CN105111407A - 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用 - Google Patents

一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用 Download PDF

Info

Publication number
CN105111407A
CN105111407A CN201510585505.3A CN201510585505A CN105111407A CN 105111407 A CN105111407 A CN 105111407A CN 201510585505 A CN201510585505 A CN 201510585505A CN 105111407 A CN105111407 A CN 105111407A
Authority
CN
China
Prior art keywords
graphene
polyurethane
pollution
degradable
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510585505.3A
Other languages
English (en)
Other versions
CN105111407B (zh
Inventor
欧宝立
黄饶
李政峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201510585505.3A priority Critical patent/CN105111407B/zh
Publication of CN105111407A publication Critical patent/CN105111407A/zh
Application granted granted Critical
Publication of CN105111407B publication Critical patent/CN105111407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8019Masked aromatic polyisocyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/428Lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开一种可降解海洋防污聚氨酯杂化材料的制备方法及其产品。本发明采用辛酸亚锡为催化剂,利用还原石墨烯与2,2’-双羟基苯甲醛和N-氨基乙酸反应制备的双羟基功能化石墨烯作为引发剂,以此引发剂引发L-丙交酯单体通过开环聚合制备石墨烯接枝聚乳酸;将1,4-丁二醇与4,4’-二苯基甲烷二异氰酸酯通过缩聚反应得到末端含异氰酸酯官能团的聚氨酯预聚物;利用石墨烯接枝聚乳酸端羟基与聚氨酯预聚物末端异氰酸酯官能团之间的化学反应制备出可降解海洋防污聚氨酯杂化材料。本发明通过引入石墨烯以提高目标材料的强度,并在降解过程中起到抗菌作用,通过调节石墨烯和L-丙交酯单体的含量,以控制接枝聚丙交酯的结晶性和亲/疏水性,从而对聚氨酯的降解性能进行有效调控。本发明所制备的杂化材料具有优异的力学性能及降解速率可调,降解产物无毒且对环境无害,可应用于海洋防污涂料以及生物医用工程中药物缓释载体。

Description

一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用
技术领域
本发明属于海洋防污材料技术领域,涉及一种可降解聚氨酯杂化材料的制备及其应用。
背景技术
石墨烯(G)是一种新型二维碳质纳米材料,在材料、化学、物理、电子等领域显示了广阔的应用前景。尤其是其极高的机械强度和抗菌功能以及丰富的来源,使其成为一种理想的填料。通过在基体材料中填充石墨烯可以提高基体材料的强度,还可以赋予基体材料一定功能。有研究表明石墨烯具有优异的抗菌功能,如FrancoisPerreault等采用聚酰胺薄膜与氧化石墨烯的共价结合制备的功能化聚酰胺/氧化石墨烯复合膜,抗菌性能检测显示此种复合材料具有优异的抗菌活性。(FrancoisPerreault,MarissaE.Tousley,MenachemElimelech.Thin-filmcompositepolyamidemembranesfunctionalizedwithbiocidalgrapheneoxidenanosheets.EnvironmentalScienceandTechnologyLetters,2014,1(1),71-76.)因此,在可降解聚氨酯杂化材料中填充入一定量的石墨烯能提高材料的强度和抗菌性。
聚氨酯材料以其优异的机械性能和分子设计自由度大、性能可调控等特点,广泛的应用于各个领域。对聚氨酯进行改性可使其具有可降解功能,这种改性一般可分为物理改性和化学改性。物理改性是利用物理共混的方式将可降解的材料引入聚氨酯中;化学改性是通过在聚氨酯分子结构中引入具有生物可降解性的改性组分使其具有生物降解性。KaibinLi等利用异佛尔酮二异氰酸酯(IPDI)、聚己内酯(PCL)和二羟甲基丁酸为主体材料制备的基于蓖麻油(CO)/季戊四醇三丙烯酸酯(PETA)的紫外固化水性聚氨酯甲基丙烯酸酯(UV-WPUA),结构和性能表征表明,聚氨酯软段抗水性、玻璃化转变温度和热学性能有所提高。(KaibinLi,YidingShen,GuiqiangFei,HaihuaWang,JingyiLi.Preparationandpropertiesofcastoroil/pentaerythritoltriacrylate-basedUVcurablewaterbornepolyurethaneacrylate.ProgressinOrganicCoatings,2015,78,146–154.)聚乳酸因具有生物相容性和可降解性,可应用于各种领域,如热塑性塑料、薄膜及纤维。通过嵌段、接枝、共聚等方法对其进行改性可以形成一种可再生、可降解的环境友好型复合材料。如YoungH.Lim等人利用炔基化磷杂环戊烷和L-丙交酯的一步法连续开环聚合反应制备的聚磷酸酯嵌段聚乳酸材料具有完全可降解性和生物相容性。(YoungH.Lim,GyuSeongHeo,SanghoCho,KarenL.Wooley.Constructionofareactivediblockcopolymer,polyphosphoesterblock-poly(L-lactide),asaversatileframeworkforfunctionalmaterialsthatarecapableoffulldegradationandnanoscopicassemblyformation.ACSMacroLett.2013,2,785-789.)常见生物降解聚氨酯材料有聚己内酯(PCL)、聚乳酸(PLA)等,但目前大多数存在结晶高、水解速度慢、对基体的粘附力差等问题,它们直接用于海洋防污材料受到限制。
发明内容
本发明的目的是提供一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用。该方法以辛酸亚锡为催化剂,采用双羟基功能化石墨烯为引发剂引发L-丙交酯通过开环聚合制备石墨烯接枝聚丙交酯(G-g-PLLA);将1,4-丁二醇与4,4’-二苯基甲烷二异氰酸酯通过缩聚反应得到末端含异氰酸酯官能团的聚氨酯预聚物(PU);利用石墨烯接枝聚乳酸端羟基与聚氨酯预聚物末端异氰酸酯官能团之间的化学反应制备出可降解海洋防污聚氨酯杂化材料(G-f-PLLA-b-PU)。
本发明采用的技术方案为:
一种可降解海洋防污聚氨酯杂化材料的制备方法,包括如下步骤:
(1)将干燥好的鳞片石墨加入到硝酸钾和浓酸的混合物中,超声混合均匀,冰水浴中搅拌并缓慢加入氧化剂,然后体系升温至35~55℃,高速搅拌5~8h;再缓慢加入蒸馏水,体系升温至60~80℃反应0.4~1h;再向体系中加入蒸馏水和双氧水继续反应5~15min,得到亮黄色的氧化石墨烯母液,蒸馏水离心洗涤至中性(pH=7),得到纯净的氧化石墨烯,再向其加入分散剂,超声混合均匀,得到氧化石墨烯凝胶;
(2)取步骤(1)所得氧化石墨烯凝胶制成一定浓度的氧化石墨烯水悬浮液,搅拌下加入还原剂,70~100℃水浴中回流5~8h,反应完成后冷却至室温,过滤,无水乙醇洗涤,烘干后得到还原石墨烯;
(3)取一定量还原石墨烯、2,2’-双羟基苯甲醛、N-氨基乙酸加入到二甲基甲酰胺中,超声处理10~25min均匀分散,在100~140℃的油浴中搅拌回流4.5~6.5天,趁热离心,无水乙醇反复洗涤,烘干后得到双羟基功能化石墨烯;
(4)在无水甲苯中依次加入双羟基功能化石墨烯、L-丙交酯(LLA)、催化剂辛酸亚锡(Sn(Oct)2),超声处理10~25min混合均匀,N2保护下在100~140℃下搅拌回流24~48h,反应混合物冷却至室温,过滤,粗产物溶于甲醇中,溶液再加入到混有少量浓盐酸的甲醇溶液中除去锡残留物,过滤,分别用二氯甲烷、甲醇洗涤,过滤,产物经真空干燥,得到石墨烯接枝聚丙交酯;
(5)取一定量的扩链剂1,4-丁二醇和4,4’-二苯基甲烷二异氰酸酯加入到无水甲苯中,搅拌溶解,N2保护下使体系升温至80~110℃,反应8~15h,然后加入步骤(4)所得石墨烯接枝聚丙交酯在70~100℃下反应1.5~3h,结束反应后,将温度降至室温,将溶液滴加到100mL正己烷中沉淀,过滤,产物经真空干燥,得可降解海洋防污聚氨酯杂化材料。
进一步,步骤(1)中,所述鳞片石墨与硝酸钾和浓酸的混合物、氧化剂、双氧水、分散剂的配比为1.0g:1.2g:46mL:6.0g:6mL:0.5g。
进一步,步骤(2)中,所述还原剂为水合肼,所述氧化石墨烯与还原剂的配比为5.0g:80mL。
进一步,步骤(3)中,所述还原石墨烯、2,2’-双羟基苯甲醛、N-氨基乙酸、二甲基甲酰胺的配比为0.02g:0.2g:0.2g:50mL。
进一步,步骤(4)中,所述双羟基功能化石墨烯、L-丙交酯、辛酸亚锡和无水甲苯的配比为0.083-0.174g:2.0g:0.5-1.5mL:50-70mL。
进一步,步骤(5)中,所述石墨烯接枝聚丙交酯、4,4’-二苯基甲烷二异氰酸酯和1,4-丁二醇和无水甲苯的配比为0.13-0.51g:1.0g:0.2g:60-80mL。
上述的制备方法制备的可降解聚氨酯杂化材料可应用于海洋防污材料和生物医用工程中药物缓释载体中。
本发明的有益效果在于:
1、本发明以双羟基功能化石墨烯通过开环聚合引发LLA单体形成石墨烯接枝聚乳酸,然后将1,4-丁二醇与4,4’-二苯基甲烷二异氰酸酯通过缩聚反应得到末端含异氰酸酯官能团的聚氨酯预聚物;最后利用石墨烯接枝聚乳酸端羟基与聚氨酯预聚物末端异氰酸酯官能团之间的化学反应制备出可降解海洋防污聚氨酯杂化材料。可降解海洋防污聚氨酯杂化材料通过在海水中不断降解形成新的表面,使粘附在涂料上的污损及时脱落,从而达到防污作用。
2、将石墨烯引入到聚合物中以增强基体材料机械强度,并在降解过程中起到抗菌作用。
3、通过调节石墨烯和LLA的质量配比制备一系列不同石墨烯含量的石墨烯接枝聚乳酸,以控制接枝PLLA的结晶性和亲/疏水性,从而对聚氨酯的降解性能进行有效调控。
4、本发明所制备的聚氨酯杂化材料具有优异的力学性能及降解速率可调,降解产物无毒且对环境无害。
附图说明
图1为实施例1制备石墨烯接枝聚丙交酯(G-g-PLLA)的反应示意图。
图2为实施例1制备聚氨酯预聚物(PU)的反应示意图。
图3为实施例1制备石墨烯接枝聚丙交酯嵌段聚氨酯(G-g-PLLA-b-PU)的反应示意图。
图4为实施例1所得石墨烯接枝聚丙交酯(G-g-PLLA)的红外图谱。
图5为实施例1所得石墨烯接枝聚丙交酯嵌段聚氨酯(G-g-PLLA-b-PU)的红外图谱。
图6为实施例1所得G-g-PLLA和G-g-PLLA-b-PU的热失重对比曲线图。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明,但本发明并不限于此。
实施例1
一种可降解海洋防污聚氨酯杂化材料的制备方法,按照以下步骤进行:
(1)将1.0g干燥好的鳞片石墨加入到1.2g硝酸钾和46mL浓硫酸的混合物中,超声混合均匀,冰水浴中搅拌并缓慢加入6.0g高锰酸钾,随之体系温度升至40℃,高速搅拌6h;随之缓慢加入蒸馏水,体系升温至70℃反应0.5h;再向体系中加入80mL蒸馏水和6mL双氧水)继续反应5min,得到亮黄色的氧化石墨烯母液,蒸馏水离心洗涤pH=7,得到纯净的氧化石墨烯,在其中加入0.5g十二烷基苯磺酸钠,超声混合均匀,得到氧化石墨烯凝胶;
(2)取3.0g氧化石墨烯凝胶配成质量浓度为70%的氧化石墨烯水悬浮液于三口瓶中,剧烈搅拌下加入80mL水合肼,80℃水浴中回流6h,反应完成后冷却至室温,过滤,无水乙醇多次洗涤,烘干后得到纯净的还原石墨烯;
(3)取0.02g还原石墨烯、0.2g2,2’-双羟基苯甲醛、0.2gN-氨基乙酸加入到50mL二甲基甲酰胺中,超声处理15min均匀分散,在120℃的油浴中搅拌回流5天,趁热离心,无水乙醇反复洗涤,烘干后得到双羟基功能化石墨烯;
(4)取50mL无水甲苯于烧瓶中,依次加入双羟基功能化石墨烯0.04g、LLA单体2.0g、催化剂辛酸亚锡0.5mL,超声处理15min混合均匀,N2保护下在120℃下搅拌回流24h。反应混合物冷却至室温,过滤,粗产物溶于甲醇中,溶液再加入到混有少量浓盐酸的甲醇溶液中除去Sn残留物,过滤,分别用二氯甲烷、甲醇洗涤,过滤,产物在真空条件下干燥。
(5)取0.2g扩链剂1,4-丁二醇(BDO)和1.0g4,4’-二苯基甲烷二异氰酸酯加入到60mL无水甲苯,搅拌溶解,N2保护下使体系升温至90℃,反应10h,然后加入0.13g步骤(4)所得石墨烯接枝聚丙交酯在80℃下反应2h,结束反应后,将温度降至室温,将溶液滴加到100mL正己烷中沉淀,过滤,产物在真空条件下干燥。
如图4所示,处于3397cm-1处的吸收峰,这是G-g-PLLA两端羟基(-OH)的特征吸收峰。处于2970cm-1和2930cm-1处的吸收峰分别为CH3和CH2的伸缩振动吸收峰,1600cm-1处明显的吸收峰为羰基(C=O)的特征吸收峰。可以看出,已成功合成所需的物质。在图4中观测到的处于3397cm-1处的吸收峰消失,而在图5观测到在3300处有一个新的吸收峰出现,这是聚氨酯中NH的特征吸收峰。同时在1540cm-1处都出现一个强的吸收峰,这是氨基甲酸酯的特征吸收峰。可以看出,已成功合成聚氨酯。
从图6可以看出,所有物质在100℃前失重较少,大约为10%,这是吸附水和有机溶剂造成的失重;在40-800℃之间,由曲线a可算出石墨烯接枝聚丙交酯(G-g-PLLA)失重了56.1%,由曲线b可算出石墨烯接枝聚丙交酯嵌段聚氨酯(G-g-PLLA-b-PU)失重了88.1%,根据TGA数据可知,PU枝接量为32wt%。
实施例2
步骤(4)中双羟基功能化石墨烯为0.083g,辛酸亚锡为1.0mL,无水甲苯为60mL;
其它与实施例1相同。
实施例3
步骤(4)中双羟基功能化石墨烯为0.174g,辛酸亚锡为1.5mL,无水甲苯为70mL;
其它与实施例1相同。
实施例4
步骤(4)中1,4-丁二醇代替双羟基功能化石墨烯引发LLA单体,质量为0.5g,无水甲苯为50mL;
其它与实施例1相同。
实施例5
步骤(5)中石墨烯接枝聚丙交酯为0.30g,无水甲苯为70mL;
其它与实施例1相同。
实施例6
步骤(5)中石墨烯接枝聚丙交酯为0.51g,无水甲苯为80mL;
其它与实施例1相同。
实施例7
步骤(5)中石墨烯接枝聚丙交酯为0.30g,无水甲苯为70mL;
其它与实施例2相同。
实施例8
步骤(5)中石墨烯接枝聚丙交酯为0.51g,无水甲苯为80mL;
其它与实施例2相同。
实施例9
步骤(5)中石墨烯接枝聚丙交酯为0.30g,无水甲苯为70mL;
其它与实施例3相同。
实施例10
步骤(5)中石墨烯接枝聚丙交酯为0.51g,无水甲苯为80mL;
其它与实施例3相同。

Claims (8)

1.一种可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于包括如下步骤:
(1)将干燥好的鳞片石墨加入到硝酸钾和浓酸的混合物中,超声混合均匀,冰水浴中搅拌并缓慢加入氧化剂,然后体系升温至34~55℃,高速搅拌5~8h;再缓慢加入蒸馏水,体系升温至60~80℃反应0.4~1h;再向体系中加入蒸馏水和双氧水继续反应5~15min,得到亮黄色的氧化石墨烯母液,蒸馏水离心洗涤至中性,得到氧化石墨烯,在其中加入分散剂,超声混合均匀,得到氧化石墨烯凝胶;
(2)取步骤(1)所得氧化石墨烯凝胶制成氧化石墨烯水悬浮液,搅拌下加入还原剂,70~100℃水浴中回流5~8h,反应完成后冷却至室温,过滤,无水乙醇洗涤,烘干后得到还原石墨烯;
(3)取一定量还原石墨烯、2,2’-双羟基苯甲醛、N-氨基乙酸加入到二甲基甲酰胺中,超声处理10~25min均匀分散,在100~140℃的油浴中搅拌回流4.5~6.5天,趁热离心,无水乙醇反复洗涤,烘干后得到双羟基功能化石墨烯;
(4)在无水甲苯中依次加入双羟基功能化石墨烯、L-丙交酯、催化剂,超声处理10~25min混合均匀,N2保护下在100~140℃下搅拌回流24~48h,反应混合物冷却至室温,过滤,粗产物溶于甲醇中,溶液再加入到混有少量浓盐酸的甲醇溶液中除去锡残留物,过滤,分别用二氯甲烷、甲醇洗涤,过滤,产物经真空干燥,得到石墨烯接枝聚丙交酯;
(5)取一定量的扩链剂1,4-丁二醇和4,4’-二苯基甲烷二异氰酸酯加入到无水甲苯中,搅拌溶解,N2保护下使体系升温至80~110℃,反应8~15h,然后加入步骤(4)所得石墨烯接枝聚丙交酯在70~100℃下反应1.5~3h,结束反应后,将温度降至室温,再将溶液滴加到正己烷中沉淀,过滤,产物经真空干燥,得到可降解海洋防污聚氨酯杂化材料。
2.根据权利要求1所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(1)的鳞片石墨与硝酸钾和浓酸的混合物、氧化剂、双氧水、分散剂的配比为1.0g:1.2g:46mL:6.0g:6mL:0.5g。
3.根据权利要求1所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(2)的氧化石墨烯与还原剂的配比为5.0g:80mL。
4.根据权利要求1所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(1)的浓酸为浓硫酸,所述氧化剂为高锰酸钾,所述的分散剂为十二烷基苯磺酸钠;所述步骤(2)的还原剂为水合肼。
5.根据权利要求1至4任一项所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(3)的还原石墨烯、2,2’-双羟基苯甲醛、N-氨基乙酸、二甲基甲酰胺的配比为0.02g:0.2g:0.2g:50mL。
6.根据权利要求5任一项所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(4)的双羟基功能化石墨烯、L-丙交酯、辛酸亚锡和无水甲苯的配比为0.083-0.174g:2.0g:0.5-1.5mL:50-70mL。
7.根据权利要求6任一项所述的可降解海洋防污聚氨酯杂化材料的制备方法,其特征在于:所述步骤(5)的石墨烯接枝聚丙交酯、4,4’-二苯基甲烷二异氰酸酯和1,4-丁二醇和无水甲苯的配比为0.13-0.51g:1.0g:0.2g:60-80mL。
8.权利要求1至7任一项所述的制备方法制备的可降解聚氨酯杂化材料在于海洋防污材料或生物医用工程中药物缓释载体中的应用。
CN201510585505.3A 2015-09-15 2015-09-15 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用 Active CN105111407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510585505.3A CN105111407B (zh) 2015-09-15 2015-09-15 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510585505.3A CN105111407B (zh) 2015-09-15 2015-09-15 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN105111407A true CN105111407A (zh) 2015-12-02
CN105111407B CN105111407B (zh) 2017-07-07

Family

ID=54659544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510585505.3A Active CN105111407B (zh) 2015-09-15 2015-09-15 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN105111407B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105924604A (zh) * 2016-05-18 2016-09-07 湖南科技大学 一种可降解水性聚氨酯涂料的制备方法及产品
CN107189617A (zh) * 2017-07-11 2017-09-22 湖南科技大学 一种生物可降解的低表面能石墨烯海洋防污防腐涂层材料及其制备方法
CN108531067A (zh) * 2018-05-17 2018-09-14 安徽朗凯奇防水科技股份有限公司 一种聚乳酸嵌接的聚氨酯环保型防水涂料及其制备工艺
CN111808515A (zh) * 2020-06-24 2020-10-23 中国船舶重工集团公司第七二五研究所 一种可降解的双亲性污损抗粘附防污树脂的制备方法
CN114479033A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种可交联聚己内酯及其制备方法与应用
CN115044290A (zh) * 2022-05-30 2022-09-13 闽江学院 一种凝胶微球杂化漆酚基海洋防污涂层材料及其制备方法
CN116285637A (zh) * 2023-04-10 2023-06-23 齐鲁工业大学(山东省科学院) 高强度防腐水性聚氨酯、防腐材料及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167676A (zh) * 2011-12-15 2013-06-19 海洋王照明科技股份有限公司 Led调光控制电路及具有该调光控制电路的led灯具
CN103254400A (zh) * 2013-05-20 2013-08-21 常州大学 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167676A (zh) * 2011-12-15 2013-06-19 海洋王照明科技股份有限公司 Led调光控制电路及具有该调光控制电路的led灯具
CN103254400A (zh) * 2013-05-20 2013-08-21 常州大学 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOLI OU ETC.: "Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature", <POLYMER CHEMISTRY> *
JUN CAO ETC.: "Synthesis of a novel biodegradable polyurethane with phosphatidylcholines", <INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES> *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105924604A (zh) * 2016-05-18 2016-09-07 湖南科技大学 一种可降解水性聚氨酯涂料的制备方法及产品
CN105924604B (zh) * 2016-05-18 2018-09-25 湖南科技大学 一种可降解水性聚氨酯涂料的制备方法及产品
CN107189617A (zh) * 2017-07-11 2017-09-22 湖南科技大学 一种生物可降解的低表面能石墨烯海洋防污防腐涂层材料及其制备方法
CN107189617B (zh) * 2017-07-11 2019-02-19 湖南科技大学 一种生物可降解的低表面能石墨烯海洋防污防腐涂层材料及其制备方法
CN108531067A (zh) * 2018-05-17 2018-09-14 安徽朗凯奇防水科技股份有限公司 一种聚乳酸嵌接的聚氨酯环保型防水涂料及其制备工艺
CN111808515A (zh) * 2020-06-24 2020-10-23 中国船舶重工集团公司第七二五研究所 一种可降解的双亲性污损抗粘附防污树脂的制备方法
CN114479033A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种可交联聚己内酯及其制备方法与应用
CN115044290A (zh) * 2022-05-30 2022-09-13 闽江学院 一种凝胶微球杂化漆酚基海洋防污涂层材料及其制备方法
CN115044290B (zh) * 2022-05-30 2023-02-17 闽江学院 一种凝胶微球杂化漆酚基海洋防污涂层材料及其制备方法
CN116285637A (zh) * 2023-04-10 2023-06-23 齐鲁工业大学(山东省科学院) 高强度防腐水性聚氨酯、防腐材料及应用
CN116285637B (zh) * 2023-04-10 2024-01-16 齐鲁工业大学(山东省科学院) 高强度防腐水性聚氨酯、防腐材料及应用

Also Published As

Publication number Publication date
CN105111407B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN105111407A (zh) 一种可降解海洋防污聚氨酯杂化材料的制备方法及其应用
CN101230189B (zh) 一种聚多糖纳米晶接枝聚酯改性聚氨酯材料的制备方法
Domenek et al. Characteristics and applications of PLA
CN112646475B (zh) 阻燃耐磨耗低voc聚氨酯涂料的制备及应用方法
EP3305828B1 (en) Polyester polyol, polyurethane resin, and production processes therefor
CN103804661B (zh) 一种石墨烯/聚乳酸复合材料及其制备方法
JP6020445B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
CN104672417A (zh) 一种可生物降解自阻燃聚氨酯发泡材料的制备方法
CN113024783B (zh) 一种可降解嵌段共聚物水凝胶的合成方法
Ou et al. Preparation and application of novel biodegradable polyurethane copolymer
JP6319300B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂溶液、ポリ乳酸系ポリエステル樹脂水分散体、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
El Gharrak et al. Tunable physicochemical properties of lignin and rapeseed oil-based polyurethane coatings with tailored release property of coated NPK fertilizer
CN101343346A (zh) 壳聚糖聚氨酯材料及其制备方法
CN103159956A (zh) 一种芳香族-脂肪族可降解接枝聚合物
CN101402718B (zh) 一种人体皮肤传热性能等效材料的制备方法
JP2014141548A (ja) ポリウレタンの製造方法
Johnston et al. Synthesis, properties and applications of degradable ionomers
CN112898611B (zh) 一种高强度、光响应自修复纳米复合聚氨酯薄膜的制备方法
EP2944663B1 (en) Aliphatic polyester, method of preparing the same, and polymer organizer
CN101519494B (zh) 高分子量聚吗啉-2,5-二酮衍生物的制备方法及共聚物的制备方法
CN114524922B (zh) 一种抗静电改性聚乳酸及其制备方法
CN106543434A (zh) 一种基于聚乳酸的生物基聚酯酰胺及其制备方法
JP6146416B2 (ja) ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、およびポリ乳酸系ポリエステル樹脂水分散体の製造方法
CN112979911B (zh) 氟化聚氨酯、壳层雾化喷液、人工仿生皮肤及制备方法
CN114316547A (zh) 一种增韧环保的病毒采样管材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant