CN105132895A - 一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法 - Google Patents

一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法 Download PDF

Info

Publication number
CN105132895A
CN105132895A CN201510606694.8A CN201510606694A CN105132895A CN 105132895 A CN105132895 A CN 105132895A CN 201510606694 A CN201510606694 A CN 201510606694A CN 105132895 A CN105132895 A CN 105132895A
Authority
CN
China
Prior art keywords
boron nitride
cubic boron
plating solution
nano cubic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510606694.8A
Other languages
English (en)
Other versions
CN105132895B (zh
Inventor
王丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funik Ultrahard Material Co Ltd
Original Assignee
Funik Ultrahard Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funik Ultrahard Material Co Ltd filed Critical Funik Ultrahard Material Co Ltd
Priority to CN201510606694.8A priority Critical patent/CN105132895B/zh
Publication of CN105132895A publication Critical patent/CN105132895A/zh
Application granted granted Critical
Publication of CN105132895B publication Critical patent/CN105132895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

本发明提供一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法。常规Ni-P化学镀液使用碘化钾作为单一的稳定剂,其稳定性在某些情况下有局限性。本发明通过碘化钾/甲烷磺酸锡复合稳定剂增加了Ni-P化学镀液的稳定性,减少了化学镀过程中细微粒子(如纳米粒子)对镀液稳定性的不良影响。利用上述Ni-P化学镀液制备了Ni-P纳米立方氮化硼复合镀层。通过该方法制备的复合镀层致密均匀,结合力好,硬度和耐磨性高,且具有优异的耐腐蚀性,延长了工件的使用寿命。

Description

一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法
技术领域
本发明属于化学镀覆领域,具体涉及一种Ni-P化学镀液,本发明还涉及一种Ni-P纳米立方氮化硼复合镀层的制备方法。
背景技术
化学镀Ni-P合金因其有优良的耐蚀性能、较高的耐磨性能以及某些特殊功能,在工业生产中获得了广泛应用。在化学镀液中加入硬粒子,使之与化学镀合金共沉积,可以获得各种具有不同物理化学性质复合镀层。
Ni-P纳米材料复合镀层能够显著改善材料的组织结构,赋予材料新的性能。例如纳米SiC、Si3N4、Al2O3、立方氮化硼复合的高硬度和耐磨镀层;纳米石墨、聚四氟乙烯、MOS2、(CF)n复合的自润滑镀层;纳米ZrO2复合的高温抗氧化、耐磨镀层;纳米TiO2复合的催化功能镀层以及抗菌镀层等。在纳米粒子复合镀层的研究中,由于纳米粒子具有很高的表面活性,极易团聚,且纳米微粒在化学镀过程中容易形成自催化活性中心,使镀液发生自催化反应,产生大量的Ni-P黑色粉末,造成镀液分解。上述原因导致Ni-P纳米材料复合镀过程中,镀液的稳定性差,制备的复合镀层往往具有气孔率高、表面粗糙等弊病。
化学镀液是一个热力学不稳定体系,工业化的Ni-P镀液中常有不可避免的胶粒和固体微粒存在,这些微粒可能是外来杂质或镀液中发生还原反应产生的亚磷酸镍沉淀。这些微粒由于表面活性大,催化反应容易发生,导致镍离子大量消耗,当微粒很多时,引起镀液分解。添加稳定剂是解决镀液分散的途径之一。当镀液中加入微量的稳定剂时,稳定剂优先与微粒吸附,抑制了微粒上的Ni-P共沉积反应,从而使镍磷共沉积反应只在被镀基体表面上发生。现有技术中,碘化钾常用作Ni-P化学镀液的稳定剂,但单一碘化钾的稳定作用有限,在加入细微粉体(如纳米粒子)时,往往会导致镀液失稳分解,影响化学镀生产的稳定进行。
发明内容
本发明的目的是提供一种Ni-P化学镀液,从而解决常规Ni-P化学镀液稳定性差的技术问题。
本发明的另一目的在于提供一种Ni-P纳米立方氮化硼复合镀层的制备方法,从而解决常规化学镀方法中存在的制备工艺繁琐,复合镀层表面粗糙,孔隙率高的问题。
为了实现以上目的,本发明所采用的技术方案是:
一种Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
本发明提供的Ni-P化学镀液,硫酸镍为镍盐,次亚磷酸钠为还原剂,柠檬三酸钠为络合剂,无水乙酸钠为缓冲剂,碘化钾和甲烷磺酸锡复合作为稳定剂。镍盐提供用于涂布沉积物的材料,还原剂将镍离子还原。镍盐与还原剂相互作用的结果,得到Ni-P覆层。甲烷磺酸锡具有较高的抗氧化变质能力,镀液中的甲基磺酸根离子与KI具有配合作用,能够细化晶粒,维护镀液的稳定性,故加入微量有助于镀液更加稳定。本发明通过碘化钾(KI)和甲烷磺酸锡作为复合稳定剂,可以极大程度的避免化学镀过程中活性微粒的产生,从而抑制镀液因自催化作用而分解。
本发明的Ni-P化学镀液可用于Ni-P纳米材料的复合镀工艺中,复合稳定剂与镀液中活性纳米微粒形成稳定吸附,可降低微粒的表面活性,抑制以微粒为核心的自催化反应发生,保持化学镀过程镀液稳定。
在上述Ni-P化学镀液的基本组分中,可以根据需要加入光亮剂和表面活性剂,两者在镀液中的浓度可根据需要确定,优选情况下光亮剂为0.0015~0.0025g/L,表面活性剂为8~12g/L。可使用的光亮剂和表面活性剂种类很多,优选情况下,光亮剂为硫酸铜,表面活性剂为十二烷基硫酸钠。
一种使用上述镀液的Ni-P纳米立方氮化硼复合镀层的制备方法,由以下步骤制备而成:
1)将镀液pH值调整为4.5~5.5,加热至80℃~90℃,在该温度下向镀液中加入基体和纳米立方氮化硼,搅拌1~1.5h;
2)取出基体,干燥,热处理。
步骤1)中,所述基体为金属基体。优选的,所述基体为铝合金基体。
步骤1)中,纳米立方氮化硼的粒度为3~60nm。
步骤1)中,纳米立方氮化硼的加入量为每升镀液4~10ml。搅拌的速度为300~400r/min。搅拌速度过高或立方氮化硼的浓度过高会导致纳米立方氮化硼团聚在基体表面,搅拌速度过低或纳米立方氮化硼的浓度过低则会导致纳米立方氮化硼在基体表面镀覆太少,从而影响镀层质量。
由于镀态时呈非晶态的镀层经热处理后发生晶化,镀层晶化后析出硬质相Ni3P,热处理温度升高,晶化相不断析出,硬度随之提高。但镀层经高于450℃的热处理后,晶化过程由以晶相析出为主转为以晶相长大为主,故当热处理温度达到450℃以上时,镀层硬度值反而下降;镀层的热处理温度低于350℃,硬质相的析出不充分,同样影响硬度值的提高。步骤2)热处理温度优选为350℃~450℃。热处理的时间为1h~2h。热处理过程可以加强镀层与基体的结合力,并使得纳米立方氮化硼在镀层中的分散更加细化均匀。
本发明提供的Ni-P纳米立方氮化硼复合镀层的制备方法通过先放置基体,后加入纳米立方氮化硼,其浓度逐渐升高,纳米立方氮化硼微粒首先在基体表面发生吸附,然后被还原析出的合金(或金属)埋没在镀层中,逐步形成复合镀层。化学镀工艺稳定进行,可以降低镀层的孔隙率;镀件经过热处理后,进一步减少了镀层缺陷,纳米粒子的分散趋于细化均匀。
通过上述方法制备的纳米立方氮化硼的复合镀层表面均匀致密,结合力好,硬度耐磨性高,且具有优异的耐腐蚀性,拓宽了超硬材料的应用领域。
附图说明
图1为本发明实施例4未进行热处理的复合镀层和基体的结构图;
图2为本发明实施例4经过热处理后的复合镀层和基体的结构图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例1
1.Ni-P化学镀液
本实施例的Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
2.Ni-P纳米立方氮化硼复合镀层的制备方法
本实施例Ni-P纳米立方氮化硼复合镀层的制备方法,包括以下步骤:
1)铝合金基体经过除油、清洗、酸洗除锈、清洗、弱酸活化等预处理工序后备用。将盛有本实施例镀液的容器放入水浴锅中加热到80℃,用H2SO4和氨水调节镀液的pH值为4.5;
2)将待镀基体悬挂在镀液中,加入纳米立方氮化硼,每升镀液加入量为4ml,化学镀期间搅拌速度保持300r/min;
3)1h后取出基体,晾干,对镀层进行热处理,热处理温度为350℃,热处理时间为1h。
实施例2
1.Ni-P化学镀液
本实施例的Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
2.Ni-P纳米立方氮化硼复合镀层的制备方法
本实施例Ni-P纳米立方氮化硼复合镀层的制备方法,包括以下步骤:
1)铝合金基体经过除油、清洗、酸洗除锈、清洗、弱酸活化等预处理工序后备用。将盛有本实施例镀液的容器放入水浴锅中加热到85℃,用H2SO4和氨水调节镀液的pH值为4.5;
2)将待镀基体悬挂在镀液中,加入纳米立方氮化硼,每升镀液加入量为4ml,化学镀期间搅拌速度保持350r/min;
3)1h后取出基体,晾干,对镀层进行热处理,热处理温度为350℃,热处理时间为1h。
实施例3
1.Ni-P化学镀液
本实施例的Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
2.Ni-P纳米立方氮化硼复合镀层的制备方法
本实施例Ni-P纳米立方氮化硼复合镀层的制备方法,包括以下步骤:
1)铝合金基体经过除油、清洗、酸洗除锈、清洗、弱酸活化等预处理工序后备用。将盛有本实施例镀液的容器放入水浴锅中加热到80℃,用H2SO4和氨水调节镀液的pH值为4.5;
2)将待镀基体悬挂在镀液中,加入纳米立方氮化硼,每升镀液加入量为7ml,化学镀期间搅拌速度保持300r/min;
3)1h后取出基体,晾干,对镀层进行热处理,热处理温度为350℃,热处理时间为1h。
实施例4
1.Ni-P化学镀液
本实施例的Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
2.Ni-P纳米立方氮化硼复合镀层的制备方法
本实施例Ni-P纳米立方氮化硼复合镀层的制备方法,包括以下步骤:
1)铝合金基体经过除油、清洗、酸洗除锈、清洗、弱酸活化等预处理工序后备用。将盛有本实施例镀液的容器放入水浴锅中加热到85℃,用H2SO4和氨水调节镀液的pH值为5;
2)将待镀基体悬挂在镀液中,加入纳米立方氮化硼,每升镀液加入量为7ml,化学镀期间搅拌速度保持350r/min;
3)1.2h后取出基体,晾干,对镀层进行热处理,热处理温度为400℃,热处理时间为1.5h。
实施例5
1.Ni-P化学镀液
本实施例的Ni-P化学镀液,1L化学镀液中包括以下重量份的组分:
2.Ni-P纳米立方氮化硼复合镀层的制备方法
本实施例Ni-P纳米立方氮化硼复合镀层的制备方法,包括以下步骤:
1)铝合金基体经过除油、清洗、酸洗除锈、清洗、弱酸活化等预处理工序后备用。将盛有本实施例镀液的容器放入水浴锅中加热到90℃,用H2SO4和氨水调节镀液的pH值为5.5;
2)将待镀基体悬挂在镀液中,加入纳米立方氮化硼,每升镀液加入量为10ml,化学镀期间搅拌速度保持400r/min;
3)1.5h后取出基体,晾干,对镀层进行热处理,热处理温度为450℃,热处理时间为2h。
对比例1
对比例1的Ni-P化学镀液组分不包含甲烷磺酸锡,其余组分与实施例1Ni-P化学镀液组分相同。
对比例1Ni-P纳米立方氮化硼复合镀层的制备方法同实施例1相同。
对比例1‵~5‵
对比例1‵~5‵的Ni-P化学镀液的各组分分别与实施例1~5化学镀液组分相同。对比例1‵~5‵的化学镀层的制备方法中,不加入纳米立方氮化硼且无热处理步骤,其余参数与实施例1~5复合镀层的制备方法相同。
对比例1‵‵~5‵‵
对比例1‵‵~5‵‵的Ni-P化学镀液的各组分分别与实施例1~5化学镀液组分相同。对比例1‵‵~5‵‵的化学镀层的制备方法中,不加入纳米立方氮化硼,其余参数与实施例1~5复合镀层的制备方法相同。
试验例1
本试验例对实施例1~5和对比例1的Ni-P化学镀液在化学镀过程中的稳定性进行观察。
实施例1~5的Ni-P化学镀液在整个化学镀过程中稳定不分解。对比例1的Ni-P化学镀液在加入纳米立方氮化硼后,化学镀进行30min左右,镀液产生大量黑色沉淀,镀液不能继续使用;取出镀件观察,镀层表面粗糙,出现局部团聚颗粒,与基体的结合力差,无保护作用。
试验例2
本试验例对实施例1~5的Ni-P纳米立方氮化硼复合镀层和对比例1‵~5‵的Ni-P化学镀层的硬度进行检测,结果如表1所示。
表1实施例1~5和对比例1‵~5‵复合镀层的硬度检测结果
序号 硬度/HV
实施例1 158
对比例1‵ 467
实施例2 165
对比例2‵ 475
实施例3 165
对比例3‵ 477
实施例4 215
对比例4‵ 503
实施例5 172
对比例5‵ 456
由表1的试验结果可知,加入纳米立方氮化硼并进行热处理后的镀层硬度大幅度提高,较原来提高2-3倍。
试验例3
利用蔡司金相显微镜观察本发明实施例4未进行热处理(图1)和进行热处理后(图2)的镀层和基体的结构图。由图1可知,复合镀层呈现非晶态单相结构,各组织均匀分布,不存在晶界、位错、层错等缺陷,故不易在腐蚀介质中形成微电池;同时,镀层和基体结合均匀致密;由图2可知,经热处理过程后,复合镀层内的缺陷进一步减少,镀层和基体的结合更趋于均一致密。
试验例4
本试验例对实施例1~5的Ni-P纳米立方氮化硼复合镀层进行耐腐蚀性试验。将实施例1~5的Ni-P纳米立方氮化硼复合镀层分别浸泡在w(NaCl)=3.5%的溶液中24h,w(NaOH)=10%的溶液中24h,w(HCl)=1.0%的溶液中24h,镀件表面无腐蚀现象。由于本发明复合镀层和基体结合均匀致密,腐蚀介质难以透过镀层浸蚀基体,故镀层耐腐蚀性极好。
试验例5
本试验例对实施例1~5的Ni-P纳米立方氮化硼复合镀层和对比例1‵‵~5‵‵的化学镀层进行耐磨性试验。试样的耐磨性通过体积磨损量来衡量,采用20倍读数显微镜测量磨痕宽度,每一磨痕测3次,取平均值,通过V=Bb3/12r来计算体积磨损,其中V-体积磨损,B-试样宽度10mm,b-磨痕宽度,r-试样半径。加载载荷3Kgf,磨损时间为40min。耐磨性试验结果如表2所示。
表2实施例1~5的Ni-P纳米立方氮化硼复合镀层的与对比例1‵‵~5‵‵的化学镀层耐磨性对比
序号 磨损损失/mm3 序号 磨损损失/mm3
实施例1 0.03896 对比例1‵‵ 0.04125
实施例2 0.03852 对比例2‵‵ 0.04021
实施例3 0.03813 对比例3‵‵ 0.04010
实施例4 0.00051 对比例4‵‵ 0.00202
实施例5 0.00154 对比例5‵‵ 0.02251
由表2可知,本发明提供的Ni-P纳米立方氮化硼复合镀层大幅度的提高了Ni-P镀层的耐磨性,在最优条件下耐磨性提高了近4倍。

Claims (9)

1.一种Ni-P化学镀液,其特征在于:1L化学镀液中包括以下重量份的组分:
2.根据权利要求1所述的Ni-P化学镀液,其特征在于:1L化学镀液中还包括以下重量份的组分:
光亮剂0.0015~0.0025g,
表面活性剂8~12g。
3.根据权利要求2所述的Ni-P化学镀液,其特征在于:光亮剂为硫酸铜,表面活性剂为十二烷基硫酸钠。
4.一种使用权利要求1或2或3所述Ni-P化学镀液的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:由以下步骤制备而成:
1)将镀液pH值调整为4.5~5.5,加热至80℃~90℃,在该温度下向镀液中加入基体和纳米立方氮化硼,搅拌1~1.5h;
2)取出基体,干燥,热处理。
5.根据权利要求4所述的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:步骤1)中,所述基体为金属基体。
6.根据权利要求4所述的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:步骤1)中,搅拌的速度为300~400r/min。
7.根据权利要求4所述的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:步骤1)中,纳米立方氮化硼的粒度为3~60nm。
8.根据权利要求4所述的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:步骤1)中,纳米立方氮化硼的加入量为每升镀液4~10ml。
9.根据权利要求4所述的Ni-P纳米立方氮化硼复合镀层的制备方法,其特征在于:步骤2)中,热处理温度为350℃~450℃,热处理时间为1~2h。
CN201510606694.8A 2015-09-22 2015-09-22 一种Ni‑P化学镀液及Ni‑P纳米立方氮化硼复合镀层的制备方法 Active CN105132895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510606694.8A CN105132895B (zh) 2015-09-22 2015-09-22 一种Ni‑P化学镀液及Ni‑P纳米立方氮化硼复合镀层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510606694.8A CN105132895B (zh) 2015-09-22 2015-09-22 一种Ni‑P化学镀液及Ni‑P纳米立方氮化硼复合镀层的制备方法

Publications (2)

Publication Number Publication Date
CN105132895A true CN105132895A (zh) 2015-12-09
CN105132895B CN105132895B (zh) 2017-09-22

Family

ID=54718457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510606694.8A Active CN105132895B (zh) 2015-09-22 2015-09-22 一种Ni‑P化学镀液及Ni‑P纳米立方氮化硼复合镀层的制备方法

Country Status (1)

Country Link
CN (1) CN105132895B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794517A (zh) * 2017-09-01 2018-03-13 永保纳米科技(深圳)有限公司 一种表面具有镍磷镀层的玻璃制造用模具及其制备方法
CN111455357A (zh) * 2020-04-02 2020-07-28 西京学院 一种高温稳定和高温自润滑化学共沉积复合镀层的制备方法
CN114016008A (zh) * 2021-10-27 2022-02-08 东北电力大学 一种化学镀Ni-P-PTFE-TiO2复合纳米镀层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301135A1 (de) * 2003-01-14 2004-07-29 AHC-Oberflächentechnik GmbH & Co. OHG Gegenstand mit einer Verschleißschutzschicht
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
CN101665930A (zh) * 2009-09-18 2010-03-10 重庆理工大学 镁合金直接化学镀Ni-P-SiC镀液配方及施镀工艺
CN102713003A (zh) * 2009-11-30 2012-10-03 诺沃皮尼奥内有限公司 无电镀Ni-复合材料的基材和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301135A1 (de) * 2003-01-14 2004-07-29 AHC-Oberflächentechnik GmbH & Co. OHG Gegenstand mit einer Verschleißschutzschicht
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
CN101665930A (zh) * 2009-09-18 2010-03-10 重庆理工大学 镁合金直接化学镀Ni-P-SiC镀液配方及施镀工艺
CN102713003A (zh) * 2009-11-30 2012-10-03 诺沃皮尼奥内有限公司 无电镀Ni-复合材料的基材和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794517A (zh) * 2017-09-01 2018-03-13 永保纳米科技(深圳)有限公司 一种表面具有镍磷镀层的玻璃制造用模具及其制备方法
CN111455357A (zh) * 2020-04-02 2020-07-28 西京学院 一种高温稳定和高温自润滑化学共沉积复合镀层的制备方法
CN114016008A (zh) * 2021-10-27 2022-02-08 东北电力大学 一种化学镀Ni-P-PTFE-TiO2复合纳米镀层及其制备方法
CN114016008B (zh) * 2021-10-27 2023-08-29 东北电力大学 一种化学镀Ni-P-PTFE-TiO2复合纳米镀层及其制备方法

Also Published As

Publication number Publication date
CN105132895B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Sudagar et al. The performance of surfactant on the surface characteristics of electroless nickel coating on magnesium alloy
CN105506526B (zh) 铝合金表面Ni-SiC复合镀层的制备方法及其电镀液
Akyol et al. A novel approach for wear and corrosion resistance in the electroless Ni-PW alloy with CNFs co-depositions
CN102534732B (zh) 脉冲电沉积Ni-Co-P/HBN复合镀层及其制备方法
US6156390A (en) Process for co-deposition with electroless nickel
Shu et al. Parameter optimization for electroless Ni–W–P coating
CN107923042A (zh) 金属镀层及其制备方法
Li et al. Synthesis of Ni–Co–ZrO2 nanocomposites doped with ceria particles via electrodeposition as highly protective coating
CN109097812A (zh) 一种三电极体系下电沉积Ni-Co/SiC纳米复合镀层的制备方法
JP2004537647A (ja) ニッケル、ホウ素および粒子を含有する塗料
CN102994991B (zh) 一种Ni-Cu-P-Ce合金镀层及制备工艺
CN105132895A (zh) 一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法
CN106245026A (zh) 一种在烧结钕铁硼磁体表面制备金属涂层的方法
CN105951062A (zh) 纳米碳化物增强Ni-W-P复合镀层及其施镀工艺
CN103266340A (zh) Ni-P-纳米金刚石粉复合耐磨镀层镀液及其应用
Faraji et al. Corrosion resistance of electroless Cu–P and Cu–P–SiC composite coatings in 3.5% NaCl
CN104334770A (zh) 含有铝改性胶态氧化硅的3价铬转化处理液
Faraji et al. Effect of SiC on the corrosion resistance of electroless Cu–P–SiC composite coating
Fayomi et al. Structural characterization and corrosion properties of electroless processed NiPMnO2 composite coatings on SAE 1015 steel for advanced applications
CA3092257C (en) Electroless plating of objects with carbon-based material
CN101967668A (zh) 用化学镀或电镀工艺制备Ni-P-UFD复合镀层的方法
WO2023015602A1 (zh) 一种Ni-W-WC复合镀层的原位合成方法
Wang et al. Preparation and characterization of Ni–P/Ni3. 1B composite alloy coatings
Ali et al. Optimization of electroless Ni-P, Ni-Cu-P and Ni-Cu-P-TiO2 nanocomposite coatings microhardness using Taguchi method
CN102443791B (zh) 一种镁合金化学镀镍锡磷合金溶液及其处理工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant