CN105206841B - 一种用于锂硫电池正极中的黄铁矿类添加剂 - Google Patents

一种用于锂硫电池正极中的黄铁矿类添加剂 Download PDF

Info

Publication number
CN105206841B
CN105206841B CN201510542827.XA CN201510542827A CN105206841B CN 105206841 B CN105206841 B CN 105206841B CN 201510542827 A CN201510542827 A CN 201510542827A CN 105206841 B CN105206841 B CN 105206841B
Authority
CN
China
Prior art keywords
positive electrode
lithium
additive
carbon
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510542827.XA
Other languages
English (en)
Other versions
CN105206841A (zh
Inventor
张强
元喆
彭翃杰
黄佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510542827.XA priority Critical patent/CN105206841B/zh
Publication of CN105206841A publication Critical patent/CN105206841A/zh
Application granted granted Critical
Publication of CN105206841B publication Critical patent/CN105206841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种用于锂硫电池正极中的黄铁矿类添加剂。所述黄铁矿类添加剂通过机械研磨或液相过滤组装掺入正极材料骨架中,或利用化学作用锚定于正极材料骨架上;所述黄铁矿类添加剂包括VIII族金属的二硫化物、VIII族金属的二硒化物、VIII族金属的二碲化物以及FexCo1‑xS2和CoyNi1‑yS2;其中,0<x<1,0<y<1。本发明利用黄铁矿类物质的表面极性和半金属性,在锂硫电池正极中加速了多硫化物中间产物的氧化还原反应速率,从而提升了正极的容量和稳定性。

Description

一种用于锂硫电池正极中的黄铁矿类添加剂
技术领域
本发明属于电化学技术领域,具体涉及一种用于锂硫电池正极中的黄铁矿类添加剂。
背景技术
移动电子设备、电动汽车和大规模储能等领域的发展对储能系统的能量密度提出了更高的要求,而常见的商用二次电池(铅酸电池、锂离子电池等)较低的能量密度(小于200Wh/kg)已无法适应此需求。近年来,锂硫电池以其高达2600Wh/kg的能量密度受到广泛关注。硫作为正极活性材料,具有1672mAh/g的高理论容量,且具备廉价、易获取、环境友好等优势。
由于硫本身的绝缘性,向锂硫电池正极中引入纳米化导电剂成为了重要的方法。纳米碳材料是这类导电剂中最常用的一种。纳米碳的高导电性、高比表面积和高孔体积使其与硫的复合成为了锂硫电池正极领域最受关注的研究思路,这一思路也较为有效地发挥了硫的容量优势。然而硫在充放电过程中产生的中间产物(多硫化物)可以溶于电解液并向外扩散。一方面,多硫化物脱离导电骨架后难以被利用,造成容量衰减;另一方面,多硫化物与锂发生副反应,造成电池循环效率降低。
抑制多硫化物的溶解和扩散是提升正极循环性能的核心。一些研究者通过对硫进行包覆以阻隔多硫化物的扩散。例如:Cui等在纳米硫颗粒外包覆TiO2形成空心核壳结构,阻碍多硫化物向外扩散,提升了正极的容量稳定性(She ZW et al.,Nat.Commun.,2013,4,1331);Manthiram等人以TiO2空心纳米球为模板,将聚多巴胺碳化形成中空碳球,其中间孔洞可用于储存硫并限制多硫化物的逸出(Zhou G et al.,Adv.Energy.Mater.2015,10.1002/aenm.201402263)。也有研究者利用极性物质对多硫化物的化学吸附限制多硫化物的向外迁移。Wang等人向介孔碳材料中掺入氮元素,提高了导电基体的表面极性,强化多硫化物的限域作用从而提升正极的循环稳定性(Song JX et al.,Adv.Funct.Mater.,2014,24(9),1243-1250)。尽管如此,上述物理包覆和化学吸附的方法仍无法实现接近实用化的正极性能。
近期,有研究者着眼于强化多硫化物氧化还原反应以提高正极循环性能。如果多硫化物能更快地参与氧化还原反应,那么其在电解液中的浓度将减小,从而其扩散也将削弱。例如,Nazar等人采用Magnéli相Ti4O7作为正极基体,与多硫化物产生强相互作用,加强多硫化物在其表面的反应活性,使得未参与反应而停留于电解液中的多硫化物相对减少,从而提升了循环稳定性(Pang Q et al.,Nat.Commun.,2014,5,4759)。然而这些基体材料合成复杂,且导电性偏低,对电池的容量和倍率性能不利。如果以纳米碳和硫的复合物为基础,向其中添入易获取的导电无机物,即可便捷而有效地削弱多硫化物扩散,提升锂硫电池正极的容量和循环性能,这将会对锂硫电池更广泛的应用产生积极的促进作用。
发明内容
本发明提供了一种用于锂硫电池正极中的黄铁矿类添加剂,具体技术方案如下:
一种用于锂硫电池正极中的黄铁矿类添加剂:所述黄铁矿类添加剂通过机械研磨或液相过滤组装掺入正极材料骨架中,或利用化学作用锚定于正极材料骨架上;
所述黄铁矿类添加剂包括VIII族金属的二硫化物、VIII族金属的二硒化物、VIII族金属的二碲化物以及FexCo1-xS2和CoyNi1-yS2;其中,0<x<1,0<y<1。
进一步地,所述VIII族金属的二硫化物为FeS2,CoS2,NiS2,RhS2或IrS2;所述VIII族金属的二硒化物为FeSe2,CoSe2或NiSe2
所述添加剂在锂硫电池正极中的质量分数为0.1-50%。
所述添加剂通过以下方法制备:天然矿物直接研磨法、直接加热化合法、水热法或常温液相合成法。
所述正极材料骨架为硫和纳米碳材料组成的复合正极。
所述纳米碳材料为微孔碳材料、介孔碳材料、多级孔纳米碳、石墨烯及其衍生物、碳纳米管、碳纳米纤维及其杂化物。
本发明的原理是:本发明利用黄铁矿类物质的表面极性和半金属性,在锂硫电池正极中加速了多硫化物中间产物的氧化还原反应速率。在较少的加入量下,黄铁矿类物质即可显著改善纳米碳材料或导电高分子基体与多硫化物不亲和的问题。
本发明具有如下优点及突出效果:本发明向纳米碳-硫复合正极中引入黄铁矿类物质,加快了多硫化物的电化学反应速率,从而提升了正极的容量和稳定性。所述黄铁矿类添加剂获取容易、制备方便、价格低廉,甚至可以通过黄铁矿类矿石直接研磨得到。该添加剂可以与多种碳材料适配,如微孔碳材料、介孔碳材料、多级孔纳米碳、石墨烯及其衍生物、碳纳米管、碳纳米纤维及其杂化物等,且适配方法可调,包括直接机械混入、液相组装或化学结合等。因此,本发明有较强的实用性和可操作性。
具体实施方式
从以下实施例可进一步理解本发明,但本发明不仅仅局限于以下实施例。
实施例1
将天然黄铁矿FeS2研磨至毫米级颗粒,通过共研磨混入硫/介孔碳复合物中作为正极材料,其中FeS2质量分数为5%。同时采用金属锂片作为负极,聚乙烯膜作为隔膜,二(三氟甲基磺酰)亚胺锂的1,3-二氧戊环、乙二醇二甲醚溶液作为电解液,制作锂硫电池。在0.05C的充放电速率下,加入FeS2的正极初始容量达1328mAh/g,前100个循环单圈衰减率约0.06%。若将FeS2替换为等质量介孔碳,则初始容量仅为1045mAh/g,且容量衰减率更高(约0.25%)。
实施例2
利用水热法在氧化石墨烯片层上合成CoS2,得到相互结合的CoS2-氧化石墨烯复合物,再与硫复合形成正极材料,其中CoS2质量分数为15%。同时采用金属锂片作为负极,聚丙烯膜作为隔膜,二(三氟甲基磺酰)亚胺锂、硝酸锂的乙二醇二甲醚溶液作为电解液,制作锂硫电池。在0.5C的充放电速率下,引入CoS2的正极初始容量达1285mAh/g,前1000个循环单圈衰减率约0.04%。若将CoS2替换为等质量氧化石墨烯,则初始容量仅为956mAh/g,且容量衰减率更高(约0.5%)。
实施例3
将纳米化镍与硫共热得到NiS2,与碳纳米管在溶剂中共分散后抽滤进行组装,再与硫复合得到正极,其中NiS2质量分数为50%。同时采用锂硼合金作为负极,聚丙烯-聚乙烯-聚丙烯多层膜作为隔膜,六氟磷酸锂的碳酸二甲酯、碳酸二乙酯溶液作为电解液,制作锂硫电池。在2.0C的充放电速率下,加入NiS2的正极初始容量达1054mAh/g,前2000个循环单圈衰减率约0.03%。若将NiS2替换为等质量碳纳米管,则初始容量仅为876mAh/g,且容量衰减率更高(约0.1%)。
实施例4
利用水热法合成Fe0.5Co0.5S2悬浊液,与纳米硫颗粒悬浮液混匀后过滤,滤饼与多孔炭黑共混用作正极,其中Fe0.5Co0.5S2质量分数为8%。同时采用金属锂片作为负极,聚丙烯膜作为隔膜,二(三氟甲基磺酰)亚胺锂、二(氟磺酰)亚胺锂的1,3-二氧戊环溶液作为电解液,制作锂硫电池。在1.0C的充放电速率下,引入Fe0.5Co0.5S2的正极初始容量达1123mAh/g,前500个循环单圈衰减率约0.05%。若将Fe0.5Co0.5S2替换为等质量多孔炭黑,则初始容量仅为866mAh/g,且容量衰减率更高(约0.6%)。
实施例5
将钴和硒直接共热得到CoSe2,与硫、化学气相生长石墨烯共同球磨得到正极材料,其中CoSe2质量分数为0.1%。同时采用金属锂片作为负极,聚乙烯膜作为隔膜,高氯酸锂的碳酸乙烯酯、碳酸二甲酯作为电解液,制作锂硫电池。在0.1C的充放电速率下,引入CoSe2的正极初始容量达1281mAh/g,前200个循环单圈衰减率约0.07%。若将CoSe2替换为等质量的石墨烯,则初始容量为1098mAh/g,且容量衰减率更高(约0.12%)。
实施例6
以水为溶剂,直接合成得到Co0.8Ni0.2S2悬液,逐滴加入硫/碳纳米纤维复合物,烘干后得到正极材料,其中Co0.8Ni0.2S2质量分数为25%。同时采用锂/石墨烯复合物作为负极,聚丙烯-聚乙烯-聚丙烯多层膜作为隔膜,硝酸锂、多硫化锂的三乙二醇二甲醚溶液作为电解液,制作锂硫电池。在5C的充放电速率下,引入Co0.8Ni0.2S2的正极初始容量达979mAh/g,前500个循环单圈衰减率约0.02%。若将Co0.8Ni0.2S2替换为等质量碳纳米纤维,则初始容量仅为561mAh/g,且容量衰减率更高(约0.4%)。
实施例7
利用水热法制备得到NiSe2,与多级孔碳、硫共同研磨后共热复合,其中CoSe2质量分数为10%。同时采用金属锂片作为负极,聚丙烯膜作为隔膜,二(三氟甲基磺酰)亚胺锂、硝酸锂的1,3-二氧戊环、乙二醇二甲醚溶液作为电解液,制作锂硫电池。在3.0C的充放电速率下,引入NiSe2的正极初始容量达994mAh/g,前1500个循环单圈衰减率约0.04%。若将NiSe2替换为等质量的多级孔碳,则初始容量为679mAh/g,且容量衰减率更高(约0.14%)。
实施例8
利用加热化合法制备得到RhS2,通过球磨掺入硫/微孔碳复合物中得到锂硫电池正极材料,其中RhS2质量分数为2%。同时采用锂硼合金作为负极,聚丙烯-聚乙烯-聚丙烯多层膜作为隔膜,二草酸硼酸锂、二(三氟甲基磺酰)亚胺锂的二甲基亚砜溶液作为电解液,制作锂硫电池。在0.02C的充放电速率下,引入RhS2的正极初始容量达1321mAh/g,前100个循环单圈衰减率约0.1%。若将RhS2替换为等质量的多级孔碳,则初始容量为1127mAh/g,且容量衰减率更高(约0.4%)。
实施例9
利用加热化合法制备得到IrS2,与硫、垂直阵列碳纳米管共热后分散抽滤得到柔性正极材料,其中IrS2质量分数为0.5%。同时采用金属锂片作为负极,聚丙烯膜作为隔膜,高氯酸锂的聚乙二醇二甲醚溶液作为电解液,制作锂硫电池。在1.5C的充放电速率下,引入IrS2的正极初始容量达1108mAh/g,前500个循环单圈衰减率约0.06%。若将IrS2替换为等质量的垂直阵列碳纳米管,则初始容量为956mAh/g,且容量衰减率更高(约0.2%)。
实施例10
利用水热法在纳米碳球中合成FeSe2,再与硫共热用作正极材料,其中FeSe2质量分数为12%。同时采用金属锂片作为负极,聚丙烯膜作为隔膜,六氟磷酸锂的碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯溶液作为电解液,制作锂硫电池。在2.5C的充放电速率下,引入FeSe2的正极初始容量达1094mAh/g,前1000个循环单圈衰减率约0.04%。若将FeSe2替换为等质量纳米碳球,则初始容量仅为902mAh/g,且容量衰减率更高(约0.25%)。

Claims (5)

1.一种用于锂硫电池正极中的黄铁矿类添加剂,其特征在于,所述黄铁矿类添加剂通过机械研磨或液相过滤组装掺入正极材料骨架中,或利用化学作用锚定于正极材料骨架上;
所述黄铁矿类添加剂包括VIII族金属的二硫化物、VIII族金属的二硒化物或VIII族金属的二碲化物;
所述添加剂在锂硫电池正极材料中的质量分数为0.1-50%。
2.根据权利要求1所述的添加剂,其特征在于,所述VIII族金属的二硫化物为FeS2,CoS2,NiS2,RhS2,IrS2,FexCo1-xS2或CoyNi1-yS2,其中,0<x<1,0<y<1;所述VIII族金属的二硒化物为FeSe2,CoSe2或NiSe2
3.根据权利要求1所述的添加剂,其特征在于,所述添加剂通过以下方法制备:天然矿物直接研磨法、直接加热化合法、水热法或常温液相合成法。
4.根据权利要求1所述的添加剂,其特征在于,所述正极材料骨架为硫和纳米碳材料组成的复合正极。
5.根据权利要求4所述的添加剂,其特征在于,所述纳米碳材料为微孔碳材料、介孔碳材料、多级孔纳米碳、石墨烯及其衍生物、碳纳米管、碳纳米纤维及其杂化物。
CN201510542827.XA 2015-08-28 2015-08-28 一种用于锂硫电池正极中的黄铁矿类添加剂 Active CN105206841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510542827.XA CN105206841B (zh) 2015-08-28 2015-08-28 一种用于锂硫电池正极中的黄铁矿类添加剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510542827.XA CN105206841B (zh) 2015-08-28 2015-08-28 一种用于锂硫电池正极中的黄铁矿类添加剂

Publications (2)

Publication Number Publication Date
CN105206841A CN105206841A (zh) 2015-12-30
CN105206841B true CN105206841B (zh) 2018-06-12

Family

ID=54954379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510542827.XA Active CN105206841B (zh) 2015-08-28 2015-08-28 一种用于锂硫电池正极中的黄铁矿类添加剂

Country Status (1)

Country Link
CN (1) CN105206841B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102024900B1 (ko) * 2016-11-28 2019-09-24 주식회사 엘지화학 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
CN107785548B (zh) * 2017-09-30 2020-07-28 哈尔滨工业大学 一种FeS2和S复合材料的制备方法及应用
CN108172801A (zh) * 2017-12-28 2018-06-15 哈尔滨工业大学深圳研究生院 一种多孔碳材料掺杂改性的方法及应用
CN108321388B (zh) * 2018-01-11 2020-06-02 同济大学 钛片基底上镍掺杂二硫化铁纳米线阵列结构的合成方法
CN108511750B (zh) * 2018-04-04 2020-11-24 武汉理工大学 一种锂空气电池用多元金属硫化物催化剂及其制备方法
CN108550818B (zh) * 2018-04-20 2020-11-27 河源广工大协同创新研究院 一种锂硫电池正极材料及其应用
CN109473643B (zh) * 2018-10-17 2021-06-25 长沙学院 一种CoSe2/石墨烯复合材料制备方法和用途
CN110120495B (zh) * 2019-04-12 2022-02-11 贵州梅岭电源有限公司 一种降低自放电程度的复合正极材料及制备方法和应用
CN111217355B (zh) * 2020-01-16 2021-06-01 中南大学 一种铁硫化物@硫杂化多孔碳正极前驱体材料及其载硫正极活性材料的制备和应用
CN111540888B (zh) * 2020-04-29 2022-11-08 齐鲁工业大学 一种CoSe2/空心碳纳米球/S复合锂硫电池正极材料及其制备方法
CN112467124B (zh) * 2020-11-04 2022-08-09 肇庆市华师大光电产业研究院 一种应用于锂硫电池的柔性正极材料及其制备方法
CN114759176A (zh) * 2022-04-19 2022-07-15 齐鲁工业大学 一种NiSe2-CNT/S复合锂硫电池正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503385A (zh) * 2002-11-26 2004-06-09 ����Sdi��ʽ���� 用于锂-硫电池的正极和具有该正极的锂-硫电池
CN104253276A (zh) * 2014-10-14 2014-12-31 湘潭大学 一种高能量密度锂硫电池正极及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076023A1 (en) * 2006-09-21 2008-03-27 Hiroyuki Yumoto Lithium cell
US20090023054A1 (en) * 2007-07-16 2009-01-22 Zhiping Jiang Lithium cell
CN102208645B (zh) * 2011-05-05 2014-08-27 中国东方电气集团有限公司 锂硫电池正极复合材料与正极及锂硫电池
JP5742606B2 (ja) * 2011-09-07 2015-07-01 株式会社村田製作所 電極活物質およびその製造方法、ならびに二次電池
WO2013133906A2 (en) * 2012-01-10 2013-09-12 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
CN102751489B (zh) * 2012-06-29 2015-04-15 上海交通大学 一种锂离子电池正极材料的制备方法
CN103515596A (zh) * 2013-09-11 2014-01-15 广州鹏辉能源科技股份有限公司 含硫铁元素正极材料及锂电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503385A (zh) * 2002-11-26 2004-06-09 ����Sdi��ʽ���� 用于锂-硫电池的正极和具有该正极的锂-硫电池
CN104253276A (zh) * 2014-10-14 2014-12-31 湘潭大学 一种高能量密度锂硫电池正极及其制备方法

Also Published As

Publication number Publication date
CN105206841A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105206841B (zh) 一种用于锂硫电池正极中的黄铁矿类添加剂
Zhao et al. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries
Abbas et al. Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries
Chen et al. Two-dimensional molybdenum nitride nanosheets modified Celgard separator with multifunction for LiS batteries
Guo et al. Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries
CN105280867B (zh) 一种锂硫电池专用改性隔膜及其制备方法和锂硫电池
CN109713282A (zh) 一种锂硫电池正极材料及其制备方法与锂硫电池
CN103441241A (zh) 一种普鲁士蓝类配合物/碳复合材料的制备方法及应用
Luo et al. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries
CN104201380A (zh) 一种具有片层结构的纳米Ni3S2材料的制备方法
CN103515614B (zh) 一种电池添加剂、含有该添加剂的正极材料及其制备方法
Gao et al. V2O5 nanoparticles confined in three− dimensionally organized, porous nitrogen− doped graphene frameworks: flexible and free− standing cathodes for high performance lithium storage
Ihsan et al. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries
Shan et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries
Ma et al. Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries
CN107204414A (zh) 一种基于富氮分子修饰隔膜制备高性能锂硫电池的方法
Zhang et al. Facile synthesis of carbon nanofiber confined FeS 2/Fe 2 O 3 heterostructures as superior anode materials for sodium-ion batteries
Wu et al. Encapsulation of sulfur cathodes by sericin-derived carbon/Co3O4 hollow microspheres for the long-term cyclability of lithium-sulfur batteries
Wang et al. Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery
Zhang et al. A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium-sulfur batteries
Wu et al. Doped graphene encapsulated SnP2O7 with enhanced conversion reactions from polyanions as a versatile anode material for sodium dual-ion battery
CN106710885A (zh) 一种硒化镍/碳纳米管复合纳米材料及其制备和应用
Song et al. Free-standing hollow carbon nanofibers scaffold with spherical nanocavities and lithiophilic N/ZnO heteroatoms as stable dendrite-free lithium metal anode
Lv et al. Hierarchical carbon-coated Fe1-xS/mesocarbon microbeads composite as high-performance lithium-ion batteries anode
CN104300133A (zh) 一种碳纳米管包覆的钛酸锂材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant