光源102被以如下方式布置:将照射方向(发光表面)指定为向上并且反射表面103是具有设置在光源102附近的第一焦点和设置在灯罩104上端边缘附近的第二焦点的球状反射表面,并且以如下方式被布置:来自光源102的光进入并且覆盖从光源102的侧边到前方的的范围。
如图6B中所示,反射表面103被以如下方式构造:将光源102的LED阵列100的具有预定光分布形状的光源图像106向着车辆前方施加,并且将LED阵列100的光源图像106投影到面对车辆前端部分的虚拟垂直屏幕(照射表面)107上。
灯罩104是阻挡被反射表面103反射的光的部分并且形成适于前照灯的截止线的阻光构件,布置在照射透镜105和光源102之间,而上端边缘位于照射透镜105的焦点附近。照射透镜105布置在车辆前侧并且将被反射表面103反射的光施加到照射表面107。
车辆照明灯具被描述为LED阵列的应用示例,尽管还可以将其应用于普通照明、大背光等的其它发光器件。
至此,已经参照实施方式说明了本发明,但本发明不限于这些实施方式。例如,作为GaN/InGaN多量子阱的替代,可使用具有不同组成的InGaN/InGaN多量子阱。还可使用除了多量子阱外的发光层。多个n侧电极的布置不限于方形矩阵的形状。例如,可采用其它矩阵布置。半导体材料不限于GaN或AlGaInN。另外,本领域的技术人员显而易见的是,能实现各种修改形式、改进形式、组合形式等。

Claims (12)

1.一种半导体发光元件,该半导体发光元件包括:
半导体层合物,其包含第一导电类型的第一半导体层、设置在所述第一半导体层上的发光层、以及设置在所述发光层上并且具有与所述第一导电类型相反的第二导电类型的第二半导体层;
多个过孔,其从所述半导体层合物的第二半导体层侧穿透所述发光层以暴露所述第一半导体层;
第二半导体侧电极,其在所述第二半导体层上延伸,在所述多个过孔的区域内分别具有开口,并且具有反光性;
绝缘层,其暴露所述多个过孔中的每个的底部的至少部分,覆盖至少所述发光层和所述第二半导体层的所述过孔中的侧表面,延伸到所述第二半导体侧电极的过孔侧端部周缘部分上,相邻的过孔的中间部的所述第二半导体侧电极暴露;以及
多个第一半导体侧电极,其在所述多个过孔中的每个的底部与所述第一半导体层电连接,隔着所述绝缘层,也延伸到所述发光层、所述第二半导体层以及所述第二半导体侧电极的侧面上,被引导到所述第二半导体侧电极上方,被设置成其边缘部分与界定了所述第二半导体侧电极的所述开口的边缘部分重叠,终止于边缘部分上方,在平面图上没有间隙地与所述第二半导体侧电极重叠,并且具有反光性。
2.根据权利要求1所述的半导体发光元件,其中,所述半导体层合物由GaN系半导体形成,所述第一导电类型是n型,所述第二导电类型是p型,并且在所述第二半导体层侧界定发光表面。
3.根据权利要求1所述的半导体发光元件,其中,所述第一半导体侧电极和所述第一半导体层之间的接触区域为圆形,所述多个第一半导体侧电极中的每个具有直径小于10μm的接触面积。
4.根据权利要求3所述的半导体发光元件,其中,所述多个第一半导体侧电极中的每个具有直径范围在6μm至9μm内的接触面积。
5.根据权利要求1所述的半导体发光元件,其中,所述多个第一半导体侧电极的总接触面积与所述半导体层的面积之间的接触面积比小于1%。
6.根据权利要求5所述的半导体发光元件,其中,所述多个第一半导体侧电极的总接触面积与所述半导体层的面积之间的接触面积比在0.35%至0.9%的范围内。
7.根据权利要求1所述的半导体发光元件,其中,所述第一半导体侧电极包括具有高可见光反射率的金属反射层和设置在所述反射层与所述第一半导体层之间的欧姆性增强电极层。
8.根据权利要求7所述的半导体发光元件,其中,所述反射层由从由Ag、Pt、Ni、Al、Pd及其合金组成的组中选择的一种材料制成。
9.根据权利要求7所述的半导体发光元件,其中,所述欧姆性增强电极层是具有5nm或更小的膜厚度的Ti层。
10.根据权利要求1所述的半导体发光元件,其中,所述第二半导体侧电极包含Ag和Ag扩散抑制要素。
11.根据权利要求1所述的半导体发光元件,其中,所述多个过孔和所述多个第一半导体侧电极中的至少关键部分被布置成方形矩阵,所述多个第一半导体侧电极覆盖这些过孔并且与周围的第二半导体侧电极部分重叠,所述半导体发光元件具有由所述第一半导体侧电极中的各个第一半导体侧电极在所述过孔中限定的腔体部分。
12.根据权利要求1所述的半导体发光元件,其中,所述第一半导体层的与所述发光层相反的表面具有微锥结构。
CN201480031243.XA 2013-05-30 2014-05-14 半导体发光元件 Active CN105247695B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-113916 2013-05-30
JP2013113916A JP6023660B2 (ja) 2013-05-30 2013-05-30 半導体発光素子及び半導体発光装置
PCT/JP2014/002538 WO2014192237A1 (ja) 2013-05-30 2014-05-14 半導体発光素子及び半導体発光装置

Publications (2)

Publication Number Publication Date
CN105247695A CN105247695A (zh) 2016-01-13
CN105247695B true CN105247695B (zh) 2019-04-12

Family

ID=51988292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480031243.XA Active CN105247695B (zh) 2013-05-30 2014-05-14 半导体发光元件

Country Status (7)

Country Link
US (1) US20160087149A1 (zh)
EP (1) EP3007238B1 (zh)
JP (1) JP6023660B2 (zh)
KR (1) KR102276207B1 (zh)
CN (1) CN105247695B (zh)
BR (1) BR112015029612A2 (zh)
WO (1) WO2014192237A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221112B1 (ko) * 2014-12-24 2021-02-26 엘지이노텍 주식회사 발광소자 및 조명시스템
JP2016143682A (ja) * 2015-01-29 2016-08-08 豊田合成株式会社 Iii族窒化物半導体発光素子
KR102371326B1 (ko) * 2015-05-19 2022-03-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자
JP2017009725A (ja) * 2015-06-19 2017-01-12 ソニー株式会社 表示装置
KR102412409B1 (ko) * 2015-10-26 2022-06-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
JP6692155B2 (ja) * 2015-12-15 2020-05-13 スタンレー電気株式会社 半導体発光素子アレイおよび車両用灯具
WO2017202331A1 (en) * 2016-05-25 2017-11-30 Chen-Fu Chu Methods of filling organic or inorganic liquid in assembly module
KR102476139B1 (ko) 2016-08-03 2022-12-09 삼성전자주식회사 반도체 발광소자
KR102659370B1 (ko) * 2016-11-25 2024-04-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 패키지
KR20180073866A (ko) * 2016-12-23 2018-07-03 엘지이노텍 주식회사 반도체 소자
JP6990529B2 (ja) * 2017-05-25 2022-01-12 スタンレー電気株式会社 半導体発光素子、半導体発光素子アレイ、半導体発光装置、及び、車両用灯具
TWI813314B (zh) * 2017-06-30 2023-08-21 日商日亞化學工業股份有限公司 發光裝置
JP7218048B2 (ja) * 2018-05-24 2023-02-06 スタンレー電気株式会社 半導体発光装置及びその製造方法
TWI660524B (zh) * 2018-07-17 2019-05-21 友達光電股份有限公司 發光裝置及其製造方法
US11664363B2 (en) * 2018-10-17 2023-05-30 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US11502230B2 (en) * 2018-11-02 2022-11-15 Seoul Viosys Co., Ltd. Light emitting device
JP2020126995A (ja) * 2019-02-06 2020-08-20 シャープ株式会社 半導体レーザ素子及びその製造方法
US11069873B2 (en) * 2019-10-15 2021-07-20 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of a two-layer via structure to mitigate damage to a display device
CN113745378B (zh) * 2021-09-08 2024-07-12 京东方科技集团股份有限公司 发光器件及显示基板
CN114284411B (zh) * 2021-12-01 2023-09-01 厦门三安光电有限公司 发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330416A (zh) * 2000-06-30 2002-01-09 株式会社东芝 半导体发光元件及其制造方法以及半导体发光装置
CN1866560A (zh) * 2005-05-19 2006-11-22 日亚化学工业株式会社 氮化物半导体元件
CN102157506A (zh) * 2010-01-22 2011-08-17 夏普株式会社 发光装置
CN103022334A (zh) * 2012-12-21 2013-04-03 映瑞光电科技(上海)有限公司 一种高压倒装led芯片及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184965B1 (en) * 1996-03-26 2001-02-06 Canon Kabushiki Kaisha Circuit connection structure
JP4868709B2 (ja) * 2004-03-09 2012-02-01 三洋電機株式会社 発光素子
JP4579654B2 (ja) * 2004-11-11 2010-11-10 パナソニック株式会社 半導体発光装置及びその製造方法、並びに半導体発光装置を備えた照明モジュール及び照明装置
JP2007214260A (ja) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
KR100891761B1 (ko) * 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
DE102008032318A1 (de) * 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines solchen
JP5152133B2 (ja) 2009-09-18 2013-02-27 豊田合成株式会社 発光素子
KR101252032B1 (ko) * 2010-07-08 2013-04-10 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
JP5440640B2 (ja) * 2012-03-27 2014-03-12 三菱化学株式会社 窒化物半導体発光素子
US10388690B2 (en) * 2012-08-07 2019-08-20 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330416A (zh) * 2000-06-30 2002-01-09 株式会社东芝 半导体发光元件及其制造方法以及半导体发光装置
CN1866560A (zh) * 2005-05-19 2006-11-22 日亚化学工业株式会社 氮化物半导体元件
CN102157506A (zh) * 2010-01-22 2011-08-17 夏普株式会社 发光装置
CN103022334A (zh) * 2012-12-21 2013-04-03 映瑞光电科技(上海)有限公司 一种高压倒装led芯片及其制造方法

Also Published As

Publication number Publication date
BR112015029612A2 (pt) 2017-07-25
JP6023660B2 (ja) 2016-11-09
US20160087149A1 (en) 2016-03-24
CN105247695A (zh) 2016-01-13
EP3007238A1 (en) 2016-04-13
WO2014192237A1 (ja) 2014-12-04
KR20160016846A (ko) 2016-02-15
KR102276207B1 (ko) 2021-07-12
JP2014232841A (ja) 2014-12-11
EP3007238B1 (en) 2020-04-01
EP3007238A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
CN105247695B (zh) 半导体发光元件
US10199360B2 (en) Wire bond free wafer level LED
CN105074941B (zh) 发光二极管、照明模块、照明设备和背光单元
TWI555231B (zh) 半導體發光元件
US9397266B2 (en) Lateral semiconductor light emitting diodes having large area contacts
CN105895770B (zh) 发光二极管
CN102668135B (zh) 发光二极管
US7985972B2 (en) Light emitting device having protrusion and recess structure and method of manufacturing the same
KR20160032224A (ko) 고반사성 플립칩 led 다이
KR102175345B1 (ko) 발광소자 및 조명시스템
TWI723002B (zh) 具有位於一頂部接點下方之溝渠之發光裝置
CN107949920A (zh) 发光器件和包含该发光器件的发光器件封装
KR101734550B1 (ko) 발광 소자 및 발광 소자 패키지
KR102200000B1 (ko) 발광소자 및 조명시스템
KR20120041717A (ko) 플립칩 구조의 발광 소자 및 이의 제조 방법
US20230080272A1 (en) Light emitting device and method for producing the same
KR20120087035A (ko) 발광 소자 및 발광 소자 패키지
KR101785646B1 (ko) 발광소자
KR101786081B1 (ko) 발광 소자 및 발광 소자 패키지
KR20120047184A (ko) 발광 소자 및 이의 제조 방법
KR20120088046A (ko) 발광 소자, 발광 소자 패키지 및 조명 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant