CN1070760A - 高温超导体和其制备方法 - Google Patents

高温超导体和其制备方法 Download PDF

Info

Publication number
CN1070760A
CN1070760A CN92108768A CN92108768A CN1070760A CN 1070760 A CN1070760 A CN 1070760A CN 92108768 A CN92108768 A CN 92108768A CN 92108768 A CN92108768 A CN 92108768A CN 1070760 A CN1070760 A CN 1070760A
Authority
CN
China
Prior art keywords
strontium
sulfate
temperature superconductor
mould
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92108768A
Other languages
English (en)
Other versions
CN1042272C (zh
Inventor
J·博克
E·普赖斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel superconductor Co.,Ltd.
Alcatel superconductor GmbH & Co.
Naikesen superconducting Co.,Ltd.
Aventis Research and Technologies GmbH and Co KG
Original Assignee
Hechester Jsc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hechester Jsc filed Critical Hechester Jsc
Publication of CN1070760A publication Critical patent/CN1070760A/zh
Application granted granted Critical
Publication of CN1042272C publication Critical patent/CN1042272C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/785Composition containing superconducting material and diverse nonsuperconducting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明涉及一种高温超导体,它由铋、锶、钙和铜 (有时还选用铅)的氧化物(其组成为Bi2-a+b+cPba (Sr,Ca)3-b-cCu2+dOx)以及硫酸锶和/或硫酸钡所组 成。制备所述的超导体时可以将铋、锶、钙和铜(有时 还选用铅)的氧化物,与硫酸锶和/或硫酸钡混合均 匀,将此混合物加热到870~1300℃使其熔融,硫酸 锶和/或硫酸钡含量高时,要求温度也较高,将熔融 倾入模子中慢慢固化,从模子中移出模制体使其在 700~900℃于含氧气氛中进行热处理。

Description

本发明是关于由铋、锶、钙、铜(有时还选用铅)的氧化物所组成的高温超导体和它的一种制备方法。
美国专利5,047,391揭示了制备高温超导体的一种方法这种超导体的组成为Bi2(Sr,Ca)3Cu2Ox,其中x=8~10。在这个方法中,铋、锶、钙和铜的氧化物或碳酸盐的化学计量混合物被加热到870~1100℃,生成均匀的熔融物。将熔融物倒入模子并在其中固化。从模子中移出铸件于780-850℃热处理6~30小时,然后于600~830℃在氧气氛中处理至少6小时。用这个方法可将模制件制成片状,其边长或直径达到几个厘米,或制成棒形,长达50厘米,直径12毫米,在每一种情况下,模制体由单一相化合物组成。
所述类型的模制件在电技术中有许多应用,例如作电力输送的电流导体,作电流限制器以及构成磁屏蔽罩。但是,高温超导体在工业上使用的先决条件是在液氮温度(77K)具有约1000A/厘米2的临界电流密度。
确实,已知1厘米宽,15微米厚的载于银基片上组成为Bi2Sr2Ca Cu2Ox的带子具有1000安/厘米2的临界电流密度;但是这样的带子只能传导15安的绝对电流(参阅“Proceedings of the ICMC ’90 TopicalConference    on    Material    Aspects    of    High-Temperature    Superconductors”1991    Pages165    to    176)。这个绝对电流在薄膜的情况下甚至更低,而且讫今只可能生产几厘米尺寸的。
对以铋、锶、钙和铜的氧化物为基础的高温超导体材料制成的固体元件,已测得在77K时的电流密度数量级为102安/厘米2
本发明的目的是提供一种基于铋、锶、钙、铜(有时还选用铅)的氧化物的高温超导体和它的制备方法。这种高温超导的临界电流密度在77K时至少1000A/厘米2,能传输至少100A的绝对电流。按照本发明的高温超导是由铋、锶、钙、铜(有时还选用铅)的氧化物(其组成为 Bi2-a+b+cPba(Sr,Ca)3-b-cCu2+dOx/式中a=0~0.7;b+c=0~0.5;d=-0.1~0.1 x=7~10,Sr∶Ca的比率为2.8∶1~1∶2.8)以及硫酸锶和/或硫酸钡所组成。
本发明的高温超导体可以在下面几个方面进一步改进:
a)a=0;b+c=0.25;d=0;x=7.9~8.5    Sr∶Ca比率从2.2∶1~1.5∶1;
b)硫酸锶含量是0.1~30%(重量),较好的是3~10%(重量);
c)硫酸钡含量是0.1~20%(重量),较好的是3~10%(重量)。
本发明的高温超导体的制备方法可以包括把铋、锶、钙、铜(有时还选用铅)的氧化物与硫酸锶和/或硫酸钡混合均匀,加热到870-1300℃,较好的是900~1100℃;熔融此混合物;硫酸锶和/或硫酸钡的含量较高时,要求温度也较高。将熔融物倒入模子让它在其中慢慢固化,将从模子中移出的模制件在700~900℃,在含氧的气氛中进行热处理。较好的是750~870℃。
这个方法也可以设计成这样:
d)将熔融物倒入水平排列的园筒,园筒绕着它的纵轴旋转;
e)将熔融物倒入石英模子;
f)将熔融物倒入铜模子;
g)为了热处理,模制件很快地以250~350℃/小时的速率加热到700℃,高于700℃后缓慢地以5~20℃/小时的速率加热;
h)热处理在空气和氮的体积比为1∶1的气氛中进行;
i)在纯氧中进行热处理。
如果本发明的高温超导体由所谓的二层化合物(铋、锶、钙和铜的氧化物,其金属的化学计量比为2∶2∶1∶2)和硫酸锶的混合物组成,硫酸锶含量直到30%(重量)时还检测不到分解产物或其它相。
另一方面,本发明的高温超导体,它由所谓的二层化合物和硫酸钡组成,含有碱土金属铜酸盐相,例如(Sr,Ca)CuO2
热分析研究表明,碱土金属硫酸盐与铋、锶、钙、铜(有时还选用铅)的氧化物一起熔融生成低共熔体。硫酸钡和硫酸锶的熔点,明确地说是相当地高,分别为1580和1600℃。
最后,陶瓷相的研究和用扫描电子显微镜得到的照片表明,在本发明的高温超导体中有10~100微米大小的硫酸锶和硫酸钡沉淀。
意想不到的是本发明的高温超导体,其临界湿度随着碱土金属硫酸盐的含量的增加不但不下降,在某些情况下甚至还上升。
本发明的高温超导体77K的临界电流密度约为1400A/厘米2,比先有技术中的高温超导体的值高几倍。
本发明的高温超导体的弯曲强度和弹性模量显示了令人满意的值。
本发明的高温超导体可以制成比较大的模制件,例如棒,板或园柱体,因为它们比起先有技术所制的模制件,它们脆性小,形成裂缝的倾向小。不但在熔融体固体时而且在模制件热处理的过程中都是这样。
例1(比较例)
将铋、锶、钙和铜的二元氧化物(金属的化学计算比为2∶2∶1∶2)充分混合。将1.8千克这样的混合物置于刚玉坩埚于1000℃转化成均匀的熔融体。将此均匀的熔融体通过槽口倒入直径为200毫米,深为100毫米水平排列的园柱形模子,这些模子绕着它的纵轴旋转,由于离心力的原因熔融体均匀地分布在模子的壁上。为了有利于较缓慢的冷却,在铸造后立即将一予热到600℃的管式炉推放在模子上,炉子以约2℃/分钟的速度冷却到室温。管式炉冷却后,在模子中的空心园柱体物有两条相对的相互垂直的裂缝,估计可能是严重的内在应力所致,将模制件从模子中取出时,它碎成两瓣。
例2(比较例)
重复例1,只是将1.5千克混合物转化为均匀的熔融体,在管式炉冷却后,将空心园柱体物从模子中取出,在每种情况下,它的上边和下边都有两条约1厘米长的相对的横向裂缝。
将空心的园柱体物进行热处理(750℃    24小时,850℃120小时)。热处理后,在横向裂缝的终端也形成纵向的裂缝,这些裂缝导致碎成环形断片。
例3(本发明)
重复例1,只是二元氧化物和10%(重量)硫酸锶充分混合,将2千克这种混合物加热到1050℃转化为均匀的熔融体。从模子中取出一个坚实的没有裂缝的空心园柱体,其壁厚约5毫米。
将此空心的园柱体进行热处理(750℃    24小时;850℃120小时),甚至经过这样的处理,空心园柱体仍无裂缝并且一点也没有熔开。
例4(本发明)
将例3的混合物熔融并倒入一侧封闭的石英管(内径8毫米),石英管长度为100,150,200,300,500毫米。
冷至室温后,固化的熔融体可从所有的石英管中取出,它们是坚实的、未见裂缝的棒。
将这些棒在空气/氮气混合物(体积比为1∶1)中加热,以300℃/小时的速率升温到700℃,再以10℃/小时的速率升温到850℃,在此温度保持60小时。为了确保一个尽可能均匀的温度场,热处理在多段式管式炉中进行。
所有这些棒冷却后从炉子中取出都没有裂缝。
200毫米长的棒装上触点用四点测量法,测定77K的临界电流密度为570安/厘米2·(尺度:1微伏/厘米),电位差触点之间的间隙为13厘米。
由电阻的温度依从关系测定得到电阻的总下降为89.5KΩ。
例5(比较例)
将例1的混合物熔融并倒入按照例4的各种石英管,这些石英管的一侧是封闭的。
冷到室温后,只能从100和150毫米长的石英管中取出坚实的棒,而其它的石英管中只有碎片。
例6(本发明)
铋、锶、钙和铜的二元氧化物,其金属的化学计量比为2∶2∶1∶2,与不同量的硫酸锶(0,3,6,10,15,20,25 30重量%)充分混合。不同的混合物在刚玉坩埚中于1000℃(SrSO4含量达10%),1030℃(SrSO4含量达20 20%),1100℃(SrSO4含量达30%)转化成均匀的熔融体,将每种熔融体倒入矩形铜模子中,其尺寸为15×15×60毫米3,顶部开口。为了让熔融体缓慢冷却,铸造后立即将模子放入予热到600℃的箱式炉中,然后关闭电源。
用钻石切割轮从所得的模制件切得4毫米厚的园片形样品和尺寸为45×4×3毫米3的棒。所有的样品和棒于850℃在箱式炉中一起敞空热处理24小时。
从园片形样品锯得截面积为1毫米2,长为10毫米的棒。测定这些棒的转变温度Tc和临界电流密度jc,而尺寸为45×4×3毫米3的棒则用来测定弯曲强度和弹性模量〔杨氏(Young′s)模量〕,结果总结于下表:
Figure 921087683_IMG1
例7(本发明)
重复例6,只是用硫酸钡代替硫酸锶。结果总结于下表:
Figure 921087683_IMG2
例8(比较例)
重复例6,只是用硫酸钙(无水)代替硫酸锶。结果总结于下表。
Figure 921087683_IMG3
除了所谓的二层化合物外,在X射线图中从CaSO4含量在4.4重量%以上的样品中已经辨认出一些外来的相。

Claims (11)

1、一种由铋,锶,钙,铜(有时还选用铅)的氧化物(它的组成为Bi2-a+b+cPba(Sr,Ca)3-b-cCu2+dOx
其中:a=0~0.7;b+c=0~0.5;d=-0.1~0.1;x=7~10;Sr∶Ca的比率为2.8∶1~1∶2.8以及硫酸锶和/或硫酸钡组成的高温超导体。
2、根据权利要求1的高温超导体,其特征在于a=0;b+c=0.25;d=0和x=7.9~8.5,以及Sr∶Ca的比率为2.2∶1~1.5∶1。
3、根据权利要求1或2的高温超导体,特征在于硫酸锶的含量为0.1~30重量%,较好的是3-10重量%。
4、根据权利要求1至3中至少一个权利要求的高温超导体,其特征在于硫酸钡的含量是0.1至20重量%,较好的是3~10重量%
5、根据权利要求1至4中至少一个权利要求的高温超导体的制备方法,它包括将铋、锶、钙、铜(有时还选用铅)的氧化物与硫酸锶和/或硫酸钡混合均匀,加热到870-1300℃,较好的是900-1100℃,使混合物熔融,硫酸锶和/或硫酸钡的含量较高时要求较高的温度,将熔融体倒入模子让其在其中慢慢固化,将从模子中取出的模制件在700-900℃,较好的是在750-870℃,于含氧的气氛中进行热处理。
6、根据权利要求5的方法,其特征在于把熔融体倒入绕其纵轴旋转的水平排列的圆筒中。
7、根据权利要求5或6的方法,其特征在于把熔融体倒入不英制的模子中。
8、根据权利要求5或6的方法,其特征在于把熔融体倒入铜制的模子中。
9、根据权利要求5至8中至少一个权利要求的方法,其特征在于热处理中,模制件以250至350℃/小时很快加热到700℃高于此温度时以5-20℃/小时慢慢加热。
10、根据权利要求5至9至少一个权利要求的方法,其特征在于热处理在空气和氮气的体积比为1∶1的气氛中进行。
11、根据权利要求5至9中至少一个权利要求的方法,其特征在于热处理在纯氧中进行。
CN92108768A 1991-07-26 1992-07-25 高温超导体和其制备方法 Expired - Fee Related CN1042272C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4124823A DE4124823A1 (de) 1991-07-26 1991-07-26 Hochtemperatur-supraleiter und verfahren zu seiner herstellung
DEP4124823.6 1991-07-26

Publications (2)

Publication Number Publication Date
CN1070760A true CN1070760A (zh) 1993-04-07
CN1042272C CN1042272C (zh) 1999-02-24

Family

ID=6437087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92108768A Expired - Fee Related CN1042272C (zh) 1991-07-26 1992-07-25 高温超导体和其制备方法

Country Status (10)

Country Link
US (1) US5294601A (zh)
EP (1) EP0524442B1 (zh)
JP (1) JPH0735296B2 (zh)
KR (1) KR100186833B1 (zh)
CN (1) CN1042272C (zh)
AT (1) ATE128956T1 (zh)
CA (1) CA2073522C (zh)
DE (2) DE4124823A1 (zh)
ES (1) ES2080991T3 (zh)
GR (1) GR3017747T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048706C (zh) * 1996-05-21 2000-01-26 浙江大学 单相性Bi2Sr2Ca2Cu3O10+δ高温超导体的分步合成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4218950A1 (de) * 1992-06-10 1993-12-16 Hoechst Ag Verfahren zur Herstellung eines Hochtemperatursupraleiters und daraus gebildeter Formkörper
EP0611737B1 (de) * 1993-02-17 1999-05-12 Hoechst Aktiengesellschaft Verfahren zur Herstellung eines Hoch-Tc-Supraleiters als Precursormaterial für die Oxide Powder in Tube Methode (OPIT)
EP0646554A1 (de) * 1993-10-04 1995-04-05 Hoechst Aktiengesellschaft Massivteile aus Hochtemperatur-Supraleiter-Material
DE19803447A1 (de) * 1998-01-30 1999-09-16 Aventis Res & Tech Gmbh & Co Verfahren zur Herstellung von Precursormaterial für die Produktion von Hochtemperatursupraleiter-Drähten
CA2505501A1 (en) * 2004-05-04 2005-11-04 Nexans Method for mechanical stabilisation of tube-shaped superconducting ceramics and mechanically stabilised tube-shaped superconducting composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160861A (ja) * 1987-12-17 1989-06-23 Mitsubishi Electric Corp 超電導セラミクスの異方成長法
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
DE68902853T2 (de) * 1988-03-21 1993-02-04 American Telephone & Telegraph Wachstum von supraleitermaterial aus einer flussmittel-schmelze, sowie fertigungsartikel.
DE3830092A1 (de) * 1988-09-03 1990-03-15 Hoechst Ag Verfahren zur herstellung eines hochtemperatursupraleiters sowie daraus bestehende formkoerper
US5157015A (en) * 1990-04-17 1992-10-20 Alfred University Process for preparing superconducting films by radio-frequency generated aerosol-plasma deposition in atmosphere
US5087606A (en) * 1990-05-29 1992-02-11 General Electric Company Bismuth-containing superconductors containing radioactive dopants
US5059581A (en) * 1990-06-28 1991-10-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passivation of high temperature superconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048706C (zh) * 1996-05-21 2000-01-26 浙江大学 单相性Bi2Sr2Ca2Cu3O10+δ高温超导体的分步合成方法

Also Published As

Publication number Publication date
CN1042272C (zh) 1999-02-24
EP0524442B1 (de) 1995-10-11
CA2073522A1 (en) 1993-01-27
ATE128956T1 (de) 1995-10-15
EP0524442A1 (de) 1993-01-27
JPH0735296B2 (ja) 1995-04-19
DE4124823A1 (de) 1993-01-28
KR930002278A (ko) 1993-02-22
DE59203963D1 (de) 1995-11-16
GR3017747T3 (en) 1996-01-31
KR100186833B1 (ko) 1999-04-15
ES2080991T3 (es) 1996-02-16
US5294601A (en) 1994-03-15
CA2073522C (en) 1998-07-21
JPH05194018A (ja) 1993-08-03

Similar Documents

Publication Publication Date Title
CN1034247C (zh) 高温超导体的制造方法及其制成的超导体成型体
Tanaka et al. Single crystal growth of superconducting La2-xSrxCuO4 by the TSFZ method
CN1025900C (zh) 铋-锶-钙-铜-氧高Tc超导体及其制备方法
CN1042272C (zh) 高温超导体和其制备方法
WO1994005599A1 (en) Dense melt-based ceramic superconductors
US6617284B1 (en) Superconductor composite material
KR100227434B1 (ko) 고온 초전도체와 이로부터 생성되는 성형품의 제조방법
BG60550B1 (bg) Метод за производство на керамични тела и по-специално свръхпроводими тела
JP2518043B2 (ja) 溶融凝固法によるセラミックの製造方法
CN1204092C (zh) 在陶瓷成形体中愈合裂纹的方法以及用这种方法处理的成形体
CN1047760A (zh) 制造超导制品的方法
JPH0733434A (ja) RE1 Ba2 Cu3 O7−x 系酸化物超電導体の製造方法
EP0659704B1 (en) Method of manufacturing oxide superconductor
EP0450966B1 (en) Oxide superconductor and process for production thereof
US20060122068A1 (en) High temperature superconductor material of BSCCO system and starting composition therefore
CN1111403A (zh) 用高温超导材料制成的固体部件
JPH0714818B2 (ja) 超電導繊維状結晶およびその製造方法
JP3217660B2 (ja) 酸化物超電導体の製造方法
Dou et al. Liquid phase sintering of Tl-Ba-Ca-Cu-O with superconducting transition at 122K
JPH0551216A (ja) Bi系酸化物超電導体製厚板の製造方法
JPH02208237A (ja) Bi―Ca―Sr―Cu―O系超伝導ガラスセラミックおよびその製造方法
JPH05159644A (ja) 酸化物超電導線材の製造方法
JPH01111715A (ja) 超電導体部材の製造方法
JPH0717380B2 (ja) 超電導繊維状結晶の製造方法
JPH0597436A (ja) Tl系超電導体及びその製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
ASS Succession or assignment of patent right

Owner name: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED P

Free format text: FORMER OWNER: AVENTIS RESEARCH + TECHNOLOGY GMBH + CO. KG

Effective date: 20090327

Owner name: AVENTIS RESEARCH + TECHNOLOGY GMBH + CO. KG

Free format text: FORMER OWNER: HOECHST AKTIENGESELLSCHAFT (DE)

Effective date: 20090327

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED

Free format text: FORMER NAME: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED PARTNERSHIP

Owner name: NIKSEN SUPERCONDUCT CO.,LTD.

Free format text: FORMER NAME: ALCATAR HIGH-TEMPERATURE SUPERCONDUCTORS LIMITED

CP03 Change of name, title or address

Address after: Hult, Germany

Patentee after: Naikesen superconducting Co.,Ltd.

Address before: Hult, Germany

Patentee before: Alcatel superconductor Co.,Ltd.

Address after: Hult, Germany

Patentee after: Alcatel superconductor Co.,Ltd.

Address before: Hult, Germany

Patentee before: Alcatel superconductor GmbH & Co.

TR01 Transfer of patent right

Effective date of registration: 20090327

Address after: Hult, Germany

Patentee after: Alcatel superconductor GmbH & Co.

Address before: Frankfurt, Germany

Patentee before: AVENTIS RESEARCH & TECHNOLOGIES GmbH & Co.KG

Effective date of registration: 20090327

Address after: Frankfurt, Germany

Patentee after: AVENTIS RESEARCH & TECHNOLOGIES GmbH & Co.KG

Address before: Frankfurt, Federal Republic of Germany

Patentee before: HOECHST AG

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 19990224

Termination date: 20110725