WO2023015602A1 - 一种Ni-W-WC复合镀层的原位合成方法 - Google Patents

一种Ni-W-WC复合镀层的原位合成方法 Download PDF

Info

Publication number
WO2023015602A1
WO2023015602A1 PCT/CN2021/113976 CN2021113976W WO2023015602A1 WO 2023015602 A1 WO2023015602 A1 WO 2023015602A1 CN 2021113976 W CN2021113976 W CN 2021113976W WO 2023015602 A1 WO2023015602 A1 WO 2023015602A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
electroplating
situ synthesis
synthesis method
solution
Prior art date
Application number
PCT/CN2021/113976
Other languages
English (en)
French (fr)
Inventor
王慧华
徐英君
盛施展
王德永
屈天鹏
田俊
侯栋
李向龙
胡绍岩
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/802,938 priority Critical patent/US11827995B2/en
Publication of WO2023015602A1 publication Critical patent/WO2023015602A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of metal surface engineering, in particular to an in-situ synthesis method of a Ni-W-WC composite coating.
  • Ni-W alloy coating combines the dual advantages of nickel and tungsten metals, and its corrosion resistance and wear resistance are significantly better than other nickel-based metal alloys. It can be used as surface coating materials for workpieces such as bearings, pistons, cylinders and oil pipelines. In addition, the Ni-W alloy coating has good corrosion resistance.
  • the neutral salt spray can reach 120h without discoloration, and the hardness is 600Hv. After 400°C, the hardness can reach 1000Hv after 2h heat treatment, which exceeds the hard chrome coating, so it has become an important Substitute chrome plating.
  • the hardness can reach 1000Hv after 2h heat treatment, which exceeds the hard chrome coating, so it has become an important Substitute chrome plating.
  • Ni-W alloy when the tungsten content in the alloy reaches more than 20%, the brittleness of the coating increases significantly, and the interface bonding force deteriorates sharply. Although the brittleness decreases after heat treatment, the interface bonding force cannot be fundamentally improved. In severe cases, the coating will peel off. Therefore, reducing the internal stress of the high-tungsten Ni-W alloy coating and improving the interface bonding force have become the focus of the current generation of chromium technology.
  • the composite plating technology is usually used, that is, a certain amount of micron-sized or nano-sized hard particles are added to the plating solution during the electroplating process, so that these hard particles are dispersed.
  • a composite coating is formed in the Ni-W alloy coating.
  • the hard particles selected for Ni-W composite coating include TiO 2 , ZrO 2 , diamond, silicon carbide, WC, Al 2 O 3 and so on. Among them, WC has become a more commonly used coating reinforcement particle because of its high hardness, excellent wear resistance, and high chemical stability.
  • WC can be well wetted by Co, Ni, Fe and other metals, so the use of WC as a particle reinforcement to prepare Ni-W composite coatings can improve the hardness and high temperature stability of the coatings.
  • Chinese patent CN101122043 describes a method for preparing a nano-tungsten carbide-nickel composite coating for hydraulic machinery. Nano-tungsten carbide powder is added to the electroplating solution, and the formed coating can be used for anti-corrosion and anti-wear component materials of hydraulic machinery.
  • the method has the characteristics of high powder utilization rate and low production cost, but WC particles are easy to agglomerate and wrap impurities in the plating solution, so WC particles are directly used as reinforcing particles to be compounded into the crystal phase of the coating structure, and there are often pores Defects with large rate and rough coating.
  • the document Effects of WC addition on structure and hardness of electrodeposited Ni-W (doi.org/10.1016/j.surfcoat.2009.05.027) introduces a Ni-W/WC composite coating prepared by adding WC particles. After research, it is found that Process parameters including current density, particle content, and particle size all affect the surface morphology of the coating and thus the apparent hardness of the co-deposit.
  • the present invention provides an in-situ synthesis method of Ni-W-WC composite coating.
  • the invention has the advantages of simple operation, high current efficiency, simple electroplating process, cleanness and no pollution, and meets environmental protection requirements.
  • a method for preparing an in-situ synthesized Ni-W-WC composite coating comprising the following steps: immersing a substrate to be plated in an electroplating solution for electroplating, so as to obtain a Ni-W-C alloy coating on the surface of the carbon steel substrate, and The alloy coating is subjected to high-temperature heat treatment to obtain the Ni-W-WC composite coating;
  • the electroplating solution includes the following components: nickel salt, tungstate, citric acid, citrate, recarburizer, and wetting agent.
  • the base material is a carbon steel base material.
  • the nickel salt is one or more of nickel sulfate, nickel sulfonate, and nickel chloride.
  • the tungstate is sodium tungstate.
  • the wax is one or more of 2-(4-pyridyl)ethanesulfonic acid, 2-pyridinesulfonic acid, 3-pyridinesulfonic acid and pyridinium propanesulfonate kind.
  • the wetting agent is one or more of XP-70, XP-80, XP-90, X-100 and X-114.
  • the concentration of components in the electroplating solution is: nickel salt 20-70g/L, tungstate 30-85g/L, citric acid 7-35g/L, citrate 10-70g /L, solvent 1-14g/L, wetting agent 0.5-9.5mL/L.
  • the electroplating solution is prepared by the following method: mixing nickel salt, tungstate, citric acid, citrate and nickel salt into water, stirring until dissolved to obtain a mixed solution, adding carburizing agent and wetting agent, and adjust the pH value of the obtained solution to 7.5-7.8 to obtain the electroplating solution.
  • the anode material is an iridium-tantalum alloy anode material
  • the cathode is a carbon steel substrate.
  • the cathode current density is 2-5A/dm 2 .
  • the C content in the Ni-W-C alloy obtained by electroplating is 7-12wt.%, and the W content is 35-45wt.%.
  • the heat treatment temperature of the Ni-W-WC composite coating is 700-1000° C., and the temperature is kept for 2 hours.
  • the thickness of the Ni-W-WC composite coating is 10-20 ⁇ m.
  • the electroplating solution of the present invention uses citrate and 1 as the carbon source, and by adjusting process parameters, the citrate and 1 decomposition intermediate products are adsorbed on the surface of the coating as much as possible, and are mixed in the coating during the electrodeposition process. Obtain Ni-W-C alloy coating.
  • the high tungsten Ni-W-C alloy coating is prepared by adding a recarburizer into the electroplating solution, and the W content in the coating reaches 35-45wt%, and the C content is 7-12wt%.
  • C inclusions in the coating can not only significantly reduce the internal stress of the Ni-W coating, but at the same time, due to its low solubility in the Ni-W alloy coating, most of them gather near the grain boundaries, while the tungsten atoms have a large atomic radius and have Or the tendency of phase boundaries to segregate strongly.
  • Ni-W-WC composite coating prepared by the present invention has nanocrystalline structure or amorphous structure, smooth surface, fine crystallization, uniform composition, fine grains, less defects, high hardness (1500-2000Hv), and high corrosion resistance , self-lubricating, strong interface bonding and other advantages.
  • the WC particles obtained by the present invention belong to in-situ synthesis, which can avoid the unfavorable factors of easy agglomeration of external WC particles in the traditional composite plating process, poor interface wettability, addition amount and size limitation, and at the same time, the Ni-W-C alloy coating with C inclusions has significantly less than The macroscopic stress of traditional Ni-W alloy coatings, especially for Ni-W alloy coatings with high tungsten content, these factors promote the Ni-W-WC composite coatings synthesized in situ to have more excellent mechanical properties.
  • Figure 1 shows the morphology and element composition of the coatings obtained in Example 2 of the present invention and Comparative Example 2, wherein (a) is the coating obtained without adding a wax in the electroplating solution, and (b) is the coating obtained by adding a wax to the electroplating solution The coating obtained.
  • Fig. 2 is the XPS full spectrum of the coating obtained in Example 2 of the present invention.
  • Fig. 3 is C 1s high-resolution analysis in the gained coating in the embodiment of the present invention 2.
  • Fig. 4 is the SEM spectrum of the coating morphology after heat treatment obtained in Example 2 of the present invention.
  • Fig. 5 is the XRD spectrum of the heat-treated coating obtained in Example 2 of the present invention.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Carbon steel substrate pretreatment 180#-240# corundum polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (8g/L sodium hydroxide , sodium silicate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65°C to chemically degrease, wash with 10% H 2 SO 4 acid wash for 10min and then wash with water to neutral;
  • degreasing reagent 8g/L sodium hydroxide , sodium silicate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 65°C
  • the cathode current density is 2A/dm 2
  • the electroplating time is 60min
  • a coating with a thickness of 10 ⁇ m is obtained
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 700 °C at a rate of 5 °C/min and kept for 3 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Substrate pretreatment 180#-240# emery polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (8g/L sodium hydroxide, silicon Sodium bicarbonate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65 °C chemical degreasing, after washing with 10% H 2 SO 4 pickling for 10min and then washing to medium sex;
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 67°C
  • the cathode current density is 3A/dm 2
  • the electroplating time is 50min
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 800 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Carbon steel substrate pretreatment 180#-240# corundum polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (sodium hydroxide is 8g/ L, sodium silicate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65°C for chemical degreasing, after washing with water , pickling with 10% H2SO4 for 10min Wash to neutral;
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 68°C
  • the cathode current density is 4A/dm 2
  • the electroplating time is 45min
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 900 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Carbon steel substrate pretreatment 180#-240# corundum polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (sodium hydroxide is 8g/ L, sodium silicate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65°C for chemical degreasing, after washing with water , pickling with 10% H2SO4 for 10min Wash to neutral;
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 900 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Substrate pretreatment use 180#-240# emery to polish the carbon steel substrate surface (10 ⁇ 10cm 2 ), wash with deionized water until neutral, and use 350mL degreasing reagent (sodium hydroxide is 8g/L, Sodium silicate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65 °C chemical degreasing, wash with 10% H 2 SO 4 pickling for 10min and then wash with water to neutral;
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 67°C
  • the cathode current density is 3A/dm 2
  • the electroplating time is 50min
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 800 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Substrate pretreatment 180#-240# emery polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (8g/L sodium hydroxide, silicon Sodium bicarbonate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65 °C chemical degreasing, after washing with 10% H 2 SO 4 pickling for 10min and then washing to medium sex;
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 800 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Substrate pretreatment 180#-240# emery polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (8g/L sodium hydroxide, silicon Sodium bicarbonate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65 °C chemical degreasing, after washing with 10% H 2 SO 4 pickling for 10min and then washing to medium sex;
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 67°C
  • the cathode current density is 3A/dm 2
  • the electroplating time is 50min
  • step (4) In-situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 600 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • a preparation method for in-situ synthesis of Ni-W-WC composite coating is:
  • Substrate pretreatment 180#-240# emery polished carbon steel substrate surface (10 ⁇ 10cm 2 ), washed with deionized water until neutral, and then used 350mL degreasing reagent (8g/L sodium hydroxide, silicon Sodium bicarbonate is 2g/L, sodium carbonate is 1.5g/L, sodium citrate is 0.5g/L mixture) at 65 °C chemical degreasing, after washing with 10% H 2 SO 4 pickling for 10min and then washing to medium sex;
  • Ni-WC alloy coating by electrodeposition electroplating the substrate obtained in step (2) in the electroplating solution after step (3), the specific electroplating conditions are: use iridium-tantalum alloy for the anode, and use pretreatment for the cathode
  • the temperature of the electroplating solution is maintained at 67°C
  • the cathode current density is 3A/dm 2
  • the electroplating time is 50min
  • step (4) In situ synthesis of Ni-W-WC composite coating: the coating obtained in step (4) was placed in an argon protective atmosphere furnace, and the temperature was raised to 1000 °C at a rate of 5 °C/min and kept for 2 h. Cool down to about 200°C with the furnace, and air-cool after taking out the furnace.
  • Ni-W-WC composite coating was synthesized in situ, and its test characteristics are as follows:
  • Example 2 The coating obtained in Example 2 was characterized, and the results are shown in Figures 1-4.
  • Figure 1 shows the SEM spectrum of the surface morphology and element composition of the coating. It can be seen that the addition of carburizer has no obvious effect on the surface morphology and W content of the coating, but can significantly change the C content in the coating.
  • the W content in the coating without carburizer is 40.5wt.%, and the C content is 2.7wt.%.
  • the W content in the coating with carburizer is 41.7wt.%, and the C content is 12wt.%.
  • Figure 2 shows that the carbon element in the obtained coating mainly exists in the form of C-C, indicating that there are a large number of organic inclusions in the coating.
  • Figure 3 shows the surface morphology of the Ni-W-C coating after heat treatment at 800 °C, in which the polygonal particles are tungsten carbide particles generated in situ, which are uniformly dispersed in the coating.
  • Figure 4 is the XRD analysis of the coating after heat treatment.
  • the peak marked by the triangle symbol is the peak of tungsten carbide.
  • the content of tungsten carbide in the obtained coating is 3-7wt.%, and the tungsten carbide is calculated by the Scherrer formula
  • the grain size is about 30-35nm, which is consistent with the WC particle size observed from the SEM spectrum, indicating that the Ni-W-WC composite coating was prepared in situ.
  • Ni-W-WC composite coatings can be synthesized in situ with the addition of carburizer and high temperature heat treatment (>700 °C), while no alcohol is added or the alcohol is added at low current density. Or the coatings with low heat treatment temperature ( ⁇ 600°C) did not see WC precipitation, indicating whether a recarburizer is added to the electroplating solution, and the current density and heat treatment temperature are all in-situ synthetic Ni-W-WC composite coatings. Necessary conditions for the process.
  • the preparation process of a kind of in-situ synthesis Ni-W-WC composite coating optimized by the present invention is: electroplating solution
  • the formula is NiSO 4 6H 2 O 40g/L, Na 2 WO 4 2H 2 O 50g/L, Na 3 C 6 H 5 O 7 2H 2 O 45g/L, C 6 H 8 O 7 20g/L, C 6 H 17 N 3 O 7 5g/L, 3-pyridinesulfonic acid 6g/L, X-1146mL/L; electrodeposition condition is 3A/cm 2 , time is 50min; coating heat treatment temperature is 800°C, treatment time is 2h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种Ni-W-WC复合镀层的原位合成方法,包括以下步骤:将待镀碳钢基材浸入电镀液中进行电镀,以在所述碳钢基材表面获得Ni-W-C合金镀层,并将该合金镀层进行高温热处理得到所述的Ni-W-WC复合镀层。所述电镀液包括以下组分:镍盐、钨酸盐、柠檬酸、柠檬酸盐、增碳剂、湿润剂。本方法操作简单、电流效率高,电镀工艺简单、清洁不污染,符合环保要求。

Description

一种Ni-W-WC复合镀层的原位合成方法 技术领域
本发明属于金属表面工程技术领域,尤其是指一种Ni-W-WC复合镀层的原位合成方法。
背景技术
随着表面工程技术的高速发展,具有特殊功能性的镀层受到日益关注。硬铬镀层具有高硬度、高耐蚀性特性,广泛用于表面工程领域,但其镀液危害巨大,且存在电镀能耗高、电流效率低等缺点,使得该技术逐渐被淘汰,取而代之是“环保型、经济型”的代铬镀层。Ni-W合金镀层结合了镍和钨金属的双重优势,其耐蚀和耐磨性明显优于其它镍基金属合金,可作为如轴承、活塞、汽缸和石油管道等工件表面镀层材料。此外,Ni-W合金镀层具有良好的耐蚀性能,如中性盐雾可达120h不变色,硬度600Hv,经过400℃,2h热处理硬度可达1000Hv,超过硬铬镀层,因此成为一种重要的代铬镀层。对于Ni-W合金而言,当合金中的钨含量达到20%以上,镀层脆性显著增加,界面结合力急剧变差,虽然经热处理后脆性有所下降,但界面结合力无法得到根本性改善,严重时还会出现镀层剥落,因此降低高钨Ni-W合金镀层内应力,改善界面结合力成为当前代铬工艺关注的热点。
为了进一步增加Ni-W合金镀层的硬度与耐磨性,通常使用复合镀技术,即在电镀过程中向镀液中添加一定量的微米级或纳米级硬质颗粒,使这些硬质颗粒弥散分布在Ni-W合金镀层中形成复合镀层。目前,Ni-W复合镀层选用的硬质颗粒有TiO 2、ZrO 2、金刚石、碳化硅、WC、Al 2O 3等。其中WC因具有高硬度、优异的耐磨性、高化学稳定性的特性而成为了较常用的镀层增强颗粒。研究表明WC能很好地被Co、Ni、Fe等金属润湿,因此采用WC作为颗粒增强剂制备Ni-W复合镀层可提高镀层硬度和高温稳定性。中 国专利CN101122043记载了一种用于水力机械的纳米碳化钨-镍复合涂层的制备方法,在电镀液中加入纳米碳化钨粉末,形成的镀层可用于水力机械的抗腐抗磨构件材料,此方法具有粉末利用率高、生产成本低的特点,但在镀液中容易产生WC颗粒团聚现象,且容易包裹杂质,因此采用WC颗粒直接作为增强颗粒复合到镀层组织晶相中,常常存在着孔隙率大、镀层粗糙的缺陷。文献Effects of WC addition on structure and hardness of electrodeposited Ni-W(doi.org/10.1016/j.surfcoat.2009.05.027)中介绍了一种通过添加WC颗粒制备Ni-W/WC复合镀层,经研究发现包括电流密度、颗粒含量和颗粒尺寸在内的工艺参数都会影响镀层表面形态,从而影响共沉积物的表观硬度。从文中可发现,通过向镀液中添加颗粒得到复合镀层的方法,该工艺范围窄,且镀层中WC的掺杂量低。因此,开发新型的Ni-W-WC复合镀层工艺有着重要的意义。
发明内容
为解决上述技术问题,本发明提供了一种Ni-W-WC复合镀层的原位合成方法。本发明操作简单、电流效率高,电镀工艺简单、清洁不污染,符合环保要求。
一种原位合成Ni-W-WC复合镀层的制备方法,包括以下步骤:将待镀基材浸入电镀液中进行电镀,以在所述碳钢基材表面获得Ni-W-C合金镀层,并将该合金镀层进行高温热处理得到所述的Ni-W-WC复合镀层;所述电镀液包括以下组分:镍盐、钨酸盐、柠檬酸、柠檬酸盐、增碳剂、湿润剂。所述基材为碳钢基材。
在本发明的一个实施例中,所述镍盐为硫酸镍、磺酸镍、氯化镍中一种或几种。
在本发明的一个实施例中,所述钨酸盐为钨酸钠。
在本发明的一个实施例中,所述增碳剂为2-(4-吡啶基)乙磺酸、2-吡啶磺酸、3-吡啶磺酸和丙烷磺酸吡啶盐中的一种或几种。
在本发明的一个实施例中,所述润湿剂为XP-70、XP-80、XP-90、X-100 和X-114中的一种或几种。
在本发明的一个实施例中,所述电镀液中组分浓度为:镍盐20-70g/L、钨酸盐30-85g/L、柠檬酸7-35g/L、柠檬酸盐10-70g/L、增碳剂1-14g/L、湿润剂0.5-9.5mL/L。
在本发明的一个实施例中,所述电镀液通过以下方法制备得到:将镍盐、钨酸盐、柠檬酸、柠檬酸盐和镍盐混合加入水中,搅拌至溶解得混合溶液,加入增碳剂、湿润剂混匀,并调节所得溶液pH值为7.5-7.8,得到所述电镀液。
在本发明的一个实施例中,所述电镀过程中,阳极材料为铱钽合金阳极材料,阴极为碳钢基材。
在本发明的一个实施例中,所述电镀过程中,阴极电流密度为2-5A/dm 2
在本发明的一个实施例中,电镀获得的Ni-W-C合金中的C含量为7-12wt.%,W含量为35-45wt.%。
在本发明的一个实施例中,所述的Ni-W-WC复合镀层的热处理温度为700-1000℃,保温2h。
在本发明的一个实施例中,所述Ni-W-WC复合镀层厚度为10-20μm。
本发明的上述技术方案相比现有技术具有以下优点:
本发明的电镀液以柠檬酸盐、增碳剂作为碳源,通过调整工艺参数促使柠檬酸盐、增碳剂分解中间产物尽可能吸附在镀层表面,并在电沉积过程中夹杂在镀层中,得到Ni-W-C合金镀层。
通过向电镀液中加入增碳剂电镀制备高钨Ni-W-C合金镀层,该镀层中W含量达到35-45wt%,C含量在7-12wt%。镀层中C夹杂不仅可显著降低Ni-W镀层内应力,同时由于其在Ni-W合金镀层中的溶解度较低,大多聚集在晶界附近,而钨原子的原子半径较大,具有向晶界或者相界强烈偏析的倾向。在一定温度下,当偏析的钨原子达到一定浓度后就会与晶界处的碳原 子发生反应,原位形成纳米级的WC颗粒,并在镀层中弥散分布,从而有效增强镀层的耐磨、耐蚀以及高温热稳定性。
本发明制备的Ni-W-WC复合镀层为纳米晶结构或非晶结构,表面平整、结晶细致、成分均匀、晶粒细小、缺陷较少、硬度高(1500-2000Hv),同时具有高耐蚀、自润滑、界面结合力强等优点。
本发明获得的WC颗粒属于原位合成,可避免传统复合镀工艺中外加WC粒子易团聚,界面润湿性差以及加入量及尺寸限制的不利因素,同时C夹杂的Ni-W-C合金镀层具有明显小于传统Ni-W合金镀层的宏观应力,尤其对于高钨含量的Ni-W合金镀层,这些因素促使原位合成的Ni-W-WC复合镀层具有更为优异的力学性能。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明实施例2和对比例2中所得镀层形貌与元素组成,其中(a)为电镀液中未添加增碳剂所获得的镀层,(b)为电镀液中添加增碳剂所获得的镀层。
图2是本发明实施例2中所得镀层XPS全图谱。
图3是本发明实施例2中所得镀层中C 1s高分辨分析。
图4是本发明实施例2中所得热处理后镀层形貌SEM图谱。
图5是本发明实施例2中所得热处理后镀层XRD图谱。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.5。电镀液组成如表1所示:
表1实施例1中电镀液组成
Figure PCTCN2021113976-appb-000001
(2)碳钢基体预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表1的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度65℃,阴极电流密度为1A/dm 2,电解处理10h。(对新配镀液进行预处理,用小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态)
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为65℃,阴极电流密度为2A/dm 2,电镀时间为60min,得到10μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=50:40:10。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至700℃并保温3h。随炉冷却至200℃左右,出炉空冷。
实施例2
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所
需体积,并用氨水调节溶液pH值到7.6。电镀液组成如表2所示:
表2实施例2中电镀液组成
Figure PCTCN2021113976-appb-000002
(2)基体预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表2的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度67℃,阴极电流密度为1A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为67℃,阴极电流密度为3A/dm 2,电镀时间为50min,得到15μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=46.3:41.7:12。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至800℃并保温2h。随炉冷却至200℃左右,出炉空冷。
实施例3
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.7。电镀液组成如表3所示:
表3实施例3中电镀液组成
Figure PCTCN2021113976-appb-000003
Figure PCTCN2021113976-appb-000004
(2)碳钢基材预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表3的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度68℃,阴极电流密度为1A/dm 2,电解处理10h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为68℃,阴极电流密度为4A/dm 2,电镀时间为45min,得到17μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=48.4:42.4:9.2。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)中获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至900℃并保温2h。随炉冷却至200℃左右,出炉空冷。
实施例4
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.8。电镀液组成如表4所示:
表4实施例4中电镀液组成
Figure PCTCN2021113976-appb-000005
(2)碳钢基材预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表4的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度70℃,阴极电流密度为1.2A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用碳钢阳极材料,电 镀液温度保持为70℃,阴极电流密度为5A/dm 2,电镀时间为40min,得到20μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=44.5:45:10.5
(5)原位合成Ni-W-WC复合镀层:将步骤(4)中获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至900℃并保温2h。随炉冷却至200℃左右,出炉空冷。
对比例1(未添加增碳剂)
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.6。电镀液组成如表5所示:
表5对比例1中电镀液组成
Figure PCTCN2021113976-appb-000006
(2)基体预处理:采用180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃ 化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表5的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度67℃,阴极电流密度为1A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为67℃,阴极电流密度为3A/dm 2,电镀时间为50min,得到15μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=56.8:40.5:2.7。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至800℃并保温2h。随炉冷却至200℃左右,出炉空冷。
对比例2(低电流密度电镀)
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.6。电镀液组成如表2所示。
(2)基体预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表2的电镀液加入到电镀槽中,用瓦 楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度67℃,阴极电流密度为1A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为67℃,阴极电流密度为1.5A/dm 2,电镀时间为60min,得到15μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=58.6:35:6.4。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至800℃并保温2h。随炉冷却至200℃左右,出炉空冷。
对比例3(600℃热处理)
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.6。电镀液组成如表2所示。
(2)基体预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表2的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度67℃,阴极电流密度为1A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤中(2)所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为67℃,阴极电流密度为3A/dm 2,电镀时间为50min,得到15μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=46.3:41.7:12。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至600℃并保温2h。随炉冷却至200℃左右,出炉空冷。
对比例4(1000℃热处理)
一种原位合成Ni-W-WC复合镀层的制备方法,具体工艺为:
(1)配制电镀液:在清洗的1#烧杯中加入300mL的去离子水,加热至65℃,加入一定质量的硫酸镍固体,搅拌至完全溶解。在2#烧杯中将300mL的去离子水加热至75℃,依次加入柠檬酸钠、柠檬酸、柠檬酸铵和钨酸钠,搅拌至完全溶解。将1#烧杯内液体缓慢加入到2#烧杯中,然后加入增碳剂和湿润剂,搅拌至完全溶解,最后加去离子水将2#烧杯溶液定容至所需体积,并用氨水调节溶液pH值到7.6。电镀液组成如表2所示。
(2)基体预处理:180#-240#金刚砂抛光碳钢基体表面(10×10cm 2),用去离子水水洗至中性后,使用350mL除油试剂(氢氧化钠为8g/L,硅酸钠为2g/L,碳酸钠为1.5g/L,柠檬酸钠为0.5g/L的混合液)在65℃化学除油,水洗后用10%H 2SO 4酸洗10min之后水洗至中性;
(3)小电流电解:取适量组成为表2的电镀液加入到电镀槽中,用瓦楞板铁板作为阴极,使用不锈钢作为阳极材料,采用恒压直流电源进行小电流电解,使新配镀液中的络合剂、添加剂快速进入最佳状态,电解时,控制温度67℃,阴极电流密度为1A/dm 2,电解处理12h。
(4)电沉积制备Ni-W-C合金镀层:将步骤(2)中所得基材在步骤(3)处理后的电镀液中进行电镀,具体电镀条件为:阳极使用铱钽合金,阴极使用预处理的碳钢基板,电镀液温度保持为67℃,阴极电流密度为3A/dm 2, 电镀时间为50min,得到15μm厚度的镀层,其中镀层中各元素质量比例约为Ni:W:C=46.3:41.7:12。
(5)原位合成Ni-W-WC复合镀层:将步骤(4)获得的镀层在氩气保护气氛炉中,以5℃/min的升温速度升至1000℃并保温2h。随炉冷却至200℃左右,出炉空冷。
测试例
原位合成Ni-W-WC复合镀层,其测试表征如下:
1,镀层表征
将实施例2所得镀层进行结果表征,结果见图1-图4。
其中,图1为镀层表面形貌SEM图谱和元素组成,可以看出,添加增碳剂对镀层的表面形貌及W含量没有明显影响,但可以显著改变镀层中的C含量。未添加增碳剂的镀层中W含量为40.5wt.%,C含量为2.7wt.%;添加增碳剂的镀层中W含量为41.7wt.%,C含量为12wt.%。
图2显示了所得镀层中的碳元素主要以C-C形式存在,说明镀层中有大量的有机物夹杂。
图3为Ni-W-C镀层通过800℃热处理后的表面形貌,其中多边形颗粒为原位生成的碳化钨颗粒,其均匀弥散分布在镀层中。
图4为镀层经热处理后的XRD分析,其中三角形符号标注的峰为碳化钨的峰,通过对峰强度的分析,所得镀层中碳化钨含量为3-7wt.%,由谢乐公式计算碳化钨晶粒尺寸约为30-35nm,与从SEM图谱中观察到的WC颗粒尺寸保持一致,说明原位制备了Ni-W-WC复合镀层。
2,硬度测试
将实施例1-4和对比例1-4中所得镀层进行硬度检测,实验结果见表6。
表6
Figure PCTCN2021113976-appb-000007
*经1000℃热处理后的镀层元素分布不均匀,各区域硬度差异大,说明热处理温度过高。
从表6可以看出,添加增碳剂并经高温热处理(>700℃)均可以原位合成Ni-W-WC复合镀层,而未添加增碳剂或添加增碳剂在低电流密度下沉积或热处理温度较低(≤600℃)的镀层均未见WC析出,说明电镀液中是否添加增碳剂,以及电流密度与热处理温度均为一种原位合成Ni-W-WC复合镀层的制备工艺的必要条件。综合电沉积条件以及热处理温度对最终性能的影响规律,本着减能耗、耗时短的原则,本发明优选出的一种原位合成Ni-W-WC复合镀层的制备工艺为:电镀液配方为NiSO 4·6H 2O 40g/L,Na 2WO 4·2H 2O 50g/L,Na 3C 6H 5O 7·2H 2O 45g/L,C 6H 8O 720g/L,C 6H 17N 3O 75g/L,3-吡啶磺酸6g/L,X-1146mL/L;电沉积条件为3A/cm 2,时间为50min;镀层热处理温度为800℃,处理时间为2h。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种Ni-W-WC复合镀层的原位合成方法,其特征在于,包括以下步骤:将待镀基材浸入电镀液中进行电镀,以在所述基材表面获得Ni-W-C合金镀层,并将所述合金镀层进行热处理得到所述的Ni-W-WC复合镀层;所述电镀液包括以下组分:镍盐、钨酸盐、柠檬酸、柠檬酸盐、增碳剂、湿润剂。
  2. 根据权利要求1所述的原位合成方法,其特征在于,所述镍盐为硫酸镍、磺酸镍和氯化镍中一种或几种。
  3. 根据权利要求1所述的原位合成方法,其特征在于,所述钨酸盐为钨酸钠。
  4. 根据权利要求1所述的原位合成方法,其特征在于,所述增碳剂为2-(4-吡啶基)乙磺酸、2-吡啶磺酸、3-吡啶磺酸和丙烷磺酸吡啶盐中的一种或几种。
  5. 根据权利要求1所述的原位合成方法,其特征在于,所述电镀液中各组分浓度为:镍盐20-70g/L、钨酸盐30-85g/L、柠檬酸7-35g/L、柠檬酸盐10-70g/L、增碳剂1-14g/L、湿润剂0.5-9.5mL/L。
  6. 根据权利要求1所述的原位合成方法,其特征在于,所述电镀液通过以下方法制备得到:将镍盐、钨酸盐、柠檬酸、柠檬酸盐和镍盐混合加入水中,搅拌至溶解得混合溶液,加入增碳剂、湿润剂混匀,并调节所得溶液pH值为7.5-7.8,得到所述电镀液。
  7. 根据权利要求1所述的原位合成方法,其特征在于,所述电镀过程中,阴极电流密度为2-5A/dm 2
  8. 根据权利要求1所述的原位合成方法,其特征在于,所述Ni-W-C合金镀层中的C含量为7-12wt.%,W含量为35-45wt.%。
  9. 根据权利要求1所述的原位合成方法,其特征在于,所述Ni-W-C合金镀层的热处理的温度为700-1000℃。
  10. 根据权利要求1所述的原位合成方法,其特征在于,所述Ni-W-WC复合镀层厚度为10-20μm。
PCT/CN2021/113976 2021-08-13 2021-08-23 一种Ni-W-WC复合镀层的原位合成方法 WO2023015602A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/802,938 US11827995B2 (en) 2021-08-13 2021-08-23 In-situ method for synthesizing Ni—w—Wc composite coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110929904.2 2021-08-13
CN202110929904.2A CN113755916B (zh) 2021-08-13 2021-08-13 一种Ni-W-WC复合镀层的原位合成方法

Publications (1)

Publication Number Publication Date
WO2023015602A1 true WO2023015602A1 (zh) 2023-02-16

Family

ID=78789275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113976 WO2023015602A1 (zh) 2021-08-13 2021-08-23 一种Ni-W-WC复合镀层的原位合成方法

Country Status (3)

Country Link
US (1) US11827995B2 (zh)
CN (1) CN113755916B (zh)
WO (1) WO2023015602A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074729A (zh) * 2022-06-07 2022-09-20 国网福建省电力有限公司 一种高热硬性Ni-W基高硬陶瓷相复合镀层及其制备方法
CN115787012A (zh) * 2022-11-29 2023-03-14 苏州大学 一种低应力、自润滑高钨Ni-W合金镀层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892627A (en) * 1989-02-18 1990-01-09 Takada Laboratories, Inc. Method of nickel-tungsten-silicon carbide composite plating
CN1074493A (zh) * 1992-10-29 1993-07-21 昆明冶金研究所 一种复合镀层电镀方法
US6699379B1 (en) * 2002-11-25 2004-03-02 Industrial Technology Research Institute Method for reducing stress in nickel-based alloy plating
JP2006104574A (ja) * 2004-09-13 2006-04-20 Kogane Mekki Kojo:Kk ニッケル−タングステン合金めっき液及びニッケル−タングステン合金めっき皮膜の形成方法
CN112030213A (zh) * 2020-08-14 2020-12-04 北京科技大学 一种耐磨超疏水镍钨/碳化钨复合镀层及其制备方法
CN112111765A (zh) * 2020-09-25 2020-12-22 苏州大学 镍钨合金镀层的形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714136B (zh) * 2014-12-03 2018-09-18 青岛惠纳耐磨材料有限公司 一种耐磨合金柱的原位冶金制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892627A (en) * 1989-02-18 1990-01-09 Takada Laboratories, Inc. Method of nickel-tungsten-silicon carbide composite plating
CN1074493A (zh) * 1992-10-29 1993-07-21 昆明冶金研究所 一种复合镀层电镀方法
US6699379B1 (en) * 2002-11-25 2004-03-02 Industrial Technology Research Institute Method for reducing stress in nickel-based alloy plating
JP2006104574A (ja) * 2004-09-13 2006-04-20 Kogane Mekki Kojo:Kk ニッケル−タングステン合金めっき液及びニッケル−タングステン合金めっき皮膜の形成方法
CN112030213A (zh) * 2020-08-14 2020-12-04 北京科技大学 一种耐磨超疏水镍钨/碳化钨复合镀层及其制备方法
CN112111765A (zh) * 2020-09-25 2020-12-22 苏州大学 镍钨合金镀层的形成方法

Also Published As

Publication number Publication date
US11827995B2 (en) 2023-11-28
CN113755916A (zh) 2021-12-07
US20230279573A1 (en) 2023-09-07
CN113755916B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Li et al. Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor
WO2023015602A1 (zh) 一种Ni-W-WC复合镀层的原位合成方法
Yan et al. Microstructure and wear resistance of electrodeposited Ni-SiO2 nano-composite coatings on AZ91HP magnesium alloy substrate
CN109628983B (zh) 一种金属-石墨烯复合电镀材料的制备方法
Ma et al. Electrodeposition and characterization of Co-W alloy from regenerated tungsten salt
Ünal et al. Effects of ultrasonic agitation prior to deposition and additives in the bath on electrodeposited Ni-B/hBN composite coatings
CN102534732B (zh) 脉冲电沉积Ni-Co-P/HBN复合镀层及其制备方法
CN105714360B (zh) 碱性石墨烯‑镍电镀液、其制备方法及应用
Jiang et al. Microhardness, wear, and corrosion resistance of Ni–SiC composite coating with magnetic-field-assisted jet electrodeposition
CN104451829A (zh) 一种镍-铁-磷/纳米v8c7复合电镀液
CN108130570A (zh) 一种复合三价电镀铬工艺
Zhang et al. Influence of electrodeposition conditions on the microstructure and hardness of Ni-B/SiC nanocomposite coatings
CN111607817A (zh) 一种铁族元素和钨的合金与碳化硅复合镀层及其制备方法与应用
CN109852952A (zh) 一种水合肼化学镀镍镀液及其制备方法和镀镍方法
Wen et al. Electrodeposition of NiMo alloys and composite coatings: A review and future directions
Kang et al. A protocol for fast electroless Ni-P on Al alloy at medium-low temperature accelerated by hierarchically structured Cu immersion layer
CN102337569B (zh) 一种钴-钨纳米合金镀层及其制备方法
Zhang et al. Electrodeposition and wear behavior of NiCoW ternary alloy coatings reinforced by Al2O3 nanoparticles: Influence of current density and electrolyte composition
CN111334827A (zh) 一种超声波辅助纳米氧化铈掺杂Ni-W-TiN复合镀层及其制备方法
CN113502518B (zh) 一种耐磨损铝合金复合材料
CN109943872A (zh) 一种用于熔融氟化盐中含Cr不锈钢防护的复合涂层的制备方法
CN104313656A (zh) 镍-钨-碳化硅-氧化铝复合电镀液及其制备方法和应用
CN101967668A (zh) 用化学镀或电镀工艺制备Ni-P-UFD复合镀层的方法
CN112322938B (zh) 一种基于增材制造的镍基复合材料、制备方法及其成形方法
Zeng et al. A review of recent patents on trivalent chromium plating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953213

Country of ref document: EP

Kind code of ref document: A1