CN1052327C - 制造高温超导材料管状铸件的方法 - Google Patents

制造高温超导材料管状铸件的方法 Download PDF

Info

Publication number
CN1052327C
CN1052327C CN93104789A CN93104789A CN1052327C CN 1052327 C CN1052327 C CN 1052327C CN 93104789 A CN93104789 A CN 93104789A CN 93104789 A CN93104789 A CN 93104789A CN 1052327 C CN1052327 C CN 1052327C
Authority
CN
China
Prior art keywords
die
casting area
horizontal line
respect
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN93104789A
Other languages
English (en)
Other versions
CN1082756A (zh
Inventor
艾伯哈德·普雷斯勒
约绮姆·伯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CN1082756A publication Critical patent/CN1082756A/zh
Application granted granted Critical
Publication of CN1052327C publication Critical patent/CN1052327C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Materials For Medical Uses (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Paper (AREA)

Abstract

为了制造高温超导材料的管状铸件,这种材料以氧化铋、钙、锶、铜和附加的铅为基础,按预定的配比制备成一种均质的氧化混合物熔液,将具有900至1300℃温度的熔液注入浇铸区。浇铸区绕其轴线的转速从200至1500转/分为浇注区内径的函数。凝固后的铸件从浇铸区中取出,并将其放在700至900℃的含氧环境中退火4至150小时。

Description

制造高温超导材料管状铸件的方法
本发明涉及一种制造高温超导材料管状铸件的方法,这种材料从氧化铋、钙、锶、铜和附加的铅为基础,按预定的配比,制备成均质氧化混合物的熔液,将具有900至1300℃温度的熔液注入浇铸区,浇铸区绕轴线旋转的速度从200至1500转/分,它是浇铸区内径的函数,凝固后的铸件从烧铸区内取出,将此铸件在700至900℃的温度下置于含氧的环境中退火4至150小时。
德国公开文件4019368公布了一种制造高温超导材料管状件的方法,超导材料以氧化铋、钙、锶和铜为基础,将制成的具有900至1100℃温度的均质氧化混合物注入绕水平轴线旋转的浇铸区,并在其中凝固。固化后的铸件从浇铸区中取出,接着在700至900℃的温度下置于含氧的环境中退火4至150小时。
若对必须在4K下用液态氦冷却的低温超导系统,尤其是盘条,通过铜导体输入电流,则一方面热量通过300K和4K之间的温度梯度传递,另一方面焦耳热通过铜的电阻传入液态氦,其结果是使氦产生有害的蒸发。
若现在电流不是通过铜导体而是通过陶瓷高温超导体输入,则流入液态氦的热量明显减小,这首先是由于高温超导体的导热性低于高效的热导体铜;第二是由于焦耳热不会长期产生,因为在温度范围低于高温超导体的转变温度时,电流的输送没有阻力。
因为在导体内由自身的电流产生磁场,即所谓磁的自场效应,所以采用管状的导体比采用杆状的要好,这是因为电流流过的横截面积较大,磁自场和因此对导体的电流载流能力的反向效应均变小。
传入液态氦的热量决定于高温超导材料导体的横截面积。正是由于这个原因,必须顾及这一事实,即通过高温超导体的电流要求有一定的最小截面积。所以由氧化铋、钙、锶、铜和附加的铅熔液制成的高温超导材料,它的优点是在4K时的电流载流能力比77K时大约高50至100倍,也就是说,在氦冷却范围的低温下,材料的横截面太大了。因此,最好这样来设计高温超导体制的导体,使“冷”端(4K)的电流流过的截面积仅为“热”端(77K)截面积的10%到20%。
本发明的目的是提供一种制造高温超导材料的管状件的方法,材料以氧化铋、钙、锶、铜和附加的铅为基础,其两端的横截面积彼此明显不同。按本发明为达到这一目的,是通过将一种具有900至1300℃温度的均质氧化混合物熔液注入浇铸区,浇铸区绕其轴线的转速为其内径的函数,转速从200至1500转/分,轴线相对于水平线倾斜至少15°,然后,将已凝固的铸件从浇铸区取出,并在含氧的环境中在700至900℃的温度下退火。
按本发明的方法还可进一步扩展为:
a)轴线相对于水平线可倾斜至90°;
b)轴线相对于水平线倾斜20至60°;
c)浇铸区是一个圆柱形内腔的硬模;
d)浇铸区是一个锥形内腔的硬模;
e)相对于水平线有较大倾斜角的旋转硬模相应地要有较高的转速。
附图示意表示了一台离心浇注设备和一些按本发明的方法制得的管状铸件剖面图。其中:
图1.带水平旋转轴的离心浇注设备,轴上装有硬模;
图2.在圆柱形硬模中制成的铸件;
图3.水平配置的锥形硬模及铸件;
图4.在锥形硬模中制得的铸件;
图5.垂直配置的圆柱形硬模及铸件。
如图1所示,固定在倾动式底座9上的是轴颈轴承1和变速电机5。硬模4的延伸部3插在轴2的一端上,此轴2定位在轴颈轴承1中,轴2的另一端与电机5相连。在硬模4的开口端套有一个端环6。浇注槽7插入硬模4的开口端,通过它可注入来自坩埚8的溶液。
图2表示一些铸件,它们是在相对于水平线10为各种不同倾斜角的情况下铸得的。
图3表示带延伸部3的锥状硬模4,端环6套在硬模4上。
图4表示两个铸件,它们是用图3所示模具铸得的,其中之一铸造时需将硬模置于水平线10位置,另一个硬模需倾斜45°。
图5表示圆柱形硬模4,它有一个延伸部3,铸造时硬模4的轴转到垂直于水平线10的装置,端环6套在硬模4的开口端上。
在按本发明的方法中,如果硬模的旋转轴线相对于水平线倾斜某一个角度,那么,除了硬模旋转时造成的离心加速度外,重力也要起作用,而重力取决于轴线斜度,它使仍然处于液态的熔融物流向硬模中的低位区。当改变熔液量、硬模转速和其相对于水平线的角度时,可以浇注出各种管子,它们上端和下端的横截面积可相差3至4倍(见图2)。
按本发明的方法,在采用截头锥形硬模4(见图4)的情况下,可以铸造上下端的横截面有更大差别的铸件。截面减小的程度取决于硬模的几何尺寸和它的倾斜角。
按照先有技术采用水平配置的锥形硬模时,壁厚总是朝小头方向减少;按本发明,则通过相对于水平线倾斜锥形硬模,可以制得壁厚几乎均匀一致的锥形管,因为在这种情况下,熔液在重力作用下向下流动,而与此同时离心加速度推动熔液沿模具表面朝开口端流去(见图4)。
按本发明的方法,对浇铸区旋转轴线的每一种倾斜角,都应当规定该浇铸区特定的每单位时间转数,这一转速进一步取决于一些参数(如浇铸区的长度、形状和截面积、熔液粘度等),它可以大体平衡作用于进入浇铸区熔液上的反向力(离心加速度,地心引力)。
在本发明的方法中,当使用圆柱形硬模并倾斜15°至18°时,所得到的铸件外面是圆柱形,里面是圆锥形;若相对于水平线倾斜90°,则所得之铸件里面的形状是抛物线(见图5)。
在下面的举例中,制备了一种高温超导体,其成分为Bi2Sr2CaCu2O8+x(x为0至0,3)。若适当改变成分或预处理和二次处理的参数恰当,那么也可以用类似的方法制备另一种易熔的铋(Bi)基高温超导体。
例1(按先有技术)
400克氧化铋、锶、钙和铜按金属的体积摩尔的比例2∶2∶1∶2的混合物,在1050℃熔化在一个烧结金刚砂坩埚中。轴2上装上圆柱形硬模4(内径47毫米,长100毫米),轴2与电机5连接,硬模4上配有端环6(见图1),硬模4的轴2沿水平方向旋转(倾斜角为零度)。当硬模4的转速为750转/分时,溶液从坩埚8经浇注槽7注入硬模4。当熔液凝固后,圆柱形铸件从硬模中取出,在840℃退火100小时。此超导铸件两端的横截面积大约相等(见图2和表1)。
例2(按本发明)
重复例1,不同之处为,一方面硬模的轴线相对于水平线是倾斜的(倾斜角20°、45°和90°);另一方面硬模转速较高。
这些超导铸件两端的截面积各不相同(见图2和表1)。
例3(按本发明)
重复例1和2,不同处是圆柱形硬模内径为35毫米,硬模转速从1000到1400转/分。
超导铸件的尺寸见表2。
例4(按本发明)
与例1相似,采用锥形硬模4,硬模4一端的内径为45毫米,另一端的内径为25毫米,长为150毫米,将此硬模装在轴2上,轴2与电机5连接。
由表3可以看出不同试件氧化混合物的重量、锥形硬模不同的转速、以及轴的不同倾斜角。
                  表1
        外径为47毫米的圆柱形空心件
1 2a 2b 2c 2d
转速(转/分)倾斜角(度)底部壁厚(毫米)顶部壁厚(毫米)底端面积(厘米2)顶端面积(厘米2)顶顶端面积/底端面积重量(克)     75005.845.608.107.810.96400     750207.025.349.487.490.79443     750457.673.4010.204.980.49360     850459.183.7811.775.490.47437     10509010.606.0313.126.030.46421
                   表2
       外径为35毫米的圆柱形空心件
3a 3b 3c 3d 3e
转速(转/分)倾斜角(度)底部壁厚(毫米)顶部壁厚(毫米)底端面积(厘米2)顶端面积(厘米2)顶端面积/底端面积长度(毫米)重量(克)     100004.013.983.903.860.99200未测定     1350205.492.685.422.680.49200443     1350456.702.205.962.270.38170385     1100908.802.607.242.650.37137371     1400907.312.416.362.410.38139335
                      表3
                 圆锥形空心件
编号   质量(克)   转速(转/分)   倾斜角(度)                  直径(毫米)顶底   长度(毫米)    有效横截面积(厘米2)   顶端面积/底端面积
  顶端面积   底端面积
123456 422570570500500300 1100110011001100800800 0025453030 26.421.718.018.315.225.0 29.425.825.625.725.829.3 26.721.524.732.031.133.6 45.945.645.946.045.945.9 122*149150149144120* 1.311.532.602.563.411.83 10.9512.7011.808.688.957.68 0.120.120.220.300.380.23
*铸件在其小头约截去30毫米。

Claims (6)

1.制造高温超导材料管状铸件的方法,超导材料以氧化铋、钙、锶、铜和附加的铅为基础,按预定的配比,制备成一种均质氧化混合物熔液;将具有900至1300℃温度的熔液注入浇铸区,浇铸区绕轴线的转速从200至1500转/分,它是浇铸区内径的函数,将凝固的铸件从浇铸区内取出,将铸件放在700至900℃含氧的环境中退火4至150小时,其特征为:轴线至少相对于水平线倾斜15°。
2.按照权利要求1所述之方法,其特征为:轴线相对于水平线倾斜至90°。
3.按照权利要求1所述之方法,其特征为;轴线相对于水平线倾斜从20°至60°;
4.按照权利要求1至3之一所述之方法,其特征为:浇铸区是一个圆柱形内腔的硬模。
5.按照权利要求1至3之一所述之方法,其特征为:浇铸区是一个锥形内腔的硬模。
6.按照权利要求1所述之方法,其特征为:相对于水平线有较大倾斜角时的旋转硬模应相应地有较高的转速。
CN93104789A 1992-05-09 1993-04-27 制造高温超导材料管状铸件的方法 Expired - Fee Related CN1052327C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4215289A DE4215289A1 (de) 1992-05-09 1992-05-09 Verfahren zur Herstellung rohrförmiger Formteile aus Hochtemperatur-Supraleiter-Material
DEP4215289.5 1992-05-09

Publications (2)

Publication Number Publication Date
CN1082756A CN1082756A (zh) 1994-02-23
CN1052327C true CN1052327C (zh) 2000-05-10

Family

ID=6458479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93104789A Expired - Fee Related CN1052327C (zh) 1992-05-09 1993-04-27 制造高温超导材料管状铸件的方法

Country Status (14)

Country Link
US (1) US5945384A (zh)
EP (1) EP0569715B1 (zh)
JP (1) JPH0687660A (zh)
KR (1) KR940005513A (zh)
CN (1) CN1052327C (zh)
AT (1) ATE141247T1 (zh)
CA (1) CA2094559A1 (zh)
DE (2) DE4215289A1 (zh)
DK (1) DK0569715T3 (zh)
ES (1) ES2093308T3 (zh)
GR (1) GR3020820T3 (zh)
NO (1) NO304512B1 (zh)
RU (1) RU2104822C1 (zh)
TW (1) TW212766B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138923A (en) * 1997-03-25 2000-10-31 Isuzu Motors Limited Injector
EP1589542A1 (de) * 2004-04-23 2005-10-26 Gesellschaft für Schwerionenforschung mbH Supraleitendes Kabel und Verfahren zur Herstellung desselben
PL1820034T3 (pl) * 2004-11-18 2010-03-31 Powersense As Kompensacja prostych czujników światłowodowych wykorzystujących zjawisko Faradaya
DE502005001151D1 (de) * 2005-12-13 2007-09-13 Nexans S A Elektrische Durchführung zur Verbindung einer supraleitenden Einrichtung mit einer bei Raumtemperatur befindlichen Einrichtung
DE102008021906A1 (de) 2008-05-02 2008-10-30 Daimler Ag Verfahren zum Schleudergießen einer Hohlwelle mit veriablem Innendurchmesser
CN112077983B (zh) * 2020-09-25 2022-02-08 航天特种材料及工艺技术研究所 陶瓷空心回转结构坯体的离心注浆成型装置及成型方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462409A1 (de) * 1990-06-18 1991-12-27 Hoechst Aktiengesellschaft Verfahren zur Herstellung rohrförmiger Formteile aus Hochtemperatur-Supraleiter-Material sowie eine Anlage zu seiner Durchführung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262366A (en) * 1986-03-17 1993-11-16 Sumitomo Electric Industries, Ltd. Formation of a ceramic composite by centrifugal casting
US5253697A (en) * 1989-01-16 1993-10-19 Les Bronzes D'industrie, Societe Anonyme Manufacture of articles consisting of a composite material
AT393441B (de) * 1989-04-28 1991-10-25 Haas Franz Waffelmasch Waffelblockzwischenspeicher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462409A1 (de) * 1990-06-18 1991-12-27 Hoechst Aktiengesellschaft Verfahren zur Herstellung rohrförmiger Formteile aus Hochtemperatur-Supraleiter-Material sowie eine Anlage zu seiner Durchführung

Also Published As

Publication number Publication date
US5945384A (en) 1999-08-31
ATE141247T1 (de) 1996-08-15
NO931673L (no) 1993-11-10
GR3020820T3 (en) 1996-11-30
NO931673D0 (no) 1993-05-07
RU2104822C1 (ru) 1998-02-20
DE4215289A1 (de) 1993-11-11
EP0569715B1 (de) 1996-08-14
CA2094559A1 (en) 1993-11-10
ES2093308T3 (es) 1996-12-16
JPH0687660A (ja) 1994-03-29
TW212766B (en) 1993-09-11
KR940005513A (ko) 1994-03-21
NO304512B1 (no) 1999-01-04
CN1082756A (zh) 1994-02-23
DK0569715T3 (da) 1996-12-30
EP0569715A1 (de) 1993-11-18
DE59303402D1 (de) 1996-09-19

Similar Documents

Publication Publication Date Title
CN1036163C (zh) 用高温超导材料制造管状模制件的方法及其设备
CN1052327C (zh) 制造高温超导材料管状铸件的方法
US5972846A (en) Article comprising textured superconductive cuprate material
US5550102A (en) Superconductor and method of manufacturing the same
JP2958214B2 (ja) 高温超電導体およびそれから形成される成形体並びにそれらの製造方法
US6185810B1 (en) Method of making high temperature superconducting ceramic oxide composite with reticulated metal foam
US4560404A (en) Method of producing material for superconductor
CN1070760A (zh) 高温超导体和其制备方法
Agarwala et al. High T c dual phase Ag-YBa 2 Cu 3 O 7− x composites prepared by selective laser sintering and infiltration
JP2900951B2 (ja) セラミック製中空管の製造方法
CN1111403A (zh) 用高温超导材料制成的固体部件
CN115232354B (zh) 一种聚醚醚酮多孔自润滑材料及其制备方法和应用
JP3179084B2 (ja) 酸化物超電導線材の製造方法
KR20090056437A (ko) 고밀도 비에스씨씨오 초전도 튜브 제작방법
JPH01219003A (ja) 酸化物系高温超電導体の製造法
CN111101087A (zh) 一种偏晶合金材料及其制备方法
CN116536761A (zh) 母合金的制作方法、坩埚组件和单晶炉
JP3160901B2 (ja) 超伝導材料の製造方法
JP3157032B2 (ja) 酸化物超電導線材の製造方法
JPS63257129A (ja) 超電導体の製造方法
JPH04179006A (ja) セラミックス超電導線材の製造方法
JPH03201316A (ja) Bi系酸化物超電導線材の製造方法
JPH04182345A (ja) 酸化物超伝導材料の製造方法
JPH04315710A (ja) Nb3Sn超電導線材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee