CN105143169A - 使用羰基化方法分离产品气体的方法 - Google Patents

使用羰基化方法分离产品气体的方法 Download PDF

Info

Publication number
CN105143169A
CN105143169A CN201480022378.XA CN201480022378A CN105143169A CN 105143169 A CN105143169 A CN 105143169A CN 201480022378 A CN201480022378 A CN 201480022378A CN 105143169 A CN105143169 A CN 105143169A
Authority
CN
China
Prior art keywords
gas
mole
hydrogen
reactor
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480022378.XA
Other languages
English (en)
Other versions
CN105143169B (zh
Inventor
G·P·托伦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese International Corp
Original Assignee
Celanese International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese International Corp filed Critical Celanese International Corp
Publication of CN105143169A publication Critical patent/CN105143169A/zh
Application granted granted Critical
Publication of CN105143169B publication Critical patent/CN105143169B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及使用羰基化反应器分离产品气体,其中消耗一氧化碳以生产乙酸,并回收氢气和二氧化碳。可以进一步纯化所回收的氢气以降低碳氧化物的浓度。本发明提供了将产品气体或合成气转化为乙醇的改进的方法。

Description

使用羰基化方法分离产品气体的方法
优先权要求
本申请要求美国专利申请第61/787,913和61/787,940号的优先权,二者均于2013年3月15日提交,其全部内容和公开在此通过引用并入本文。
技术领域
本发明一般地涉及使用羰基化方法分离产品气体或合成气。所述产品气体包含一氧化碳、二氧化碳和氢气,并且可以通过使所述一氧化碳在所述羰基化方法期间反应和回收所述氢气而分离。为了进一步整合,在一个实施方案中,可以将所产生的回收的氢气和乙酸一起进料至氢化反应器以生产乙醇。
背景技术
合成气体(“合成气”)是主要包含变化量的一氧化碳、氢气并具有一些二氧化碳的气体混合物。合成气被广泛地用作工业化学品的反应物。存在许多纯化合成气以产生不同产物纯度的一氧化碳和氢气的方法。合成气分离是能量密集的并且是获得工业用途的纯的氢气和一氧化碳的最昂贵的方法步骤之一。深冷纯化被广泛地用于分离合成气,如美国专利第5,511,382、4,756,730和4,242,875号中所述。生产纯的氢气和一氧化碳料流中的一个问题在于分离是能量密集的。另外的气体如氮气和甲烷的存在可能进一步增加分离的能量需求。另外,纯化方法的复杂性取决于所述一氧化碳和氢气的期望纯度。
一些常规的方法已直接将合成气用于生产工业化学品,如美国专利第6,596,781号所述,其展示了将合成气用于费-托法以生产柴油和将合成气用于使用铜和或锌催化剂生产甲醇。甲醇合成可以是高选择性的,但是所述方法消耗来自所述合成气的氢气和二氧化碳二者以生产甲醇。尽管可能存在来自所述甲烷合成方法的流出气体,但是组成可能取决于所述合成气的氢气比一氧化碳的比例和对甲醇的选择性而变化。因此,这些方法不能分离合成气。
对于由合成气生产乙酸而言,已描述了许多方法。例如,美国专利第8,088,832号描述了使用合成路线经由合成气合成乙醇的方法。描述了用于在使用流化床的蒸汽气化炉中气化生物质并使用来自合成气燃烧的热烟气加热的方法和设备。还公开了用于将合成气转化为乙醇的方法和设备,使用分步催化反应以使用包括乙酸铱的催化剂将一氧化碳和氢气转化为乙醇。所述分步催化剂反应将甲醇、一氧化碳和氢气转化成包含乙酸甲酯、氢气、甲醇、乙酸和水的混合物。将氢气和乙酸甲酯从所述混合物中分离并用于乙醇生产。
美国专利第8,080,693号描述了通过在催化剂存在下使甲醇和一氧化碳反应将甲醇转化为乙醇以生产具有至少25摩尔%乙酸甲酯和在一些情况下的乙酸的产物的方法。然后使所述乙酸与至少一种醇反应以生产选自乙酸甲酯、乙酸乙酯和乙酸丁酯的至少一种乙酸酯。然后将所述至少一种乙酸酯和由于使甲醇与一氧化碳反应而产生的乙酸甲酯氢化以生产乙醇。可以由生物质生产合成气,以生产所述方法所需要的甲醇、氢气和一氧化碳的全部或一部分。在羰基化反应器之前从合成气中分离氢气。描述了氢气可渗透性膜,用于生产具有少于5摩尔%氢气的一氧化碳料流。
美国专利第7,498,016号描述了用于由甲醇原料生产合成气的方法。将甲醇进料供给至具有氧气和任选的蒸汽的部分氧化反应器以生成氢气、一氧化碳和二氧化碳的混合料流。分离出二氧化碳并将所述氢气和一氧化碳混合物进料至冷箱,在所述冷箱中将其分离成富含氢气的料流和富含一氧化碳的料流。可以将经分离的二氧化碳再循环回到所述部分氧化反应器作为温度缓和剂(如果需要的话)。可以使所述富含一氧化碳的料流与甲醇在乙酸合成单元中通过常规方法反应,以生产乙酸或乙酸前体。任选地,可以将氨合成单元和/或乙酸乙烯酯单体合成单元整合至所述设备中。
美国专利第6,596,781号描述了用于进行费-托产物和使用甲醇和羰基化路线制造的乙酸的生产的整合的方法,其使用由甲醇生产回收的氢气以将费-托产物提质。
美国专利第5,659,077号描述了用于乙酸的生产的整合的方法,包括使由(a)甲烷气体和(b)气态氧气、空气或其混合物组成的进料混合物在升高的温度和压力的反应区域中经受部分氧化而不生产合成气,以形成包含甲醇、一氧化碳、二氧化碳、甲烷和水蒸气的反应混合物。从所述反应混合物中除去至少一部分所述水蒸气,使剩余的部分氧化反应混合物与来自外部来源的另外的甲醇一起在升高的温度和压力下进料通过羰基化反应区域,以形成包含乙酸和/或乙酸甲酯和甲醇的反应产物。以这样的量添加另外的甲醇,使得所述另外的甲醇连同通过部分氧化产生的所述甲醇足以基本上转化全部的通过部分氧化产生的所述一氧化碳。使过量甲烷和二氧化碳从羰基化反应区域再循环回到部分氧化反应区域,并且使羰基化反应产物中的甲醇再循环回到羰基化反应区域和将乙酸和/或乙酸甲酯作为产物回收。
WO2003097523描述了在基本上化学计量条件下生产甲醇和乙酸二者的方法,其中提供具有小于2.0的R比的未经调节的合成气。将所述未经调节的合成气的全部或部分供应至分离器单元以回收CO2、CO和氢气。将所回收的CO2、CO和氢气的组合或任一种的至少一部分添加至没有如此处理的任何残余的合成气或者可选地在不存在任何残余的未经调节的合成气下合并以生成具有2.0至2.9的R比的经调节的合成气,将其用于生产甲醇。可以将未被用于调节未经调节的合成气的R比的任何回收的CO2供应至重整器以提高CO生产。至少一部分经回收的CO在乙酸反应器中与至少一部分所产生的甲醇通过常规方法反应以生产乙酸或乙酸前体。
其它方法描述了将合成气转化为乙醇。美国专利第7,718,832号描述了通过使主要由氢气和一氧化碳组成的合成气与反应器中的三种催化剂接触而选择性生产乙醇的催化方法。第一催化剂为氢化助催化剂,其包含Cu-Zn、Mo或Fe与任选的碱金属添加剂和任选的氧化铝、二氧化硅、沸石和粘土的载体。第二催化剂为同系化(homologation)助催化剂,其包含具有任选的添加剂和载体的,游离或与辅催化剂金属结合形式的一种或多种第VIII族金属,所述辅催化剂由Y或镧系或锕系金属组成。第三催化剂为氢化助催化剂。
美国专利第7,842,844号描述了用于将烃转化为C2含氧化合物的方法并且使用常规的催化剂以氢化所述C2含氧化合物进料。烃被转化为乙醇和任选的乙酸,这通过如下进行:将烃在合成气反应器中转化为优选具有1.5至2.5的H2/CO摩尔比的包含一种或多种碳氧化物和氢气的混合物的料流A,将料流A的至少一部分在颗粒状催化剂存在下在反应器中在150至400℃的温度和5至200巴的压力下转化为C2-含氧化合物料流B,其中料流B包括水、烷烃、乙醇、乙醛、乙酸乙酯和乙酸,其一起占由所述C2-含氧化合物转化反应器获得的产物的至少80重量%。将所述C2-含氧化合物料流B分离为包括H2、CO、CO2和烷烃的料流C和包含15至40重量%乙酸、10至40重量%乙醛和15至40重量%乙醇的料流D。将料流D的至少一部分在氢化反应器中氢化为乙醇料流E并使料流E经受分离步骤,然后回收乙醇。
美国专利第8,502,001号描述了用于由含碳进料生产乙醇的方法,其中将所述含碳进料首先转化为合成气,然后将合成气转化为醋酸,然后使醋酸经受两阶段氢化方法,由此将所述醋酸的至少一部分通过主氢化方法转化为醋酸乙酯,使该醋酸乙酯通过次氢化方法转化以生产乙醇。
EP02060553描述了用于将烃转化为乙醇的方法,包括将烃转化为醋酸并将所述醋酸氢化为乙醇。将来自氢化反应器的料流分离以获得乙醇料流以及乙酸和乙酸乙酯的料流,所述乙酸和乙酸乙酯料流再循环至所述氢化反应器。
因此需要显著降低资金成本且高能效的用于分离合成气的方法。
发明简述
在第一实施方式中,本发明涉及用于生产乙酸的方法,包括将碳源转化为包含一氧化碳、氢气和二氧化碳的产品气体;在有效生产乙酸的羰基化条件下将所述产品气体和选自甲醇、乙酸甲酯、甲酸甲酯、二甲醚及其混合物的至少一种反应物引入包含反应介质的反应器中,所述反应介质包含催化剂、乙酸甲酯、助催化剂和催化剂稳定剂;取出来自反应器的包括氢气和二氧化碳的排出气体;从所述反应器中取出反应溶液;和从所述反应溶液中回收乙酸。所述反应介质还可以包括用于生产乙酸的有限量的水。
在第二实施方案中,本发明涉及用于生产乙酸的方法,包括在有效生产乙酸的羰基化条件下将包含一氧化碳、氢气和二氧化碳的产品气体和选自甲醇、乙酸甲酯、甲酸甲酯、二甲醚及其混合物的至少一种反应物引入包含反应介质的反应器中,所述反应介质包含催化剂、乙酸甲酯、助催化剂和催化剂稳定剂;取出来自反应器的尾气,条件是所述反应器中的一氧化碳分压低于15atm以保持所述排出气体中的一氧化碳含量小于40摩尔%,优选小于20摩尔%;从所述反应器中取出反应溶液;和从所述反应溶液中回收乙酸。所述产品气体可以具有0.2:1至6:1的氢气比一氧化碳的摩尔比。所述产品气体可以具有1:0.5至1:80的二氧化碳比一氧化碳的摩尔比。所述产品气体可以包含9摩尔%至80摩尔%的氢气,3摩尔%至90摩尔%的一氧化碳和0.5摩尔%至25摩尔%的二氧化碳。所述反应器中的一氧化碳分压可以为0.3atm至15atm。所述反应器中的氢气分压可以为3atm至40atm。所述反应器中的一氧化碳分压可以低于所述反应器中的氢气分压。所述排出气体可以包含5摩尔%至95摩尔%的氢气和4摩尔%至70摩尔%的二氧化碳和0.2摩尔%至40摩尔%的一氧化碳。
在第三实施方案中,本发明涉及用于生产乙醇的方法,其通过如下进行:将具有0.2:1至6:1的H2:CO摩尔比的气流和选自甲醇、乙酸甲酯、甲酸甲酯、二甲醚及其混合物的至少一种反应物在第一催化剂和有限量的水存在下在有效形成包含乙酸和至少一种不可冷凝的气体的粗产物的条件下进料至羰基化反应器;和任选地除去包含来自第一反应器的氢气的第一排出气体;分离所述粗产物以生成乙酸产物和包含所述至少一种不可冷凝的气体的第二排出料流;回收来自所述第一排出料流或所述第二排出料流的至少一个的富含氢气的料流;和在第二催化剂存在下将所述富含氢气的料流和所述乙酸产物进料至氢化反应器以生产乙醇。所述粗产物可以包含0.1重量%至5重量%的乙醇与丙酸的混合物。所述方法可以进一步包括处理所述排除料流以降低一氧化碳含量。所述气体料流可以以0.5摩尔%至25摩尔%的量包含二氧化碳。所述方法可以进一步包括在进料至所述羰基化反应器之前从所述气流中除去二氧化碳。所述富含氢气的料流可以进一步包含少于0.1摩尔%的一氧化碳和少于5摩尔%的二氧化碳。所述第一催化剂可以不同于所述第二催化剂且所述第一催化剂包含铱、铑或其混合物。所述粗产物可以包含少于25摩尔%的乙酸甲酯。
在第四实施方案中,本发明涉及用于生产乙醇的方法,其通过如下进行:将具有0.2:1至6:1的H2:CO摩尔比的气流和选自甲醇、乙酸甲酯、甲酸甲酯、二甲醚及其混合物的至少一种反应物在第一催化剂和有限量的水存在下在有效形成包含乙酸和至少一种不可冷凝的气体的粗产物的条件下进料至羰基化反应器;和除去包含来自所述第一反应器的氢气的第一排出气体;分离所述粗产物以生成乙酸产物;回收来自所述第一排出料流的富含氢气的料流;和在第二催化剂存在下将所述富含氢气的料流和所述乙酸产物进料至氢化反应器以生产乙醇。所述排出气体可以包含9摩尔%至80摩尔%的氢气,3摩尔%至90摩尔%的一氧化碳和0.5摩尔%至25摩尔%的二氧化碳。所述反应器中的一氧化碳分压可以为0.3atm至15atm。所述富含氢气的料流可以进一步包含少于0.1摩尔%的一氧化碳和少于5摩尔%的二氧化碳。
附图简介
结合附图考虑本发明的各个实施方案的以下详细描述可以更完整地理解本发明,其中同样的数字表示类似的部分。
图1为根据本发明的一个实施方案使用羰基化反应器分离产品气体的流程图。
图2为根据本发明的一个实施方案使用羰基化反应器并整合氢化方法分离合成气的流程图。
发明详述
引言
本发明一般地涉及使用羰基化反应器分离产品气体或合成气,其中消耗一氧化碳以生产乙酸并回收氢气。可以进一步纯化所回收的氢气以降低碳氧化物的浓度。令人惊讶的且不可预料的是使产品气体或合成气与大量氢气进料不会引起羰基化方法中的问题,如降低的乙酸生产效率或显著增加的杂质。
出于本发明的目的,术语“产品气体”和“合成气”通常是指包含氢气和一氧化碳的料流。产品气体通常用于指代进一步包含二氧化碳的料流,即没有从离开气化器气体中除去二氧化碳。尽管合成气可以具有一些二氧化碳,但是通常从所述产品气体中除去所述二氧化碳以生产合成气。在某些情形,可以互换地使用这些术语。
在一个实施方案中,可以进一步纯化所回收的氢气以降低碳氧化物的浓度。将所回收的氢气和所产生的乙酸共同进料至整合的氢化单元以生产乙醇。本发明的实施方案有利地提供了用于将合成气转化为乙醇的改进的方法。
如本文中所使用,将所述产品气体或合成气进料至羰基化反应器以分离氢气和一氧化碳。在所述羰基化反应器中以大于90%,例如大于95%或大于97%的效率消耗一氧化碳。因为氢气和(如果存在的)二氧化碳是羰基化所不需要的,所以来自所述产品气体或合成气的所述氢气和任选的二氧化碳基本上全部可以通过所述羰基化反应器并且可以随后在反应器排出气体中回收。可以将所述氢气用于其它产品,如将所产生的乙酸氢化为乙醇。本发明有利地通过消耗一氧化碳和回收氢气来分离所述产品气体。
通常,如图1中所示,方法100包括将碳源102在合成气反应器104中转化为产品气体106,所述产品气体引入羰基化反应器108。将反应器排出气体110从羰基化反应器108中取出并且如下文所述地处理以回收氢气。将产品气体106中的一氧化碳转化为乙酸和/或乙酸酐并从蒸馏和纯化单元112回收。取决于纯化,所述乙酸可以在管线114中与杂质如醛和/或丙酸一起回收,或在管线116中作为纯化的乙酸回收。
产品气体
出于本发明的目的,产品气体106是指离开所述合成气反应器104的流出物,其中所述流出物包含氢气、一氧化碳和二氧化碳。因此,并不存在必须使用已知的分离技术如深冷分离来分离产物以生产单独的氢气和一氧化碳料流的需要。不同的是,本发明有利地将氢气和一氧化碳的分离转移至所述羰基化反应器108。这减少了对在羰基化反应之前另外加工产品气体106的需求。同样,因为羰基化方法具有高的一氧化碳转化率,如大于90%,优选大于95%且更优选大于97%,所以所产生的反应器排出气体可能富含氢气。
在一个实施方案中,产品气体106包含9摩尔%至80摩尔%,例如10至75摩尔%、15至75摩尔%或20至60摩尔%的氢气。在一个实施方案中,所述产品气体包含3摩尔%至90摩尔%,例如25至80摩尔%或30至60摩尔%的一氧化碳。
如本文中所使用,所述产品气体还可以包含二氧化碳。因为二氧化碳并不是羰基化所需的,所以不必在羰基化之前除去二氧化碳。二氧化碳类似于氢气,可以在排出气体中回收。在一个实施方案中,所述产品气体包含0.5摩尔%至25摩尔%,例如2至15摩尔%或5至10摩尔%的二氧化碳。当从所述产品气体中除去二氧化碳时,所述料流可以主要包含氢气和一氧化碳。该料流出于本发明的目的被称为合成气。
所述产品气体具有0.2:1至6:1,例如0.6:1至4:1或1:1至3:1的氢气比一氧化碳摩尔比。所述产品气体还具有1:0.5至1:80,例如1:2至1:20的二氧化碳比一氧化碳摩尔比。还可以将包含二氧化碳的工艺排出/清除料流再循环至所述合成气反应器以使用水煤气变换反应(WGSR)来进一步将二氧化碳转化为一氧化碳以提高所述羰基化方法中的碳效率。
取决于碳源的类型,使用公知的方法如保护床在将所述碳源进料至所述合成气反应器之前,优选将所述碳源中的污染物如硫、氮、磷和砷从所述碳源中除去,或者可以从所述产品气体中除去。所述产品气体优选基本上不含这些污染物。
如在图2中所示,可以从产品气体106酸气体移除装置105中除去二氧化碳以生成合成气107。在一个实施方案中,合成气107包含9摩尔%至80摩尔%,例如10至80摩尔%,15至75摩尔%或20至60摩尔%的氢气。在一个实施方案中,所述合成气包含3摩尔%至90摩尔%,例如25至80摩尔%或30至60摩尔%的一氧化碳。所述合成气具有0.2:1至6:1,例如0.6:1至4:1或1:1至3:1的氢气比一氧化碳摩尔比。
合成气反应器
产品气体106和高度纯化的合成气107可以由多种碳源102,包括煤、天然气、石油和生物质生产。合适生物质原包括,但不限于农业植物废料、来自工业方法的植物废料、生活垃圾和特别为燃料生产生长的能源作物。生物质的实例包括,但不限于农业废料、林业产品、草、和其它纤维素原料、木材采伐残余物、软木片、硬木片、软木片和硬木片的混合物、树枝、树桩、叶、树皮、锯末、不合格纸浆、玉米、玉米秸秆、小麦秸秆、稻草、甘蔗渣、柳枝稷、芒草、畜禽粪便、市政垃圾、市政污水、商业垃圾、葡萄渣(pumice)、葡萄籽、杏仁壳、山核桃壳、椰子壳、咖啡渣、草粒料、干草粒料、木材粒料、纸板、纸、塑料、布、林业残余物、造纸厂废水(包括污泥和塑料)、柳树、苜蓿、造粒垃圾衍生燃料、甘蔗渣、加州公路剪报(Californiahighwayclippings),及其混合物。
合成气反应器104可以为蒸汽重整、部分氧化、气化或这些反应器的组合。如果需要的话,可以在将所述碳源进料至所述合成气反应器之前预处理所述碳源。预处理可以包括粉碎、碳化和/或焙干。当使用生物质时,这些预处理是必需的。
除了所述碳源102以外,可以将氧气流进料至合成气反应器104。出于本发明的目的,优选的是所述氧气流包含至少50体积%的氧气,例如至少75体积%的氧气或至少90体积%的氧气。所述氧气流优选基本上不含氮气。因此,所述氧气优选不以空气的形式递送至所述合成气反应器。在一个实施方案中,所述氧气流可以包含少于5体积%或少于1体积%的氮气。通过使用空气分离单元(ASU)消除氮气以生产所述氧气流。对于高通量和高纯度氧气需求而言,ASU使用深冷蒸馏。合适的ASU提供具有大于99体积%的氧气纯度的氧气流。此外,可以将所分离的其它气体如氮气作为惰性气体用于整合的方法中。ASU描述于美国专利第6,425,937和6,889,524号中,其全部内容和公开在此通过引用并入本文。尽管所述ASU可能需要增加的资本和操作成本,但是使用氧气流可以允许较低温度气化器的操作。还可以使用其它氧气供应系统如变压吸附(PSA)或聚合物膜体系。
所述合成气反应器可以在250℃至1200℃,例如300℃至800℃的温度操作。所述合成气反应器的压力可以取决于所述碳源而变化并且可以在0巴至20巴,例如1巴至15巴的压力下操作。
在离开合成气反应器104时,优选直接将产品气体106进料至羰基化单元108。在一个实施方案中,在所述羰基化单元之前不存在所述产品气体中的所述氢气和一氧化碳的分离。
在一些实施方案中,取决于用于气化的所述碳进料,可以处理所述产品气体如煤气以除去硫、焦油和/或挥发性物质。通过在气化方法中使用催化剂如白云石可以减少焦油。在整合的方法中可能需要除去在气化器中产生的焦油和酚烃以减少排放、避免结垢和避免毒化催化剂。与煤相比,生物质具有大量的总挥发性物质如酚类。在气化期间,在相对低的温度释放所述挥发性物质。例如,该挥发性材料的大部分对在生物质气化期间的焦油形成负责。所述合成气中的焦油水平还极大地取决于气化器构造。在300℃至1000℃操作的上升气流固定床气化器中,所述产品气体在不受控时可以包含至多3.5重量%的焦油。焦油具有相对高的热含量并且可以在燃烧器中燃烧,但是它们可能堵塞炭滤器并且可以在燃烧期间形成炭烟。因此,为了使系统效率最大化,可以任选地从经气化的生物质中除去所述焦油。可以通过催化焦油重整器或热焦油裂解器从所述经气化的生物质除去焦油。所述催化焦油重整器可以在与气化器温度相当的温度,优选低于900℃操作。然而,所述温度不应当降至低于约540℃的焦油露点。
在气化和任选的焦油去除之后,将部分地冷却所述产品气体以使碱蒸气的量最小化。所述冷却可以在350℃至650℃的温度进行。任选地,然后可以使所述产物通过过滤器以除去固体。下游的蒸汽可以从系统中清除或再循环至气化器。
同样,在一些实施方案中,可以将所述WGSR用于提升氢气比一氧化碳的比例,尤其是用于再循环来自工艺排出/清除料流的二氧化碳以生产另外的一氧化碳。该转化可以直接在所述合成气反应器中完成或在单独的水煤气变换反应器中完成。在所述WGSR之后,所述产品气体可以包含大于1.8:1,例如大于1.9:1的H2比CO之比。在范围方面,所述H2比CO之比可以为1.8:1至4:1,例如1.9:1至3:1。
如上文所指出,可以从产品气体106中除去二氧化碳以生产高度纯化的合成气料流107。在离开所述气化器时,所述产品气体可以具有0.5至25摩尔%的二氧化碳,例如2至15摩尔%的二氧化碳或5至10摩尔%的二氧化碳的二氧化碳浓度。在一个实施方案中,可以将产品气体106分离为二氧化碳料流109和高度纯化的合成气流107。为达此目的,可以将所述产品气体进料至使用溶剂的酸气体去除装置105以除去酸气体,例如二氧化碳。溶剂可以包括甲醇、聚乙二醇的二甲基醚(DEPG)、N-甲基-2-吡咯烷酮(NMP)、N-甲基-二乙醇胺(MDEA)和碳酸丙烯酯。合适的酸气体去除方法为Lurgi开发的RECTISOLTM方法。该方法使用甲醇作为溶剂以除去硫和含硫化合物如硫化氢气体。所述方法还除去二氧化碳。所述甲醇溶剂可以从合成气中除去污染物,包括氨、汞和氰化氢。根据需要,可以将曾经除去的二氧化碳料流109再循环至合成气反应器104。
除去二氧化碳的其它方法可以包括化学溶剂、物理溶剂、膜和深冷分馏。当所述产品气体在较高的压力并且包含高浓度二氧化碳时,可以使用膜。
羰基化单元
将包含一氧化碳、氢气和二氧化碳的产品气体106进料至羰基化单元108并与甲醇反应物118如甲醇或其反应性衍生物反应以生产乙酸。在一些实施方案中,可以在将所述合成气进料至所述羰基化反应器之前,从所述合成气中大量分离所述二氧化碳,然后可以将所述二氧化碳再循环至所述合成气反应器,以经由所述WGSR形成另外的一氧化碳。如图2中所示,可以将包含一氧化碳和氢气的合成气107进料至羰基化单元108并与甲醇反应物118如甲醇或其反应性衍生物反应,以生产乙酸。
从甲醇到乙酸的羰基化方法在本领域是广泛已知的,并且进一步描述于美国专利第3,769,329、4,994,608、5,001,259、5,625,095、5,763,654、5,877,348、7,005,541和7,678,940号中,所述专利的全部内容和公开通过引用并入本文。在一些实施方案中,可以将所述产品气体或合成气进料至共同生产乙酸和乙酸酐的羰基化单元。可以由乙酸甲酯生产乙酸酐。应当注意的是,美国专利第4,994,608号描述了将0.3摩尔%至10摩尔%的氢气引入所述羰基化单元。低水平的氢气用于实现改进的反应速率。然而,氢气的所述低水平低于本发明的产品气体的水平。此外,美国专利第4,994,608号将具有次要量氢气的一氧化碳引入羰基化单元而没有将产品气体或合成气直接引入羰基化单元。
羰基化反应可以在包含反应溶剂、甲醇和/或其反应性衍生物、助催化剂、第VIII族催化剂、至少有限浓度的水和任选的催化剂稳定剂/共-助催化剂如碘盐的均相催化反应体系中进行。
合适的催化剂包括第VIII族金属,例如铑和/或铱催化剂。当使用铑催化剂时,可以以任意合适的形式添加所述铑催化剂,使得活性铑催化剂为羰基碘化物络合物。示例性的铑催化剂描述于MichaelGauβ,etal.,AppliedHomogeneousCatalysiswithOrganometallicCompounds:AComprehensiveHandbookinTwoVolume,Chapter2.1,p.27-200,(1sted.,1996)中,其全文通过引用并入本文。任选地保持在本文中所描述的方法的反应混合物中的碘化物盐可以为碱金属或碱土金属或季铵的可溶性盐的形式或为盐的形式。在某些实施方案中,可以使用包含碘化锂、乙酸锂或其混合物的催化剂共-助催化剂。所述盐共-助催化剂可以作为会产生碘化物盐的非碘化物盐添加。可以将碘化物催化剂稳定剂直接引入反应体系。或者,所述碘化物盐可以原位产生,因为在所述反应体系的操作条件下,宽范围的非碘化物盐前体将与碘甲烷或氢碘酸在反应介质中反应以产生相应的共-助催化剂碘化物盐稳定剂。对于关于铑催化剂和碘化物盐产生的另外的细节,参见美国专利第5,001,259、5,026,908和5,144,068号,所述专利通过引用并入本文。
当使用铱催化剂时,所述铱催化剂可以包括任意可溶于液体反应组合物的含铱的化合物。可以将所述铱催化剂以溶于所述液体反应组合物的或可转化为可溶形式的任意合适的形式添加至用于所述羰基化反应的所述液体反应组合物中。可添加至所述液体反应组合物的合适的含铱的化合物的实例包括:IrCl3、IrI3、IrBr3、[Ir(CO)2I]2、[Ir(CO)2Cl]2、[Ir(CO)2Br]2、[Ir(CO)2I2]-H+、[Ir(CO)2Br2]-H+、[Ir(CO)2I4]-H+、[Ir(CH3)I3(CO2]-H+、Ir4(CO)12、IrCl3·3H2O、IrBr3·3H2O、Ir4(CO)12、铱金属、Ir2O3、Ir(acac)(CO)2、Ir(acac)3、乙酸铱、[Ir3O(OAc)6(H2O)3][OAc]和六氯铱酸[H2IrCl6]。通常将不含氯的铱的络合物如乙酸盐、草酸盐和乙酰丙酮酸盐用作起始原料。所述液体反应组合物中的所述铱催化剂浓度可以在100至6000ppm的范围内。使用铱催化剂的甲醇的羰基化一般地描述于美国专利第5,942,460、5,932,764、5,883,295、5,877,348、5,877,347和5,696,284号中,所述专利通过引用并入本文。
在一个实施方案中,所述羰基化催化剂不包含含磷的配体,如二膦配体或磷酸三酰胺配体。不受制于理论,相信这些含磷配体可能导致形成高级酸,如丙酸、丁酸、戊酸和己酸。如由Tempesti,etal.,“Carboxylicacidsbymethanolcarbonylationwithsyngasusingpolymer-supportedrhodiumcatalysts,”Reactive&FunctionalPolymers33(1997)211-216所述,进料具有甲醇的合成气也会由式:MeOH+2nH2+(n+1)CO→Me(CH2)nCO2H+nH2O产生高级酸。
卤素辅催化剂/助催化剂通常与第VIII族金属催化剂组分结合使用。碘甲烷是优选的卤素助催化剂。优选地,反应介质中的卤素助催化剂的浓度在1重量%至50重量%,且优选2重量%至30重量%。
卤素助催化剂可以与所述盐催化剂稳定剂/共-助催化剂化合物结合。特别优选的是碘化物或乙酸盐,例如碘化锂或乙酸锂。
其它助催化剂和共-助催化剂可以被用作本发明的催化体系的一部分,如美国专利第5,877,348号中所述,将其通过引用并入本文。合适的助催化剂选自钌、锇、钨、铼、锌、镉、铟、镓、汞、镍、铂、钒、钛、铜、铝、锡、锑,且更优选选自钌和锇。具体的共-助催化剂描述于美国专利第6,627,770号,将其通过引用并入本文。
助催化剂可以以最多至其在液体反应组合物和/或从乙酸回收阶段再循环至所述羰基化反应器的任意液体工艺料流中的溶解度限值的有效量存在。当使用时,所述助催化剂合适地以0.5:1至15:1,优选2:1至10:1,更优选2:1至7.5:1的助催化剂比金属催化剂的摩尔比存在于所述液体反应组合物中。合适的助催化剂浓度为400至5000wppm。
在一个实施方案中,在反应器中的羰基化反应的温度优选为150℃至250℃,例如160℃至225℃或180℃至220℃。所述羰基化反应的压力优选为15atm至60atm,且更优选20atm至40atm。在不存在水时,和当在低温和较高压力下使用用于双齿磷配体的催化剂时,所述羰基化反应可能主要形成乙醛和/或乙醇而不是乙酸。MoloyandWegman,“Rhodium-CatalyzedReductiveCarbonylationofMethanol,”ReductiveCarbonylationofMethanol,July/Aug1990,pages353-356公开了在130℃至150℃的温度和约70atm的压力使用铑-二膦络合物对醛的80%的选择性。典型地在液相反应中于150℃至200℃的温度和15atm至60atm的总压力制造乙酸。羰基化液相反应在还可能减少杂质的水的存在下进行。可以在液相中于较高的温度和/或压力如140℃至250℃,优选180℃至220℃和30atm至70atm,优选40atm至60atm的总压力生产乙酸酐。不受制于理论,在水存在下,甲醇羰基化以高的甲醇到乙酸而不是高级醇和酸的选择性占主要地位,即使在较高的氢气分压下也是如此,因为具有乙酰碘到乙酸的伴随水解的还原消除成乙酰碘的速率非常快,从而基本上排除碘化氢或氢气与酰基铑羰基碘化物络合物的反应。
在一个实施方案中,所述反应混合物包含反应溶剂或溶剂的混合物。所述溶剂优选与所述催化剂体系相容并且可以包括纯的醇、醇进料的混合物和/或所期望的羧酸和或这两种化合物的酯。在一个实施方案中,用于(少于14重量%的少的水的)羰基化方法的所述溶剂和液体反应介质优选为乙酸。
水可以在反应介质中原位形成,例如通过甲醇反应物与乙酸产物之间的酯化反应形成。在一些实施方案中,将水与所述反应介质的其它组分一起或分开引入反应器。可以将水与由反应器取出的反应产物的其它组分分离,并且可以以受控的量再循环以在反应介质中保持期望的水浓度。优选地,所述反应介质中所保持的水的浓度在反应产物总重量的0.1重量%至14重量%,例如1重量%至8重量%或1重量%至3重量%的范围。当生产乙酸酐时,所述反应介质基本上是无水的。
即使在低水浓度下,通过在反应介质中保留期望的羧酸与醇(期望地为用于羰基化的醇)的酯以及超过和高于作为碘化氢存在的碘离子的另外的碘离子,也获得期望的反应速率。优选的酯的实例为乙酸甲酯。所述另外的碘离子期望地为碘化物盐,优选的是碘化锂(LiI)。如美国专利第5,001,259号中所述,已发现在低水浓度下,乙酸甲酯和碘化锂只有当存在相对高浓度的这些组分的每一种时才起速率促进剂(ratepromoter)的作用,并且当这些两种组分的都同时存在时,所述促进作用更高。碘离子内容物的绝对浓度并非本发明的有用性的限制。
在少水羰基化中,超过和高于有机碘化物助催化剂的另外的碘化物可以以2重量%至20重量%,例如2重量%至15重量%或3重量%至10重量%的量存在于催化剂溶液中;所述乙酸甲酯可以以0.5重量%至30重量%,例如1重量%至25重量%,或2重量%至20重量%的量存在;且作为所述另外的碘化物的碘化锂可以以5重量%至20重量%,例如5重量%至15重量%,或5重量%至10重量%的量存在。所述催化剂可以以200wppm至2000wppm,例如200wppm至1500wppm,或500wppm至1500wppm的量存在于催化剂溶液中。
所述羰基化反应器典型地为搅拌釜或泡罩塔类型,在其中时反应的液体或淤浆内容物自动保持在恒定水平。按需要向该反应器中连续引入新鲜的甲醇、包含氢气和碳氧化物的产品气体或合成气和足够的水,以在反应介质中保持至少有限浓度的水。还将若干再循环的料流引入所述反应器。
由于所述产品气体或合成气中过量的氢气,反应中的氢气的分压可能比氢气的分压大0.3atm。在范围方面,所述氢气分压可以为3至40atm,例如5至25atm,或10至20atm。控制所述反应器的温度并且以足以保持期望的总反应器压力的速率引入主要包含一氧化碳和氢气的产品气体或合成气。在一些实施方案中,一氧化碳分压可以低于所述氢气分压。所述反应器中的一氧化碳分压优选为大于0.3atm,例如大于1atm或大于3atm。通常,所述反应器中的一氧化碳分压可以为低于15atm,例如低于10atm或低于5atm。在一些实施方案中,不存在一氧化碳的分压的上限并且优选可以在可保持催化剂稳定性的最高一氧化碳分压下操作反应器。通常,所述一氧化碳分压可以在0.3至30atm,例如1至15atm或3至6atm的范围。
排出气体
期望地从羰基化反应器108排出反应器排出气体110以回收氢气和清除其它不可冷凝的气体如氮气、二氧化碳,从而将设定的一氧化碳分压保持在给定的总反应器压力。还将反应器中的气体的一部分作为溶解和携带的气体从反应器闪蒸介质引导至闪蒸器。可以将该部分气体与反应器排出不可冷凝气体合并或可以经由纯化段112的羰基化单元低压洗涤器排出物与排出物合并。所述反应器排出气体可以包含至少一种不可冷凝气体如氢气、二氧化碳、一氧化碳、氮气及其混合物。所述反应器排出气体110与产品气体106或合成气107相比可以富集氢气。来自所述产品气体的所述一氧化碳的大部分消耗在羰基化反应中。在一个实施方案中,所述反应器排出气体可以包含5摩尔%至95摩尔%,例如10摩尔%至90摩尔%或35摩尔%至85摩尔%的氢气。排出气体还可以包含4摩尔%至70摩尔%,例如5摩尔%至70摩尔%,10摩尔%至35摩尔%或15摩尔%至25摩尔%的二氧化碳。在一些实施方案中,反应器排出气体110可以经由反应器出口135取出。
可以将来自所述反应器排出气体的氢气用于若干方法如用于氢化裂解重质石油馏分或用于通过Haber法生产氨。在图2中所示并且本文中进一步描述的另一实施方案中,可以将氢气用于氢化方法以将乙酸转化为乙醇,如美国专利第7,608,744和7,863,489号中所述,其全部内容和公开在此通过引用并入本文。例如,可以将通过羰基化生产的乙酸使用排出气体中所回收的氢气转化为乙醇。取决于所述二氧化碳和一氧化碳的浓度和产物的最终用途,可以容易地进一步纯化所述氢气以根据需要从排出气体中除去残余的低水平的二氧化碳和一氧化碳。在一个实施方案中,可以使用如上文所述的溶剂将排出气体110进料至酸气体去除装置120。可以从排出气体110中除去富含二氧化碳的料流122并且将剩余的排出气体124引导至氢气去除装置126。例如也可以使用氢气可渗透性膜、分子筛或变压吸附(PSA),以获得具有高于99.9%的高纯度的氢气流。Pd-复合膜可能适合于提供高氢气渗透性。在一个实施方案中,可以将经纯化的氢气用于燃料电池以发电。氢气移除装置126生产经富集的氢气流128和一氧化碳料流130,这明显比在羰基化反应器108之前从产品气体106或合成气107中分离氢气更经济。在管线114或116中将从反应器排出气体110回收的氢气128与所生产的乙酸合并,以形成乙醇146,如图2中所示。
可以将二氧化碳用于生产若干其它化学品工艺或在羰基化或合成气方法中使用。例如,可以将从排出气体回收的二氧化碳再循环至合成气反应器,或单独的水煤气变换反应器。此外,可以隔离二氧化碳以减少温室气体的量或将其用于增强油采收工艺。在一个实施方案中,当所述碳源为生物质时,可以将所回收的二氧化碳在预加工步骤中用于干燥所述生物质。
在一个实施方案中,当排出所述氢气和二氧化碳时,也可能排出一部分一氧化碳。通常,所述反应器排出气体包含比所述产品气体更少的基于摩尔百分比的一氧化碳。因此,所述反应器排出气体可以进一步包含0.2摩尔%至40摩尔%,例如0.2摩尔%至20摩尔%,1摩尔%至15摩尔%或5摩尔%至10摩尔%的一氧化碳。在生产乙酸时,为了使一氧化碳效率最大化优选从所述排出气体回收所述一氧化碳并将具有或不具有残余氢气和二氧化碳的所述一氧化碳直接或经由合成气反应器再循环至所述羰基化反应器。此外,优选处理所述反应器排出气体,以将一氧化碳含量降低至低于1摩尔%或低于0.1摩尔%。根据需要可以在从排出气体分离二氧化碳之前或之后分离一氧化碳。在一个实施方案中,可以将来自反应器排除排出口和/或来自纯化段出口的一部分一氧化碳排出料流用乙酸和/或甲醇洗涤并直接或经由合成气反应器返回羰基化单元。例如,可以将返回的一氧化碳排出料流用于稳定闪蒸器、闪蒸器和反应器再循环泵的泵吸管线和与所述闪蒸器和反应器相连的换热器中的催化剂。
如果需要的话,可以通过在气相羰基化反应或次级羰基化反应器中使用非均相催化剂反应来进一步减少排出气体中的残余一氧化碳,如美国专利第8,394,988号所述,其全部内容和公开通过引用并入本文。可以将类似的第VIII族金属催化剂用于气相羰基化反应。因此,可以由反应器排出气体中的一氧化碳生产另外的乙酸并进一步增加到乙酸的产率。
在其它实施方案中,如果需要的话可以使用本领域已知的气体纯化方法如变压吸附、膜分离、深冷分离等在除去残余二氧化碳之前进一步减少排出气体中的残余一氧化碳,如果必要的话使用酸气体去除装置。此外,在一氧化碳除去之后或单独地,可以将酸气体去除装置用于除去二氧化碳。
乙酸回收
将液体产物从所述羰基化反应器108中以足以在其中保持恒定水平的速率取出并引入闪蒸器。在所述闪蒸器中,含催化剂的溶液(催化剂相)作为基础料流(主要是含所述铑和所述碘盐的乙酸连同较少量的乙酸甲酯、碘甲烷和水)取出,而将包含乙酸的蒸气料流111(也被称为粗产物)从塔顶取出。所述蒸气料流111可以包含乙酸、碘甲烷、甲醇、乙酸甲酯、水及其混合物。乙酸甲酯的量可以变化并且在一些实施方案中,所述粗产物可以具有少于25重量%的乙酸甲酯。在其它实施方案中,乙酸甲酯的量可以多于25重量%。此外,所述蒸气料流可以包含一种或多种高锰酸盐还原性化合物(PRC),选自乙醛、丙酮、甲基乙基酮、丁醛、巴豆醛、2-乙基巴豆醛、2-乙基丁醛等,及其醇醛缩合产物。不受制于理论,PRC的浓度可能由于产品气体中过量的氢气而增加。除PRC以外,还可能形成较重的酸,如丙酸。如果丙酸以大于0.5重量%的不期望的水平存在,则可以将其与所述乙酸分离。在一些实施方案中,所述蒸气料流可以包含0.1重量%至5重量%,例如0.1至3重量%,或0.2重量%至0.8重量%的乙醇和/或丙酸的混合物。
从所述蒸气料流111中回收乙酸可以使用若干不同蒸馏和纯化112的方法来完成。在回收乙酸的一个示例性方法中,将所述蒸气料流进料至轻馏分塔。所述轻馏分塔产生低沸点塔顶蒸气料流、产物侧线流和任选的塔底料流。所述任选的塔底料流可以包含夹带的催化剂。所述轻馏分塔的底部的温度即任选的底部料流的温度优选为120℃至170℃。此外,所述轻馏分塔的顶部的温度,即低沸点塔顶蒸气料流的温度优选为100℃至145℃。
所述低沸点塔顶蒸气料流可以包含甲基碘、乙酸甲酯、水、PRC、乙酸、烷烃和所溶解的气体。可以将所述低沸点塔顶蒸气料流冷凝并引导至塔顶相分离单元如倾析器。期望保持条件从而使经冷凝的低沸点塔顶蒸气料流一旦在倾析器中就分离成轻相和重相。
所述轻相可以包含水、乙酸和PRC以及甲基碘和乙酸甲酯。可以按需要将所述轻相回流至所述轻馏分塔。在一个实施方案中,还可以在PRC回收系统(PRS)中分离和处理所述轻相以除去PRC。合适的PRS描述于美国专利第7,855,306、7,223,886和6,143,930号,以及美国专利申请第2012/0090981号中,其通过引用并入本文。还可以将所述轻相的一部分返回所述羰基化反应器。可以便利地将来自所述倾析器的重相直接或间接地再循环至所述反应器。
来自所述轻馏分塔的所述产物侧线料流主要包含乙酸和水。所述产物侧线料流优选成液相并且以115℃至160℃,例如125℃至155℃的温度从所述轻馏分塔取出。干燥塔可以分离所述产物侧线料流以产生主要包含水的塔顶料流和经干燥的经纯化产物料流116。所述经干燥的经纯化产物料流116优选以大于90重量%,例如大于95重量%或大于98重量%的量包含乙酸。干燥塔底部的温度,即离开的经干燥的经纯化产物料流的温度优选为130℃至185℃,例如140℃至180℃或150℃至175℃。在干燥塔的顶部处的温度,即塔顶料流的温度优选为110℃至150℃,例如120℃至150℃或130℃至145℃。在一些实施方案中,干燥塔中的压力为2巴至7巴,例如3巴至6巴或4巴至5巴。任选地,可以将经干燥的经纯化的产物料流116和具有杂质如醛和/或丙酸的乙酸114进一步在一个或多个保护床和/或重馏分塔中处理以进一步除去杂质如卤化物或较重的酸如丙酸和/或酯。
可以在塔顶接收器中冷却和浓缩来自干燥塔的塔顶料流。在一些实施方案中,所述塔顶料流可以分相并且使轻相回流至所述干燥塔。塔顶料流的剩余部分(轻相或重相)可以返回所述羰基化反应器。
在另一实施方案中,在回收乙酸期间可以获得一个或多个排出气流132。例如来自所述轻馏分塔的倾析器的排出气体可以经由任选的管线133与所述反应器排出气体110合并。这允许捕集和分离与闪蒸器的蒸气料流一起经过的任意氢气。此外,可以回收所述排出气体中的任意一氧化碳以转化为另外的乙酸。排出气流132也可以作为纯化排出物134而清除。
氢化单元
如图2中所示,可以将从所述排出气体回收的氢气和从羰基化分离单元112产生的乙酸共同进料至氢化单元140以生产乙醇。取决于单元112中的纯化,可以将经纯化的乙酸料流进料至氢化单元140或可以将包含乙酸和杂质如乙酸甲酯、酸酐、乙醛、丙酸及其混合物的料流进料至氢化单元。可以将一部分乙酸与所述氢化单元140整合并将另一部分乙酸分离为另外的产物。出于本发明的目的,将就乙酸描述示例性的氢化方法,但是其也可适用于乙酸酐。
进料至所述氢化反应器的乙酸还可以包含其它羧酸、酯和酸酐以及醛和/或酮如乙醛和丙酮。优选地,合适的乙酸进料流包含一种或多种选自乙酸、乙酸酐、乙醛、乙酸乙酯及其混合物。还可以在本发明的方法中氢化这些其它化合物。在一些实施方案中,羧酸如丙酸或其酸酐的存在在生产丙醇方面可以是有益的。水也可以存在于所述乙酸进料中。
所述乙酸可以在反应温度蒸发,这之后可以将蒸发的乙酸连同未稀释状态或用相对惰性的载气如氮气、氩气、氦气、二氧化碳等稀释的氢气一起进料。对于在蒸气状态运行的反应而言,应当在系统中控制温度,从而使其不降至低于乙酸的露点。在一个实施方案中,所述乙酸可以在乙酸的沸点于特定的压力下蒸发,然后可以将蒸发的乙酸进一步加热至反应器入口温度。在另一实施方案中,在蒸发前将所述乙酸与其它气体混合,然后将混合的蒸气加热至反应器入口温度。优选地,通过将氢气和/或再循环气体在处于或低于125℃的温度通过所述乙酸而将所述乙酸转变至蒸气状态,然后将合并的气态料流加热至反应器入口温度。
在优选的实施方案中,在固定床反应器中使用催化剂,所述固定床反应器呈例如管线或管道的形状,在其中使典型地呈蒸气形式的反应物经过或穿过所述催化剂。可以使用其它反应器,如流化床反应器或沸腾床反应器。在一些情形,可以将氢化催化剂与惰性材料结合使用以调节穿过催化剂床的反应物料流的压降和反应物化合物与催化剂颗粒的接触时间。
反应器中的氢化可以在液相或可以在气相中进行。优选地,所述反应在气相中在以下条件下进行。反应温度可以在125℃至350℃,例如200℃至325℃,225℃至300℃或250℃至300℃的范围。氢化反应器压力可以在10kPa至3000kPa,例如50kPa至2300kPa或100kPa至1500kPa的范围。可以将反应物以大于500hr-1,例如大于1000hr-1,大于2500hr-1或甚至大于5000hr-1的气时空速(GHSV)进料至反应器。在所述GHSV的范围方面,其可以在50hr-1至50,000hr-1,例如500hr-1至30,000hr-1,1000hr-1至10,000hr-1或1000hr-1至6500hr-1的范围。
尽管并不存在对使用较高压力的阻碍,但所述氢化任选地在正好足以克服在选定的GHSV穿过催化剂床的压降的压力下进行,应理解的是在高的空速例如5000hr-1或6,500hr-1下可能经受穿过反应器床的相当大的压降。
尽管所述反应每摩尔乙酸消耗两摩尔氢气以生产一摩尔乙醇,但是进料料流中的氢气比乙酸的实际摩尔比可以在约100:1至1:100,例如50:1至1:50,20:1至1:2或18:1至2:1变化。最优选地,所述氢气比乙酸的摩尔比大于2:1,例如大于4:1或大于8:1。在一些实施方案中,根据需要可以将从排出气体回收的另外的氢气用于增加氢气比乙酸之比。
取决于变量,如乙酸的量、催化剂、反应器、温度和压力,接触或停留时间也可以宽范围地变化。当使用不同于固定床的催化系统时,典型的接触时间的范围在几分之一秒至长于若干小时,优选地,至少对于气相反应而言,接触时间为0.1至100秒,例如0.3至80秒或0.4至30秒。
氢化乙酸以形成乙醇优选在氢化催化剂存在下在反应器中进行。在一个实施方案中,所述氢化催化剂可以为双功能催化剂且可以转化乙酸和乙酸乙酯。所述催化剂优选不是甲醇合成催化剂并且基本上不含铜和/或锌(包括其氧化物)。合适的氢化催化剂包括任选地在催化剂载体上的包含第一金属和任选的一种或多种第二金属、第三金属或任意数量的另外的金属的催化剂。一些示例性催化剂组合物的优选的双金属组合包括铂/锡、铂/钌、铂/铼、钯/钌、钯/铼、钴/钯、钴/铂、钴/铬、钴/钌、钴/锡、银/钯、镍/钯、金/钯、钌/铼、和钌/铁。另外的金属组合可以包括钯/铼/锡、钯/铼/钴、钯/铼/镍、铂/锡/钯、铂/锡/钴、铂/锡/铬和铂/锡/镍。示例性氢化催化剂进一步描述于美国专利第7,608,744和7,863,489和8,471,075号,其全部内容通过引用并入本文。在另一实施方案中,所述催化剂包括如美国专利第7,923,405号中描述的类型的Co/Mo/S催化剂,其全部内容通过引用并入本文。
在一个实施方案中,所述氢化催化剂包含第一金属,选自铜、铁、钴、镍、钌、铑、钯、锇、铱、铂、钛、锌、铬、铼、钼和钨。所述第一金属可以选自铂、钯、钴、镍和钌。更优选地,所述第一金属为铂或钯。在其中所述第一金属包含铂的本发明的实施方案中,由于对铂高需求而优选的是所述催化剂包含少于5重量%,例如少于3重量%或少于1重量%的量的铂。
如上文所指出,在一些实施方案中,所述催化剂进一步包含第二金属,其将典型地起助催化剂的作用。如果存在的话,所述第二金属优选选自铜、钼、锡、铬、铁、钴、钒、钨、钯、铂、镧、铈、锰、钌、铼、金和镍。所述第二金属可以选自铜、锡、钴、铼和镍。更优选地,所述第二金属为锡或铼。
在一个实施方案中,所述一种或多种活性金属包括第一金属,选自铜、铁、钴、镍、钌、铑、铂、钯、锇、铱、钛、锌、铬、铼、钼和钨。所述一种或多种活性金属可以进一步包括第二金属,选自铜、钼、锡、铬、铁、钴、钒、钨、钯、铂、镧、铈、锰、钌、铼、金和镍。优选地,所述第二金属不同于所述第一金属。
在其中所述氢化催化剂包括两种或多种金属,例如第一金属和第二金属的某些实施方案中,所述第一金属以0.1至10重量%,例如0.1至5重量%或0.1至3重量%的量存在于所述催化剂中。所述第二金属优选以0.1至20重量%,例如0.1至10重量%或0.1至5重量%的量存在。对于包含两种或多种金属的催化剂而言,所述两种或多种金属可以与另一种成合金或可以包含非合金的金属溶液或混合物。
优选的金属比例可以取决于用于所述催化剂中的金属而变化。在一些示例性实施方案中,所述第一金属比所述第二金属的摩尔比为10:1至1:10,例如4:1至1:4,2:1至1:2,1.5:1至1:1.5或1.1:1至1:1.1。
所述催化剂还可以包含选自上文关于所述第一或第二金属所列出的金属的任一种的第三金属,只要所述第三金属不同于所述第一和第二金属。在优选的方面,所述第三金属选自钴、钯、钌、铜、锌、铂、锡和铼。更优选地,所述第三金属选自钴、钯和钌。当存在时,所述第三金属的总重量优选为0.05至7.5重量%,例如0.1至5重量%或0.1至3重量%。
除了所述一种或多种金属以外,在一些实施方案中,所述催化剂还包含载体或改性的载体。如本文所使用的术语“改性的载体”是指包括载体材料和调节载体材料的酸度的载体改性剂的载体。
所述载体或改性的载体的总重量基于所述催化剂的总重量计优选为75至99.9重量%,例如78至97重量%或80至95重量%。在使用改性的载体的优选实施方案中,所述载体改性剂以0.1至50重量%,例如0.2至25重量%,0.5至15重量%或1至8重量%的量存在,基于所述催化剂的总重量计。所述催化剂的金属可以遍布所述载体而分散、遍布所述载体分层、涂覆在所述载体的外表面上(即蛋壳)或修饰在所述载体的表面上。
如将会被本领域普通技术人员所意识到那样,选择载体材料而使得催化剂体系在用于形成乙醇的方法条件下具备合适的活性、选择性和耐用性。
合适的载体材料可以包括例如稳定的金属氧化物基载体或陶瓷基载体。优选的载体包括含硅载体如二氧化硅、二氧化硅/氧化铝、第IIA族硅酸盐如偏硅酸钙、热解二氧化硅、高纯二氧化硅,及其混合物。其它载体可以包括,但不限于氧化铁、氧化铝、二氧化钛、氧化锆、氧化镁、碳、石墨、高表面积石墨化碳、活性炭,及其混合物。
在优选的实施方案中,所述载体选自二氧化硅、二氧化硅/氧化铝、偏硅酸钙、热解二氧化硅、高纯二氧化硅、碳、氧化铝,及其混合物。
如所指出那样,可以采用载体改性剂将所述催化剂载体改性。在一些实施方案中,所述载体改性剂可以为增加所述催化剂的酸度的酸性改性剂。合适的酸性载体改性剂可以选自:第IVB族金属的氧化物、第VB族金属的氧化物、第VIB族金属的氧化物、第VIIB族金属的氧化物、第VIIIB族金属的氧化物、铝氧化物,及其混合物。酸性载体改性剂包括选自TiO2、ZrO2、Nb2O5、Ta2O5、Al2O3、B2O3、P2O5和Sb2O3的那些。优选的酸性载体改性剂包括选自TiO2、ZrO2、Nb2O5、Ta2O5和Al2O3的那些。所述酸性改性剂还可以包括WO3、MoO3、Fe2O3、Cr2O3、V2O5、MnO2、CuO、Co2O3和Bi2O3
在另一实施方案中,所述载体改性剂可以为具有低挥发性或没有挥发性的碱性改性剂。这样的碱性改性剂例如可以选自:(i)碱土金属氧化物、(ii)碱金属氧化物、(iii)碱土金属偏硅酸盐、(iv)碱金属偏硅酸盐、(v)第IIB族金属氧化物、(vi)第IIB族金属偏硅酸盐、(vii)第IIIB族金属氧化物、(viii)第IIIB族金属偏硅酸盐,及其混合物。除了氧化物和偏硅酸盐,可以使用其它类型的改性剂,包括硝酸盐、亚硝酸盐、乙酸盐和乳酸盐。优选地,所述载体改性剂选自钠、钾、镁、钙、钪、钇和锌中任一种的氧化物和偏硅酸盐以及任意的前述混合物。更优选地,所述碱性载体改性剂为硅酸钙且甚至更优选偏硅酸钙(CaSiO3)。如果所述碱性载体改性剂包含偏硅酸钙,则优选的是所述偏硅酸钙的至少一部分呈晶体形式。
适合本发明使用的催化剂组合物优选通过所述改性的载体的金属浸渍形成,尽管也可以使用其它方法如化学蒸气沉积。这样的浸渍技术描述于上文所引用的美国专利第7,608,744、7,863,489和8,471,075号,其全部内容通过引用并入本文。
在一些情形下,所述氢化催化剂可以与惰性材料结合使用以调节反应物料流穿过催化剂床的压降以及反应物化合物与催化剂颗粒的接触时间。
尤其是,乙酸的氢化可以在反应器中实现有利的乙酸转化和有利的到乙醇的选择性和生产率。出于本发明的目的,术语“生产率”是指将进料中的乙酸转化为不同于乙酸的化合物的量。转化率表达为基于进料中的乙酸的百分比。所述转化率可以为至少40%,例如至少60%或至少80%。当使粗乙醇料流与烯烃进料流接触时可能需要高于90%的较高的转化率。优选的是达到接近几乎100%转化率的非常高的转化率。
选择性表达为基于经转化的乙酸的摩尔百分比。应理解的是,由乙酸所转化的每种化合物具有独立的选择性并且选择性独立于转化率。例如,如果60摩尔%的经转化的乙酸被转化为乙醇,则所述乙醇选择性被称为60%。在一个实施方案中,到乙醇的催化剂选择性为至少60%,例如至少70%或至少80%。优选地,到乙醇的选择性为至少80%,例如至少85%或至少88%。所述氢化方法的优选的实施方案还具有对不期望的产物如甲烷、乙烷和二氧化碳的低选择性。对这些不期望的产物的选择性优选低于4%,例如低于2%或低于1%。更优选地,这些不期望的产物以不可检测的量存在。烷烃的形成可能低,并且理想地,经过所述催化剂的乙酸的少于2%、少于1%或少于0.5%被转化为除了作为燃料之外没有什么价值的烷烃。
本文中所使用的术语“生产率”是指在所述氢化期间形成的具体产物例如乙醇的克数,基于每小时使用的催化剂的千克数计。优选的是每小时每千克催化剂至少100克乙醇、例如每小时每千克催化剂至少400克乙醇或每小时每千克催化剂至少600克乙醇的生产率。在范围方面,所述生产率优选为每小时每千克催化剂100至3,000克的乙醇,例如每小时每千克催化剂400至2,500克的乙醇,或每小时每千克催化剂600至2,000克的乙醇。
在各种实施方案中,由所述氢化反应器生产的粗乙醇料流典型地包含乙酸、乙醇和水。在一个实施方案中,所述粗乙醇料流可以包含5至72重量%,例如15至70重量%或25至65重量%的乙醇;0至90重量%,例如0至50重量%或0至35重量%的乙酸;和5至40重量%,例如5至30重量%或10至26重量%的水。当转化率较高时,可能存在较少量的乙酸。所述粗乙醇产物还可以包含0至30重量%的乙酸乙酯,例如1至25重量%的乙酸乙酯或5至18重量%的乙酸乙酯。
回到图2,使用蒸馏和纯化144可以从使用氢化催化剂由氢化单元140生产的粗乙醇产物142回收乙醇产物146。若干不同的技术描述于美国专利第8,309,773、8,304,586、8,304,587号和美国专利公开第2012/0010438、2012/0273338、2012/0277490、2012/0277497号或如美国专利公开第2012/0010445号中所描述的膜,其全部内容和公开通过引用并入本文。根据需要可以将可再循环气体148中的氢气进行处理以除去一氧化碳和/或二氧化碳,并返回至氢化单元140。可以将可再循环气体148经由管线152清除或经由管线150引导至合成气反应器104。
所述乙醇产物可以为工业级乙醇,其包含75至96重量%的乙醇,例如80至96重量%或85至96重量%的乙醇,基于所述乙醇产物的总重量计。所述工业级乙醇可以具有少于12重量%,例如少于8重量%或少于3重量%的水的水浓度。在一些实施方案中,当使用另外的水分离时,所述乙醇产物优选以大于96重量%,例如大于98重量%或大于99.5重量%的量包含乙醇。具有另外的水分离的所述乙醇产物优选包含少于3重量%,例如少于2重量%或少于0.5重量%的水。
通过本发明的实施方案所生产的精制的乙醇组合物可被用于许多应用,包括燃料、溶剂、化学品进料、药学产品、清洁剂、消毒剂、氢气运输或消耗。在燃料应用中,所述精制的乙醇组合物可以与用于机动车/船/飞机如汽车、船舶和小型活塞发动机飞机的汽油共混。在非燃料应用中,所述精制的乙醇组合物可被用作用于化妆品和化妆制剂、去污剂、消毒剂、涂料、油墨和药物的溶剂。所述精制的乙醇组合物还可以被用作用于医药产品、食品准备、染料、光化学品制备方法和乳胶加工中的加工溶剂。
所述精制的乙醇组合物还可以被用作化学品进料以制造其它化学品如醋、丙烯酸乙酯、乙酸乙酯、乙烯、二醇醚、乙胺类、乙苯、醛、丁二烯、和高级醇尤其是丁醇。在乙酸乙酯的生产中,所述精制的乙醇组合物可以用乙酸酯化。在另一应用中,可以将所述精制的乙醇组合物脱氢以生产乙烯。可以将任何已知的脱氢催化剂如沸石催化剂或磷钨酸催化剂用于使乙醇脱氢,如美国专利公开第2010/0030002和2010/0030001号和WO2010146332中所述,其全部内容和公开通过引用并入本文。
尽管已详细地描述了本发明,但在本发明精神和范围内的修改对本领域技术人员而言是显而易见的。考虑到前述讨论、本领域相关知识和与背景和详述有关的上述参考文件,在此将其公开内容全部引入作为参考。另外,应当理解的是以下和/或所附的权利要求书记载的本发明的方面和各个实施方案的部分和各个特征可以全部或部分地组合或互换。在各个实施方案的前述描述中,如本领域技术人员将意识到那样,引用另一实施方案的那些实施方案可以适当地与其它实施方案合并。此外,本领域普通技术人员将意识到,前述描述仅为示例的方式并不意图限制本发明。

Claims (15)

1.用于生产乙酸的方法,包括:
在有效生产乙酸的羰基化条件下将包含一氧化碳、氢气和二氧化碳的产品气体和选自甲醇、乙酸甲酯、甲酸甲酯、二甲醚及其混合物的至少一种反应物引入包含反应介质的反应器中,所述反应介质包含催化剂、乙酸甲酯、助催化剂和催化剂稳定剂;
取出来自反应器的排除气体,条件是所述反应器中的一氧化碳分压低于15atm以保持所述排出气体中的一氧化碳含量小于40摩尔%;
从所述反应器中取出反应溶液;和
从所述反应溶液中回收乙酸。
2.根据权利要求1所述的方法,其中所述产品气体具有0.2:1至6:1的氢气比一氧化碳摩尔比。
3.根据权利要求1所述的方法,其中所述产品气体包含9摩尔%至80摩尔%的氢气,3摩尔%至90摩尔%的一氧化碳和0.5摩尔%至25摩尔%的二氧化碳。
4.根据权利要求3所述的方法,其中所述产品气体具有1:0.5至1:80的二氧化碳比一氧化碳摩尔比。
5.根据权利要求1-4中任一项所述的方法,其中反应器中的一氧化碳分压为0.3atm至15atm。
6.根据权利要求1-5中任一项所述的方法,其中反应器中的氢气分压为3atm至40atm。
7.根据权利要求1-6中任一项所述的方法,其中反应器中的一氧化碳分压低于反应器中的氢气分压。
8.根据权利要求1-7中任一项所述的方法,其中所述排出气体包含5摩尔%至95摩尔%的氢气,和4摩尔%至70摩尔%的二氧化碳,和0.2摩尔%至40摩尔%的一氧化碳。
9.根据权利要求1-8中任一项所述的方法,其中所述反应溶液包含0.1重量%至5重量%的乙醇和丙酸混合物。
10.根据权利要求1-9中任一项所述的方法,进一步包括在将所述产品气体进料至所述羰基化反应器之前,从所述产品气体除去二氧化碳。
11.根据权利要求1-10中任一项所述的方法,进一步包括
从排除气体回收富含氢气的料流;和
将所述富含氢气的料流和回收的乙酸在第二催化剂存在下进料至氢化反应器以生产乙醇。
12.根据权利要求11所述的方法,进一步包括处理所述排出气体以降低一氧化碳含量。
13.根据权利要求11或12所述的方法,其中所述富含氢气的料流进一步包含少于0.1摩尔%的一氧化碳和少于5摩尔%的二氧化碳。
14.根据权利要求11-13中任一项所述的方法,其中所述第一催化剂不同于所述第二催化剂且所述第一催化剂包括铱、铑或其混合物。
15.根据权利要求11-14中任一项所述的方法,其中粗产物包含少于25摩尔%的乙酸甲酯。
CN201480022378.XA 2013-03-15 2014-03-14 使用羰基化方法分离产品气体的方法 Expired - Fee Related CN105143169B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361787913P 2013-03-15 2013-03-15
US201361787940P 2013-03-15 2013-03-15
US61/787,940 2013-03-15
US61/787,913 2013-03-15
PCT/US2014/027984 WO2014143840A2 (en) 2013-03-15 2014-03-14 Process for separating product gas using carbonylation processes

Publications (2)

Publication Number Publication Date
CN105143169A true CN105143169A (zh) 2015-12-09
CN105143169B CN105143169B (zh) 2017-06-23

Family

ID=50478615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480022378.XA Expired - Fee Related CN105143169B (zh) 2013-03-15 2014-03-14 使用羰基化方法分离产品气体的方法

Country Status (6)

Country Link
US (1) US9409846B2 (zh)
JP (1) JP6416193B2 (zh)
CN (1) CN105143169B (zh)
MX (1) MX363829B (zh)
SG (1) SG11201507677VA (zh)
WO (1) WO2014143840A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121490A (zh) * 2017-01-18 2019-08-13 株式会社大赛璐 乙酸的制备方法
CN112439437A (zh) * 2019-08-28 2021-03-05 中国石油化工股份有限公司 作为合成醋酸的催化剂的含铱溶液及其制备方法、应用
US20210284927A1 (en) * 2016-10-17 2021-09-16 Haldor Topsøe A/S Gasification process employing acid gas recycle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
US9981896B2 (en) 2016-07-01 2018-05-29 Res Usa, Llc Conversion of methane to dimethyl ether
WO2018004994A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Fluidized bed membrane reactor
CN114452903A (zh) * 2022-01-27 2022-05-10 中石化南京工程有限公司 一种羰基合成气液反应器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013804A1 (en) * 1978-11-20 1980-08-06 Monsanto Company Improved carbonylation process recycling a portion of the reacted gas
CN1188099A (zh) * 1996-11-29 1998-07-22 赫多特普索化工设备公司 一种制备乙酸的方法
WO2003093396A2 (en) * 2002-05-02 2003-11-13 Chevron U.S.A. Inc. Integrated process for preparing fischer-tropsch products and acetic acid from synthesis gas
CN1656012A (zh) * 2002-05-20 2005-08-17 埃塞泰克斯(塞浦路斯)有限公司 制造乙酸和甲醇的一体化方法
CN1942394A (zh) * 2004-07-09 2007-04-04 埃塞泰克斯(塞浦路斯)有限公司 通过甲醇原料的部分氧化制备用于乙酸合成的合成气
US20120078012A1 (en) * 2010-09-28 2012-03-29 Celanese International Corporation Production of acetic acid with high conversion rate
US20120083623A1 (en) * 2010-09-28 2012-04-05 Celanese International Corporation Production of Acetic Acid with High Conversion Rate

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US4242875A (en) 1978-05-10 1981-01-06 C F Braun & Co. Hydrogen cryogenic purification system
JPS59500516A (ja) 1982-03-26 1984-03-29 デイビ− マツキ− (ロンドン) リミテツド エタノ−ルの生成方法
EP0137749A3 (en) 1983-09-14 1986-02-12 The Halcon Sd Group, Inc. Recovering ethanol from aqueous acetic acid solutions
US5026908A (en) 1984-05-03 1991-06-25 Hoechst Celanese Corporation Methanol carbonylation process
US5001259A (en) 1984-05-03 1991-03-19 Hoechst Celanese Corporation Methanol carbonylation process
US5144068A (en) 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
EP0167300A1 (en) 1984-06-06 1986-01-08 Humphreys & Glasgow Limited Process for the production of alcohols
CA1299195C (en) * 1986-06-16 1992-04-21 G. Paull Torrence Addition of hydrogen to carbon monoxide feed gas in producing acetic acid by carbonylation of methanol
US4756730A (en) 1986-08-08 1988-07-12 Santa Fe Braun Inc. Cryogenic recovery of high purity hydrogen
US4727200A (en) 1987-03-27 1988-02-23 Union Carbide Corporation Alcohol homologation
US5672743A (en) 1993-09-10 1997-09-30 Bp Chemicals Limited Process for the production of acetic acid
FR2711779B1 (fr) 1993-10-26 1995-12-08 Air Liquide Procédé et installation de purification cryogénique d'hydrogène.
US5625095A (en) 1994-06-15 1997-04-29 Daicel Chemical Industries, Ltd. Process for producing high purity acetic acid
US5696284A (en) 1995-06-21 1997-12-09 Bp Chemicals Limited Process for the carbonylation of alkyl alcohols and/or reactive derivatives thereof
GB9517184D0 (en) 1995-08-22 1995-10-25 Bp Chem Int Ltd Process
GB9521501D0 (en) 1995-10-20 1995-12-20 Bp Chem Int Ltd Process
US5659077A (en) 1996-03-22 1997-08-19 Natural Resources Canada Production of acetic acid from methane
IN192600B (zh) 1996-10-18 2004-05-08 Hoechst Celanese Corp
GB9625335D0 (en) 1996-12-05 1997-01-22 Bp Chem Int Ltd Process
GB9626429D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626428D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626317D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
US6248796B1 (en) 1999-11-13 2001-06-19 Powerenercat. Inc. Method for production of mixed alcohols from synthesis gas
US6753353B2 (en) 1998-11-13 2004-06-22 Powerenercat, Inc. Method for production of mixed alcohols from synthesis gas
FR2795657B1 (fr) 1999-07-02 2001-09-14 Air Liquide Procede de purification d'air par adsorption sur zeolite echangee au baryum
US6303813B1 (en) 1999-08-31 2001-10-16 Celanese International Corporation Rhodium/inorganic iodide catalyst system for methanol carbonylation process with improved impurity profile
US6627770B1 (en) 2000-08-24 2003-09-30 Celanese International Corporation Method and apparatus for sequesting entrained and volatile catalyst species in a carbonylation process
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
GB0219415D0 (en) 2002-08-20 2002-09-25 Air Prod & Chem Process and apparatus for cryogenic separation process
US7005541B2 (en) 2002-12-23 2006-02-28 Celanese International Corporation Low water methanol carbonylation process for high acetic acid production and for water balance control
US7196239B2 (en) 2003-11-19 2007-03-27 Exxonmobil Chemical Patents Inc. Methanol and ethanol production for an oxygenate to olefin reaction system
US7223886B2 (en) 2004-03-02 2007-05-29 Celanese International Corporation Removal of permanganate reducing compounds from methanol carbonylation process stream
US7053241B1 (en) * 2005-02-24 2006-05-30 Celanese International Corporation Acetic acid production methods incorporating at least one metal salt as a catalyst stabilizer
US7855306B2 (en) 2005-04-28 2010-12-21 Celanese International Corporation Process for the production of acetic acid
EP1741692A1 (en) 2005-07-06 2007-01-10 BP Chemicals Limited Process for the conversion of hydrocarbons to C2-oxygenates
JP5080279B2 (ja) 2005-07-14 2012-11-21 株式会社ダイセル カルボン酸の製造方法
US7947116B2 (en) 2006-02-06 2011-05-24 Eltron Research & Development, Inc. Hydrogen separation process
WO2007117590A2 (en) * 2006-04-05 2007-10-18 Woodland Biofuels Inc. System and method for converting biomass to ethanol via syngas
US7718832B1 (en) 2006-12-29 2010-05-18 Pacific Renewable Fuels, Inc. Combination catalytic process for producing ethanol from synthesis gas
US8142530B2 (en) 2007-07-09 2012-03-27 Range Fuels, Inc. Methods and apparatus for producing syngas and alcohols
US7923405B2 (en) 2007-09-07 2011-04-12 Range Fuels, Inc. Cobalt-molybdenum sulfide catalyst materials and methods for ethanol production from syngas
WO2009063176A1 (en) 2007-11-14 2009-05-22 Bp P.L.C. Process for the production of alcohol from a carbonaceous feedstock
EP2060553A1 (en) 2007-11-14 2009-05-20 BP p.l.c. Process for the conversion of hydrocarbons into alcohol
EP2072486A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
US8080693B2 (en) 2008-02-28 2011-12-20 Enerkem, Inc. Production of ethanol from methanol
US8137655B2 (en) 2008-04-29 2012-03-20 Enerkem Inc. Production and conditioning of synthesis gas obtained from biomass
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US20100030001A1 (en) 2008-07-31 2010-02-04 Laiyuan Chen Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US20100030002A1 (en) 2008-07-31 2010-02-04 Johnston Victor J Ethylene production from acetic acid utilizing dual reaction zone process
EP2186787A1 (en) 2008-11-13 2010-05-19 BP p.l.c. Hydrogenation of ethanoic acid to produce ethanol
CN101439256B (zh) 2008-11-14 2011-01-12 江苏索普(集团)有限公司 膜法回收羰基化生产乙酸高压尾气中co的方法及其装置
US7884253B2 (en) 2008-12-11 2011-02-08 Range Fuels, Inc. Methods and apparatus for selectively producing ethanol from synthesis gas
US20120165589A1 (en) 2009-06-19 2012-06-28 Bp P.L.C. A process for the dehydration of ethanol to produce ethene
US8288594B2 (en) 2009-11-24 2012-10-16 Albemarle Corporation Selective process for conversion of syngas to ethanol
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
CN101805242B (zh) 2010-05-12 2013-06-05 新奥新能(北京)科技有限公司 一种由合成气连续生产低碳醇的方法
US8884080B2 (en) 2010-07-09 2014-11-11 Celanese International Corporation Reduced energy alcohol separation process
US20120010445A1 (en) 2010-07-09 2012-01-12 Celanese International Corporation Low Energy Alcohol Recovery Processes
US9056825B2 (en) 2010-10-13 2015-06-16 Celanese International Corporation Process for recovering halogen promoters and removing permanganate reducing compounds
CN102530857A (zh) 2010-12-16 2012-07-04 华东理工大学 利用醋酸尾气制取氢气的方法
US20120253084A1 (en) * 2011-04-01 2012-10-04 Celanese International Corporation Vent scrubbers for use in production of ethanol
CN102229520B (zh) 2011-04-25 2013-12-11 江苏索普(集团)有限公司 一种由醋酸气相加氢制备乙醇的方法
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8927784B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol from an ethyl acetate residue stream
US8927788B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol with reduced water from overhead of acid column
US8853466B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol from methanol
US8853467B2 (en) 2011-08-19 2014-10-07 Celanese International Corporation Integrated process for producing ethanol
US8829253B2 (en) 2011-08-19 2014-09-09 Celanese International Corporation Integrated process for producing ethanol from methanol
CN103359732B (zh) 2013-06-24 2015-10-21 江苏索普(集团)有限公司 一体化食品级、工业级二氧化碳回收装置及回收工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013804A1 (en) * 1978-11-20 1980-08-06 Monsanto Company Improved carbonylation process recycling a portion of the reacted gas
CN1188099A (zh) * 1996-11-29 1998-07-22 赫多特普索化工设备公司 一种制备乙酸的方法
WO2003093396A2 (en) * 2002-05-02 2003-11-13 Chevron U.S.A. Inc. Integrated process for preparing fischer-tropsch products and acetic acid from synthesis gas
CN1656012A (zh) * 2002-05-20 2005-08-17 埃塞泰克斯(塞浦路斯)有限公司 制造乙酸和甲醇的一体化方法
CN1942394A (zh) * 2004-07-09 2007-04-04 埃塞泰克斯(塞浦路斯)有限公司 通过甲醇原料的部分氧化制备用于乙酸合成的合成气
US20120078012A1 (en) * 2010-09-28 2012-03-29 Celanese International Corporation Production of acetic acid with high conversion rate
US20120083623A1 (en) * 2010-09-28 2012-04-05 Celanese International Corporation Production of Acetic Acid with High Conversion Rate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210284927A1 (en) * 2016-10-17 2021-09-16 Haldor Topsøe A/S Gasification process employing acid gas recycle
CN110121490A (zh) * 2017-01-18 2019-08-13 株式会社大赛璐 乙酸的制备方法
CN110121490B (zh) * 2017-01-18 2022-04-08 株式会社大赛璐 乙酸的制备方法
CN112439437A (zh) * 2019-08-28 2021-03-05 中国石油化工股份有限公司 作为合成醋酸的催化剂的含铱溶液及其制备方法、应用
CN112439437B (zh) * 2019-08-28 2023-08-15 中国石油化工股份有限公司 作为合成醋酸的催化剂的含铱溶液及其制备方法、应用

Also Published As

Publication number Publication date
CN105143169B (zh) 2017-06-23
MX363829B (es) 2019-04-03
SG11201507677VA (en) 2015-10-29
JP6416193B2 (ja) 2018-10-31
US9409846B2 (en) 2016-08-09
US20140275620A1 (en) 2014-09-18
MX2015013145A (es) 2016-05-05
WO2014143840A2 (en) 2014-09-18
WO2014143840A3 (en) 2014-12-04
JP2016515512A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
CN105143169B (zh) 使用羰基化方法分离产品气体的方法
US7884253B2 (en) Methods and apparatus for selectively producing ethanol from synthesis gas
AU2011213050B2 (en) Process for purifying ethanol
CN102762526B (zh) 在侧线抽出蒸馏塔中回收乙醇以调节c3+醇浓度的方法
CN102958883A (zh) 能量降低的醇分离方法
CN103946200A (zh) 使乙醇和乙酸混合物酯化以生产用于氢解的酯进料
CN103958449A (zh) 由氢解工艺回收乙醇的方法
CN102933536A (zh) 通过使纯化的乙酸进料流加氢生产乙醇的方法
CN103946199A (zh) 将乙酸酯化以生产用于氢解的酯进料
CN103038199A (zh) 气相粗醇产物的分离
CN103080052B (zh) 通过还原乙酸和蒸馏生产乙醇的方法
CN103119008A (zh) 由甲醇生产乙醇的整合方法
CN103119003A (zh) 由甲醇生产乙醇的整合方法
WO2013101304A1 (en) Process for producing ethanol from impure methanol
TW201313667A (zh) 生產乙醇之整合製程
TW201335121A (zh) 製造乙醇及水平衡控制之整合製程
US8614359B2 (en) Integrated acid and alcohol production process
CN103930392A (zh) 用于通过酯污染物的水解改善乙醇生产的方法
US8686201B2 (en) Integrated acid and alcohol production process having flashing to recover acid production catalyst
TW201307268A (zh) 純化乙醇粗產物之製程
WO2013070209A1 (en) Integrated carbonylation and hydrogenation process to obtain ethanol
TW201332950A (zh) 藉由乙酸萃取鹵化物的乙醇整合製程
WO2013070210A1 (en) Integrated carbonylation and hydrogenation process to obtain ethanol having flashing to recover acid production catalyst
TW201302683A (zh) 在醇類生產製程中藉由酯化在蒸餾塔內減少酸之製程
TW201311623A (zh) 增加乙醇產量之製程

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170623

Termination date: 20200314