CN105074947A - 作为pedot/pss分散体中的增粘剂添加剂的非极性溶剂 - Google Patents

作为pedot/pss分散体中的增粘剂添加剂的非极性溶剂 Download PDF

Info

Publication number
CN105074947A
CN105074947A CN201480018224.3A CN201480018224A CN105074947A CN 105074947 A CN105074947 A CN 105074947A CN 201480018224 A CN201480018224 A CN 201480018224A CN 105074947 A CN105074947 A CN 105074947A
Authority
CN
China
Prior art keywords
layer
composition
weight
photoactive layer
conducting polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480018224.3A
Other languages
English (en)
Inventor
S·舒曼
A·埃尔施纳
D·盖瑟
W·勒韦尼希
D·福格特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Precious Metals GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102013008460.1A external-priority patent/DE102013008460A1/de
Application filed by Heraeus Precious Metals GmbH and Co KG filed Critical Heraeus Precious Metals GmbH and Co KG
Publication of CN105074947A publication Critical patent/CN105074947A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种制备层状体的方法,其至少包括如下工艺步骤:I)提供光活性层;II)用至少包含如下的涂料组合物层叠光活性层:a)导电聚合物,b)有机溶剂;III)从用于在工艺步骤II)中覆盖的组合物中至少部分移除有机溶剂b),从而获得层叠在光活性层上的导电层;且进一步涉及可通过该方法获得的层状体、层状体、有机光伏电池、太阳能电池组件、组合物以及组合物的用途。

Description

作为PEDOT/PSS分散体中的增粘剂添加剂的非极性溶剂
本发明涉及一种制备层状体的方法、可通过该方法获得的层状体、层状体、有机光伏电池、太阳能电池组件、分散体和分散体的用途。
在可再生能源领域中,近年来有机光伏(OPV)电池已通过利用太阳能而被开发成非常有希望的电能来源。与可商业获得的无机太阳能电池(通常为硅电池)相比,OPV电池基于有机组分,且为极薄、轻质和柔性的。卷至卷(reel-to-reel)方法的低材料和生产成本以及仅耗费数月的极短能量生产缓冲期间显示了该技术的市场潜力。
由于获得了12%的记录效率,OPV技术被证实是沿市场化方向的成功发展。然而,为了实现该目的,同样重要的是确保OPV电池在长寿命内的长期稳定性。长期稳定性受到许多不同因素的影响,其中层的层离是OPV电池退化的一个主要原因(等,Adv.Mater.2012(24),第580-612页)。层离尤其可由机械作用(柔性基材的弯曲)和环境影响如湿气渗透而导致。这导致接触面积损失,产生被侵袭层的水和氧气污染的空间,或者甚至导致层的完全剥离。在倒置结构的OPV电池(上部暴露的电极为空穴电极,该结构参见图1)中,聚-3,4-乙撑二氧噻吩(PEDOT)/聚苯乙烯磺酸盐(PSS)层和光活性层例如聚-3-己基噻吩(P3HT):苯基-C61-丁酸甲酯(PCBM)的界面已被认为是层状结构中的关键点。层在界面处的层离可通过层的弱粘合解释。层的粘合描述了两个层彼此粘附的好坏或结实程度。尤其是在亲水层和疏水层(表面能存在很大的差异)的组合中,粘合可受到极大的破坏。在将含水PEDOT:PSS分散体施加至疏水性光活性层的方法中,该问题已变得明显,其中只有通过添加非常强力的表面活性剂才能获得充分的润湿和良好的膜质量。
迄今为止,仅已知极少数解决该粘合性主要问题的方法,其中均未获得仅大致令人满意的粘合性改进。因此,DuPont等尝试通过在比干燥(150℃)期间更高的温度下对P3HT:PCBM上的PEDOT:PSS层进行热处理(“退火”)而实现粘合能的提高,其中测得的效果额外依赖于膜中的PCBM含量(DuPont等,SolarEnergyMaterials&SolarCells2012(97),第171-175页)。然而,该方法中的所述关键温度可不利地影响对温度非常敏感的光活性层的形貌和稳定性(玻璃化转变温度,Tg值,层的熔融),这可导致效率和长期稳定性的损失。然而,这些高温还涉及OPV电池的缺点,尤其是其聚合物及其大规模工业生产方法。因此,持续需要能在更低温度下更有效地制备OPV电池。
除上文所述的退火方法之外,还尝试以有利的方式影响电池的粘合性和寿命,包括使用表面活性剂以降低PEDOT:PSS分散体的表面张力和更好的润湿表面(Lim等,J.ofMater.Chem.2012(22),第25057-25064页),或者通过使光活性层粗糙化而改善PEDOT:PSS层的粘合性。
然而,上述措施尚不能获得有机光伏电池的PEDOT:PSS层与光活性层的令人满意的粘合。
因此,本发明基于如下目的:克服由现有技术所导致的涉及导电聚合物层,特别是PEDOT:PSS层与光活性层,特别是包含P3HT:PCBM的非极性光活性层的粘合性不足有关的缺点。
特别地,本发明基于如下目的:提供一种制备层状体的方法,其可特别地用于制备有机光伏电池,且借此可特别地改善有机光伏电池的机械稳定性和长期稳定性。通过本发明的方法,应可制得包含光活性层,特别是含P3HT:PCBM的非极性光活性层的层状体,在所述非极性光活性层上施加导电聚合物层,特别是PEDOT:PSS层,由此应特别地通过该方法相对于现有技术所已知的用于制备该层状体的方法相比改善导电聚合物层与光活性层的粘合性。
本发明还基于如下目的:提供一种层状体,其可例如用于有机光伏电池中且包含光活性层,特别是含P3HT:PCBM的非极性光活性层,其上施加导电聚合物层,特别是PEDOT:PSS层,其中该层状体与现有技术所已知的相应层状体相比的区别在于,导电聚合物层与光活性层的层粘合性得以改善。
对实现至少一个上述目的的贡献由一种制备层状体的方法实现,其至少包括如下工艺步骤:
I)提供光活性层;
II)用至少包含如下的涂料组合物层叠光活性层:
a)导电聚合物,
b)有机溶剂,
III)从在工艺步骤II)中层叠的组合物中至少部分移除有机溶剂b),从而获得覆盖光活性层的导电层。
在本发明的制备层状体的方法中,优选所述涂料组合物包含c)表面活性剂。
在本发明的制备层状体的方法中,此外优选所述涂料组合物包含作为增粘剂添加剂的d)不同于组分b)和组分c)且与组分b)混溶的另一有机溶剂,其中光活性层(3)可溶于该增粘剂添加剂中。
在本发明的制备层状体的方法中,此外优选光活性层为非极性层。在本发明的一个实施方案中,光活性层称为非极性层。
对实现至少一个上述目的的另一贡献由一种制备层状体的方法作出,其至少包括如下工艺步骤:
I)提供包含至少一种疏水性化合物的光活性层;
II)用至少包含如下的组合物层叠光活性层,优选施加至光活性层:
a)导电聚合物,
b)有机溶剂,
c)表面活性剂,和
d)作为增粘剂添加剂的另一有机溶剂,其不同于组分b)和组分c)且与组分b)混溶,其中光活性层的所述至少一种疏水性化合物可溶于该增粘剂添加剂中;
III)从在工艺步骤II)中层叠的组合物中至少部分移除有机溶剂b),从而获得施加至光活性层或者覆盖光活性层的导电层。
令人惊讶地发现,通过添加增粘剂添加剂b),可获得导电层,特别是包含PEDOT:PSS的导电层与光活性层,特别是包含P3HT:PCBM的光活性层的粘合性的明显提高。由于粘合性提高,层的层离得以防止且层状体(例如在OPV电池中)的长期稳定性得以提高。此外,赋予层状体更大的坚固性,这是机械应力下所必需的,例如在弯曲(柔性基材)期间和生产方法(“卷至卷”方法)期间。在使用常规水基PEDOT:PSS分散体下,无法由增粘剂添加剂b)实现溶解方法,这是因为所述增粘剂添加剂(粘合方法中的活性溶剂)在水中的溶解度要低得多。要求下层光活性层被增粘剂添加剂b)短时稍微表面溶解。其结果是,在施加包含导电聚合物的组合物期间,界面处的溶解组分可发生部分混合。这可具有如下效果:一方面,表面被粗糙化;另一方面,导电聚合物束,优选PEDOT聚合物束部分扩散至下层的光活性层,或者光活性层的疏水性化合物中,优选P3HT束和PCBM部分扩散至导电层中。在每种情况下,发现导电聚合物层在下层光活性层上的粘合性显著提高。表面应理想地被增粘剂添加剂b)表面溶解。添加剂可根据待涂覆的表面改变。
此处,光活性层应优选理解为意指可将辐照(优选具有可见光成分)转化成电能的层,其中任选借助额外的层。光活性自身通常体现为大于10%的外部量子效率。量子效率通常由OPV电池的波长依赖性光电流相对于在整个待测波谱内具有校准的量子效率的校准参比电池(例如由FraunhoferInstituteFreiburg校准和验证)之比确定。就此而言,特定电池的光活性区域必须经由掩模精确限定和标准化。通常将白光源,例如氙弧灯用作光源,测量必须使用精确相同的光源进行,但不依赖于光源。光谱分辨率通常借助单色器或滤光片系统进行。
可特别存在与组分b)混溶的另一有机溶剂,如果该另一有机溶剂导致与组分b)的均匀溶液。就此而言,特别地,组分b)不在该另一有机溶剂中沉淀出或者不作为固体以分散体的形式存在于该溶剂中。
本发明特别地在倒置结构的OPV电池(参见图2和3)领域中带来了显著改进,这是因为光活性层(P3HT:PCBM)和PEDOT:PSS之间的界面被视为OPV电池的机械稳定性和长期稳定性的关键点。然而,本发明也可用于涂覆其他光活性表面,例如在涂覆具有疏水表面的膜中。
在本发明方法的工艺步骤I)中,首先提供包含至少一种疏水性化合物的光活性层,该光活性层优选为通常用于有机太阳能电池中的光活性层。
优选地,该光活性层包含电子给体材料和电子受体材料,其中这两种材料可以以混合物形式存在,其也可通过使两种材料区域交织,优选作为梳状结构存在于同一层中(参见图1,AnAmorphousMesophaseGeneratedByThermalAnnealingforHigh-PerformanceOrganicPhotovoltaicDevices,HideyhkiTanaka等,Adv.Matter2012,24,3521-3525),或者在共用层中纳米结构化,或者在两个彼此相继的单独层中,其中一个包含电子给体材料,另一个包含电子受体材料。电子给体材料可为p型导电聚合物材料。
可能的电子给体材料例如为聚(3-烷基噻吩),例如P3HT(聚(3-己基噻吩))、聚硅氧烷咔唑、聚苯胺、聚氧化乙烯、(聚(1-甲氧基-4-(O-分散红1)-2,5-亚苯基亚乙烯基)、MEH-PPV(聚-[2-甲氧基-5-(2'-乙氧基己氧基)-1,4-亚苯基亚乙烯基]);MDMO-PPV(聚[2-甲氧基-5-3(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基]);PFDTBT(聚-(2,7-(9,9-二辛基)-芴-交替-5,5-(4',7'-二-2-噻吩基-2',1',3'-苯并噻二唑));PCPDTBT(聚[N',O'-十七烷基-2,7-咔唑-交替-5,5-(4',7'-二-2-噻吩基-2',1',3'-苯并噻唑)]、PCDTBT(聚[N-9'-十七烷基-2,7-咔唑-交替-5,5-(4',7'-二-2-噻吩基-2',1',3"-苯并噻二唑)])、聚(4,4-二辛基二噻吩并(3,2-b:2',3'-d)噻咯)-2,6-二基-交替-(2,1,3-苯并噻二唑)-4,7-二基)(PSBTBT)、聚吲哚、聚咔唑、聚哒二嗪(pyridiazine)、聚异硫茚(isothianaphthalene)、聚苯硫醚、聚乙烯基吡啶、低聚-和聚噻吩、聚芴、聚吡啶或其衍生物。也可使用至少两种上文所列电子给体材料的任意所需的组合,例如作为混合物或共聚物。此处所述的聚合物具有10个或更多重复单元。低聚物具有少于10个且多于2个重复单元。特别适于减压气相沉积但也可以以溶液形式施加的所谓“小分子”具有1或2个重复单元。小分子的实例为:噻吩、部花青、多环芳烃(PAH),特别是蒽、并四苯(tetracene)、并五苯(pentacene)、苝;酞菁类,其呈无金属形式和具有金属中心;亚酞菁类,其具有或不具有金属中心;萘酞菁类,其具有或不具有金属中心;卟啉类,其具有或不具有金属中心;包括其相应衍生物;或至少两种的组合,例如呈共沉积形式。作为小分子的实例,可参见WO-A-2013/013765A1,其中公开了许多合适的化合物,包括其合成。
可能的电子受体材料(n型)例如为富勒烯或其衍生物,例如C60、C70、PC60BM(苯基-C61-丁酸甲酯)、PC70BM,纳米晶体如CdSe,碳纳米管、聚苯并咪唑(PBI)纳米棒或3,4,9,10-苝四甲酸双苯并咪唑(PTCBI)。其他电子受体材料为氧化锌、氧化钛和其他过渡金属氧化物,特别是作为纳米颗粒、纳米棒或分层结构的3D网络。
根据本发明,特别优选光活性层包含非极性电子给体材料和非极性电子受体材料的混合物,特别是聚-3-己基噻吩和苯基-C61-丁酸甲酯(P3HT:PCBM)作为疏水性化合物:
就此而言,电子给体材料与电子受体材料的混合比优选为10:1-10:100(基于重量),特别优选2:1-1:2,但不限于此。典型的重量比为1:1-1:0.8P3HT:PCBM。
光活性层的厚度优选为<1nm至15μm,优选为5nm至2μm。就此而言,光活性,优选光活性层可在合适的基材上使用一般沉积方法或涂覆方法制备,例如使用喷涂、旋涂、浸涂、刷涂、印刷、刀涂法、溅射、湿沉积,例如作为化学和/或热方法,减压气相沉积、化学气相沉积、熔融法或电泳。
在工艺步骤II)中,然后用至少包含a)、b)、c)和d)的组合物覆盖光活性层,其中该组合物优选为分散体。
导电聚合物a)优选为聚噻吩,特别优选具有通式(i)或(ii)重复单元或通式(i)和(ii)单元组合的聚噻吩,非常特别优选具有通式(ii)重复单元的聚噻吩:
其中:
A表示任选取代的C1-C5亚烷基,
R表示直链或支化的任选取代的C1-C18烷基、任选取代的C5-C12环烷基、任选取代的C6-C14芳基、任选取代的C7-C18芳烷基、任选取代的C1-C4羟基烷基或羟基,
x表示0-8的整数,和
在其中数个基团R键合至A的情况下,这些可相同或不同。
通式(i)和(ii)应理解为意指x个取代基R可键合至亚烷基A上。
特别优选具有其中A表示任选取代的C2-C3亚烷基且x表示0或1的通式(ii)重复单元的聚噻吩。
就本发明而言,前缀“聚”应理解为意指所述聚合物或聚噻吩包含超过一个相同或不同的通式(i)和(ii)重复单元。除通式(i)和/或(ii)的重复单元之外,所述聚噻吩可任选还包含其他重复单元,但优选所述聚噻吩全部重复单元的至少50%,特别优选至少75%,最优选至少95%具有通式(i)和/或(ii),优选通式(ii)。此处,上文所述的百分比数据旨在表示外来掺杂的导电聚合物中单体单元总数中的结构式(i)和(ii)单元的数值含量。所述聚噻吩包含总共n个通式(i)和/或(ii),优选通式(ii)的重复单元,其中n为2-2,000,优选2-100的整数。在每种情况下,聚噻吩中的通式(i)和/或(ii),优选通式(ii)重复单元可相同或不同。优选在每种情况下具有相同通式(ii)重复单元的聚噻吩。
根据本发明方法的非常特别优选的实施方案,所述聚噻吩全部重复单元的至少50%,特别优选至少75%,仍更优选至少95%,最优选100%为3,4-乙撑二氧噻吩单元(即,最优选导电聚合物a)为聚(3,4-乙撑二氧噻吩))。
所述聚噻吩优选在每种情况下在端基上带有H。
就本发明而言,C1-C5亚烷基A优选为亚甲基、亚乙基、亚正丙基、亚正丁基或亚正戊基。C1-C18烷基R优选表示直链或支化的C1-C18烷基,例如甲基,乙基,正或异丙基,正、异、仲或叔丁基,正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丙基、1,1-二甲基丙基、1,2-二甲基丙基、2,2-二甲基丙基、正己基、正庚基、正辛基、2-乙基己基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十六烷基或正十八烷基;C5-C12环烷基R表示例如环戊基、环己基、环庚基、环辛基、环壬基或环癸基;C5-C14芳基R表示例如苯基或萘基;C7-C18芳烷基R表示例如苄基,邻、间、对-甲苯基,2,3-、2,4-、2,5-、2,6-、3,4-、3,5-二甲苯基或基。前述列表用于示例性解释本发明且不应视为封闭的。
就本发明而言,许多有机基团可作为基团A和/或基团R的任选其他取代基,例如烷基、环烷基、芳基、芳烷基、烷氧基、卤素、醚、硫醚、二硫化物、亚砜、砜、磺酸酯、氨基、醛基、酮基、羧酸酯、羧酸、碳酸酯、羧酸酯、氰基、烷基硅烷和烷氧基硅烷基和羧酰胺基。
所述聚噻吩优选为阳离子的,其中“阳离子”仅仅涉及聚噻吩主链上的电荷。所述式中未示出正电荷,因为其精确数量和位置不能绝对确定。然而,正电荷的数量至少为1且至多为n,其中n为所述聚噻吩中所有重复单元(相同或不同)的总数。
为了补偿正电荷,所述阳离子聚噻吩要求存在阴离子作为抗衡离子,所述抗衡离子优选为聚合阴离子(聚阴离子)。就此而言,优选工艺步骤II)中所用组合物中的导电聚合物a)为阳离子聚噻吩,其以阳离子聚噻吩和作为抗衡离子的聚合阴离子的离子配合物形式存在。非常特别优选导电聚合物a)以聚(3,4-乙撑二氧噻吩)和聚苯乙烯磺酸的离子配合物形式(PEDOT:PSS)存在。
聚阴离子优选为作为抗衡离子的单体型阴离子,因为它们有助于成膜且由于其尺寸导致热稳定的导电膜。此处,聚阴离子可例如为聚羧酸如聚丙烯酸、聚甲基丙烯酸或聚马来酸的阴离子,或聚磺酸如聚苯乙烯磺酸和聚乙烯基磺酸的阴离子。这些聚羧酸和聚磺酸也可为乙烯基羧酸和乙烯基磺酸与其他可聚合单体如丙烯酸酯和苯乙烯的共聚物。特别优选地,所述固体电解质包含聚羧酸或聚磺酸的阴离子以补偿所述聚噻吩的正电荷。
如果使用聚噻吩,特别是聚(3,4-乙撑二氧噻吩),则特别优选使用优选(已在上文描述)以本领域已知的PEDOT:PSS离子配合物形式作为配合物键合的聚苯乙烯磺酸(PSS)阴离子。该类阴离子配合物可通过在水溶液中在聚苯乙烯磺酸存在下氧化聚合噻吩单体,优选3,4-乙撑二氧噻吩而获得。该细节可参见例如Elschner等,“PEDOT·PrinciplesandApplicationsofanIntrinsicallyConductivePolymer”,CRCPress(2011)第9.1.3章。
提供聚阴离子的聚酸的分子量优选为1,000-2,000,000,特别优选为2,000-500,000。所述聚酸或其碱金属盐可商业获得,例如聚苯乙烯磺酸和聚丙烯酸,或者可通过已知方法制备(参见例如HoubenWeyl,MethodenderorganischenChemie,第E20卷MakromolekulareStoffe,第2部分,(1987),第1141页及随后)。
聚噻吩和聚阴离子的离子配合物,特别是PEDOT:PSS离子配合物优选以颗粒形式存在于工艺步骤II)中所用的组合物中。所述组合物中的这些颗粒优选具有小于10,000Ω·cm的比电阻。
工艺步骤II)所用组合物中的颗粒优选具有1-100nm,优选1-60nm,特别优选5-40nm的直径d50。就此而言,直径分布的d50值是指分散体中所有颗粒总重的50%可归因于具有小于或等于该d50值的那些颗粒。颗粒直径通过超离心测量法测定。一般程序描述于ColloidPolym.Sci.267,1113-1116(1989)中。
工艺步骤II)中所用的组合物包含作为组分b)的有机溶剂,其中该有机溶剂b)优选为选自如下组的C1-C4单或C1-C4二醇,特别优选C1-C4单或C1-C4二醇,或C1-C4三醇:甲醇、乙醇、1-丙醇、2-丙醇、1,2-丙二醇、1,3-丙二醇、乙二醇、二甘醇、丙二醇、二丙二醇、甘油和这些有机溶剂中两种或更多种的混合物。有机酯,优选与一种或多种上述醇的有机酯代表了本发明的另一组溶剂。根据本发明有利的溶剂特别适于再次溶解导电聚合物,优选由水或水溶液溶解。该类溶剂,包括再次溶解例如描述于WO99/34371(再次溶解的浆料)和WO02/072660(再次溶解方法)中。据此,优选有机水溶混性溶剂。此外,优选可能的溶剂具有高于100℃的沸点。
工艺步骤II)中所用的组合物包含作为组分c)的表面活性剂,其中可使用所有表面活性剂类别(即,阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂和非离子表面活性剂)或者还有不同表面活性剂类别的表面活性剂混合物作为所述表面活性剂。优选使用非离子表面活性剂。
合适表面活性剂的实例为卤化的,特别是氟化表面活性剂,二醇,特别是聚亚烷基二醇,例如聚乙二醇、聚丙二醇或乙炔二醇类,醇或硅氧烷,特别是聚硅氧烷,尤其是所谓的基于聚硅氧烷的“双子型表面活性剂”,其特征在于至少两个疏水侧链和两个离子或极性基团经由“间隔基”键合。该类“双子型表面活性剂”在文献中也称为“双子表面活性剂(bi-surfactant)”(就此而言还参见“EineneueTechnologie:DasmultifunktionellesiloxanhaltigeGemini-Tensid”,Struck等,获自EvonikTegoChemie的技术文献)。
可提及的本发明合适表面活性剂的具体实例为:
-ZONYLTMFSN(F(CF2CF2)1-9(CH2CH2O(CH2CH2O)xH在50重量%浓度异丙醇水溶液中的40重量%溶液,其中x=0-约25,由DuPont销售);
-ZONYLTMFSN100(F(CF2CF2)1-9CH2CH2O(CH2CH2O)xH,其中x=0-约25,由DuPont销售);
-ZONYLTMFS300(含氟表面活性剂的40重量%浓度水溶液,由DuPont销售);
-ZONYLTMFSO(式F(CF2CF2)1-7CH2CH2O(CH2CH2O)yH的乙氧基化非离子含氟表面活性剂于50重量%浓度乙二醇水溶液中的50重量%溶液,其中y=0-约15,由DuPont销售);
-ZONYLTMFSO100(式F(CF2CF2)1-7CH2CH2O(CH2CH2O)yH的乙氧基化非离子含氟表面活性剂的混合物,其中y=0-约15,由DuPont销售);
-ZONYLTM7950(获自DuPont的含氟表面活性剂);
-ZONYLTMFSA(F(CF2CF2)1-9CH2CH2SCH2CH2COOLi在50重量%浓度异丙醇水溶液中的25重量%浓度溶液,由DuPont销售);
-ZONYLTMFSE([F(CF2CF2)1-7CH2CH2O]xP(O)(ONH4)y在70重量%浓度乙二醇水溶液中的14重量%浓度溶液,其中x=1或2,y=2或1且x+y=3,由DuPont销售);
-ZONYLTMFSJ(F(CF2CF2)1-7CH2CH2O]xP(O)(ONH4)y和烃表面活性剂的混合物在25重量%浓度异丙醇水溶液中的40重量%浓度溶液,其中x=1或2,y=2或1且x+y=3,由DuPont销售);
-ZONYLTMFSP([F(CF2CF2)1-7CH2CH2O]xP(O)(ONH4)y在69.2重量%浓度异丙醇水溶液中的35重量%浓度溶液,由DuPont销售);
-ZONYLTMUR([F(CF2CF2)1-7CH2CH2O]xP(O)(OH)y,其中x=1或2,y=2或1且x+y=3,由DuPont销售);
-ZONYLTMTBS(F(CF2CF2)3-8CH2CH2SO3H在4.5重量%浓度乙酸水溶液中的33重量%浓度溶液,由DuPont销售);
-TegoglideTM410(聚硅氧烷聚合物共聚物表面活性剂,由Goldschmidt销售);
-TegoWETTM(聚硅氧烷/聚酯共聚物表面活性剂,由Goldschmidt销售);
-FLUORADTMFC431(CF3(CF2)7SO2(C2H5)N-CH2CO-(OCH2CH2)nOH,由3M销售);
-FLUORADTMFC126(全氟羧酸的铵盐混合物,由3M销售);
-FLUORADTMFC430(获自3M的98.5%浓度活性脂族含氟-酯表面活性剂);
-聚氧亚乙基10-月桂基醚;
-SILWETTMH212(获自Momentive的共聚物);
-SurfinolTM104(获自AirProducts的乙炔二醇);
-DynolTM604(AirProducts);
-TRITONTM-X-100(4-(1,1,3,3-四甲基丁基)苯基聚乙二醇,获自Dow);
-TRITONTMXNA45S(Dow);
-TEGOTMTwin4000和TEGOTMTwin4100(获自Evonik的“双子型表面活性剂”)。
在这些表面活性剂中,非常特别优选使用“双子型表面活性剂”,特别是“双子型表面活性剂”TEGOTMTwin4000。
工艺步骤II)中所用的组合物包含作为组分d)的另一有机溶剂以作为增粘剂添加剂,其不同于组分b)和组分c)且与组分b)混溶,该增粘剂添加剂的特征在于光活性层的所述至少一种疏水性化合物可溶于(或至少部分可溶于)该增粘剂添加剂中。此外,有利地选择可溶于所述组合物的有机溶剂b)中或者可与该有机溶剂b)混溶的化合物作为增粘剂添加剂b)。
本发明所优选且已证实特别是在使用P3HT和PCBM作为光活性层的疏水性化合物的情况下是有利的增粘剂添加剂d)为芳族化合物,其中一个或多个氢原子可任选被卤原子代替。可提及的合适增粘剂添加剂d)实例特别为酮,如丙酮;芳族化合物,优选邻、间、对-二甲苯,苯乙烯、苯甲醚、甲苯、苯甲醚、硝基苯、苯、氯萘、单氯苯、1,2-和1,3-二氯苯、三氯苯;卤代烃,优选氯仿;环状烃,优选四氢呋喃、环己烷;其衍生物;或这些化合物中至少两种的混合物。其他合适的增粘剂添加剂d)描述于WO2013/013765第47页第11-34行。
除上文所述的组分a)、b)、c)和d)之外,工艺步骤II)中所用的组合物也可包含其他辅助物质e),例如粘合剂、交联剂、粘度改进剂、pH调节剂、提高电导率的添加剂、抗氧化剂、改进功函的试剂或例如使各组分均匀混合所需的其他助溶剂。
可能的pH调节剂为酸和碱,其中优选不影响成膜的那些。可能的碱为胺;烷基胺,优选2-(二甲基氨基)乙醇、2,2'-亚氨基二乙醇或2,2'2"-次氮基三乙醇、戊胺;氨溶液和碱金属氢氧化物。
工艺步骤II)中所用的组合物优选可通过包括如下工艺步骤的方法获得:
IIa)提供包含导电聚合物a)和有机溶剂b)的组合物A;
IIb)提供包含表面活性剂c)和优选第一助溶剂的组合物B;
IIc)提供包含增粘剂添加剂b)和优选第二助溶剂的组合物C;
IId)将组合物A、B和C以任意所需的顺序混合。
就此而言,工艺步骤IIa)、IIb)和IIc)的顺序无关紧要。
在工艺步骤IIa)中,首先提供包含导电聚合物a)和有机溶剂b)的组合物A。就此而言,在基于PEDOT:PSS离子配合物的导电聚合物的情况下,可首先以含水分散体的形式制备这些离子配合物,正如本领域技术人员可例如由Elschner等,“PEDOT·PrinciplesandApplicationsofanIntrinsicallyConductivePolymerlayer”,CRCPress(2011)第9.1.3章看出的那样。在可以以此方式获得的含水PEDOT:PSS分散体中,可用有机溶剂b)代替水,例如如US2003/0006401A1或WO-A-02/072660所述。
在工艺步骤IIb)中,提供包含表面活性剂c)的组合物B,且可任选以可商购获得的形式使用。然而,优选将表面活性剂c)与经证实有利地作为第一助溶剂,优选有机助溶剂的第一助溶剂,即有机助溶剂,特别是醇混合。可能的溶剂特别是醇,例如正丙醇、异丙醇、正戊醇、正辛醇或这些的混合物。
在工艺步骤IIc)中,提供包含增粘剂添加剂b)和优选的第二助溶剂,优选有机助溶剂的组合物C。此处,还证实醇特别有利地作为第二助溶剂,可能的醇又为正丙醇、异丙醇、正戊醇、正辛醇或这些的混合物。就成膜而言,已证实异丙醇是特别有利的(同时作为表面活性剂c)的第一助溶剂和作为增粘剂添加剂b)的第二助溶剂)。为了制备组合物C,将增粘剂添加剂b)和助溶剂以1:9-1:1的增粘剂添加剂b):有机助溶剂重量比彼此混合,其中所述组分以任意顺序在持续搅拌下混合。然后搅拌该混合物,直至存在各组分的均匀且充分混合的混合物。
在工艺步骤IId)中,然后将组合物A、B和C以任意所需的顺序混合。该混合特别优选以如下方式进行:首先将组合物A引入混合容器中(优选以分散体形式),然后在持续搅拌下以给定顺序添加组合物B和组合物C。然后搅拌该混合物,直至存在各组分的均匀且充分混合的混合物。
就此而言,优选将组合物B以使得建立0.1-1.1重量%,特别优选0.1-0.5重量%表面活性剂浓度(在每种情况下基于工艺步骤II)中所用组合物的总重量)的量计量加入所述容器中,同时优选将组合物C以使得建立1-15重量%,特别优选2.5-12.5重量%增粘剂添加剂b)浓度(在每种情况下基于工艺步骤II)中所用组合物的总重量)的量计量加入所述容器中。所述助溶剂,优选异丙醇稀释了批料,取决于溶液配方,其浓度为小于1重量%至约15重量%。
工艺步骤II)中所用组合物的制备方法可进一步包括后处理步骤IIe),其包括如下工艺步骤:
IIea)通过过滤处理在工艺步骤IId)中获得的混合物,由此获得滤液;
IIeb)用超声辐射处理在工艺步骤IIea)中获得的滤液。
通过后处理,可显著改善若干重要参数,例如粘度、层的不透明度/浊度和过滤性。
在工艺步骤IIea)中,通过过滤,优选借助深度过滤对在工艺步骤IId)中获得的混合物进行处理。为此,可使用纤维素基过滤材料,特别是基于纤维素纤维混合物、硅藻土和珍珠岩的过滤材料,其以商品名T950,T1000、T1500、T2100、T2600、T3500或T5500由PallLifeSciences,USA获得。
然后在工艺步骤IIeb)中用超声辐射处理由此获得的滤液。就此而言,优选超声辐射在0-50℃,优选0-25℃的温度下,优选在用冰冷却分散体下进行15分钟至24小时,优选1-10小时。特别优选用超声辐射处理滤液,直至达到特定的最大粘度值,优选小于100mPas或50mPas或更小的值。用超声辐射对滤液进行的处理可通过将超声指悬入滤液中或者通过将滤液泵经超声流动池而进行。此处,输入的能量可为10-1000瓦/升(w/l)滤液。超声频率优选为20-200kHz。
工艺步骤II)中所用的组合物优选包含(在每种情况下基于该组合物的总重量):
-0.1-5重量%,特别优选0.4-3重量%,最优选0.5-1重量%导电聚合物a),特别优选PEDOT:PSS;
-50重量%至<100重量%,特别优选68-99重量%,最优选78-96重量%有机溶剂b),特别优选选自乙二醇、丙二醇、乙醇以及这些中至少两种的混合物;
-0.1-1.1重量%,特别优选0.1-0.5重量%,最优选0.2-0.4重量%表面活性剂c),特别优选基于硅氧烷的表面活性剂,优选“双子型表面活性剂”;
-1-15重量%,特别优选2.5-12.5重量%,最优选5-10重量%增粘剂添加剂b),特别优选二氯苯;
-0-15重量%,特别优选0.5-10重量%,最优选5-10重量%一种或多种辅助物质,特别优选作为助溶剂的异丙醇。
在另一实施方案中,所述组合物可首先如在工艺步骤II中所述那样制备,然后通过添加其他溶剂,优选醇,例如至少一种上述醇而再次稀释。此时,可设想稀释至少2倍,优选至少3倍,特别优选至少4倍。稀释通常不超过20倍。
此外,本发明优选工艺步骤II)中所用的组合物具有至少一种,但优选全部如下性质:
A)所述组合物包含基于该组合物总重量为小于6重量%,特别优选小于4重量%,最优先小于2重量%的水;
B)所述组合物包含PEDOT:PSS离子配合物作为导电聚合物a),其中该组合物中的PEDOT:PSS重量比为1:0.5-1:25,特别优选1:2-1:20,最优选1:2-1:6;
C)由所述组合物形成的导电膜的特征在于小于10,000Ω·cm,特别优选小于10Ω·cm,最优选小于1Ω·cm的比电阻。
可用于工艺步骤II)中的特别有利的组合物的特征在于如下性质或如下性质的组合:A)、B)、C)、A)B)、A)C)、B)C)和A)B)C),最优选性质A)B)C)的组合。
覆盖可间接进行,特别是用1个、2个或多个额外层进行,或者也直接在光活性层上进行,其中优选直接覆盖。在工艺步骤II)中用组合物覆盖光活性层可通过本领域技术人员已知的所有方法进行,借此可用液体组合物以特定的湿膜厚度覆盖基材。优选地,将组合物施加至光活性层通过旋涂、浸渍、倾注、滴淌、喷涂、喷雾、刀涂、刷涂或印刷,例如喷墨印刷、丝网印刷、凹版印刷、胶版印刷或擦印(tamponprinting)以0.5-250μm的湿膜厚度,优选1-50μm的湿膜厚度进行。优选地,所述液体组合物中的导电聚合物浓度为0.01-7重量%,优选0.1-5重量%,特别优选0.2-3重量%,在每种情况下基于该液体组合物。
额外层的一个实施方案由空穴传导材料形成。优选所谓的“固态染料敏化太阳能电池”(ssDSSC)中的空穴传导材料。这些优选由溶液或者通过熔融流动浸渗法形成。特别地,这适用于螺环化合物,特别是(2,2',7,7'-四(N,N-二-对甲氧基苯基胺)-9,9'-螺双芴(螺-OMeTAD)(参见Leijtens等,ACSNano,2012,6,2,1455-1462),其优选可溶于卤化溶剂,优选芳族溶剂如二氯苯中,优选以10-50重量%的量,基于该溶液。
根据本发明,进一步优选在将所述组合物施加至光活性层之后,且在实施工艺步骤III)之前,使所述组合物在所定义条件下与光活性层的表面保持接触。就此而言,特别优选使所述组合物在4-75℃,特别优选15-25℃的温度下与光活性层表面保持接触达0-10分钟,特别优选1-6分钟的时间,从而确保光活性层的充分表面溶解。当选择合适的温度时,优选所用的溶剂在覆盖期间为液体。
在本发明方法的工艺步骤III)中,然后从用于在工艺步骤II)中覆盖的组合物中至少部分,但优选尽可能完全地移除有机溶剂b),从而获得覆盖光活性层的导电层,该移除优选通过在20-220℃,优选100-150℃的温度下干燥而进行。就此而言,可能有利的是在干燥工艺之前,从基材中至少部分移除上清液组合物,例如通过旋转。
用于以此方式覆盖光活性层的导电层的厚度优选为10-500nm,特别优选20-80nm。上述层厚度涉及干燥后的层。
对实现至少一个上述目的的贡献还由可通过本发明方法获得的层状体作出。
由于上述效果,据此发生由增粘剂添加剂b)所导致的下层光活性层的短时稍微表面溶解,其结果是在包含导电聚合物的组合物施加期间,界面处的组分可发生部分混合,可通过本发明方法获得的层状体的特征在于与现有技术所已知的相当层状体相比的完全新颖的结构。优选地,可通过本发明方法获得的层状体包括:
i)包含至少一种疏水性化合物的光活性层;
ii)包含导电聚合物且覆盖光活性层的导电层;和
iii)位于光活性层和导电层之间且包含来自导电层的导电聚合物和来自光活性层的所述至少一种疏水性化合物的混合物的中间层。
就此而言,特别优选光活性层包含比中间层更少的来自导电层的导电聚合物,且导电层包含比中间层更少的来自光活性层的至少一种疏水性化合物。非常特别优选地,
-背对导电层一侧上的光活性层的第一10nm区域以至少90重量%的程度,特别优选以至少95重量%的程度,最优选以约100重量%的程度基于所述至少一种疏水性化合物,但特别优选基于P3HT:PCBM;
-背对光活性层的导电层的第一10nm区域以至少90重量%的程度,特别优选以至少95重量%的程度,最优选以约100重量%的程度基于所述导电聚合物,但特别优选基于PEDOT:PSS;和
-中间层包含至少1nm宽的区域,在其中来自光活性层的疏水性化合物:来自导电层的导电聚合物的重量比,但特别优选P3HT和PCBM的总量与PEDOT和PSS的总量的重量比为10:1-1:10,特别优选为5:1-1:5。通常,中间层的厚度小于所述层状体所有层的总厚度。通常观察到低至10nm或者甚至5纳米的中间层层厚度。
此外,可通过本发明方法获得的层状体的特征优选在于,在本文所述的“横切带”测试中的导电层移除面积小于5%,特别优选小于2.5%,最优选小于1%。
对实现至少一个上述目的的贡献还由一种层状体作出,其包括:
i)包含至少一种疏水性化合物的光活性层;
ii)包含导电聚合物且覆盖光活性层的导电层;和
iii)位于光活性层和导电层之间且包含来自导电层的导电聚合物和来自光活性层的所述至少一种疏水性化合物的混合物的中间层。
就此而言,优选使用上文已就本发明方法作为优选疏水性化合物和导电聚合物提及的那些疏水性化合物和导电聚合物作为所述疏水性有机化合物且作为导电聚合物。此外,就其结构及其性质而言,特别是就其在“横切”测试中的性质而言,本发明的层状体具有与可通过本发明方法获得的层状体相同的性质。
对实现至少一个上述目的的贡献还由一种有机光伏电池(太阳能电池)作出,其包括可通过本发明方法获得的层状体或本发明的层状体。就此而言,所述有机光伏电池特别地用于如下那些太阳能电池中:在其制备中,将包含导电聚合物的导电层,特别是PEDOT:PSS层层叠在包含至少一种疏水性化合物的光活性层上,特别是层叠在光活性P3HT:PCBM层上,特别是层叠的。
有机光伏电池通常包括2-5个层,通常层叠有基材,这导致又可重复2或更多次的层顺序,例如串接电池。层顺序通常包括空穴触点或空穴收集层(通常称为阳极)、空穴传输层(通常为具有金属导电性的p型半导体或PEDOT)、光活性层(包含电子受体材料和电子给体材料)、任选的电子传输层(通常为n型半导体)和电子触点或电子收集电极(通常称为阴极),其中阳极和/或阴极为透光的(即,透明的,或者设计成透光带栅(stripgrid)形式,或者高导电PEDOT)。取决于空穴传输层和电子传输层相对于基材的顺序,就此而言分为“常规结构”的有机光伏电池(空穴触点为接近基材的电极)和“倒置结构”的有机光伏电池(空穴触点为远离基材的电极)。
上述层状体结构层叠在其上的基材优选为基本上透明的(无色和透明的,有色和透明的,或者澄清和透明的)材料,特别是在活性材料(电子给体和受体材料)的吸收光谱的波长范围内,且可通过外部光,例如阳光。基材的实例包括玻璃基材和聚合物基材。用于基材的聚合物的非限制性实例包括聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚烯丙基化物、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)和乙酸丙酸纤维素(CAP)。当选择合适的基材时,优选这些适于层状体的卷至卷制备方法。此外,所述基材可装备有其他功能性涂层。此处优选减反射涂层、减反射剂、UV阻挡剂以及气体和湿气阻隔物。所述基材可具有单层结构,其包含至少一种材料的混合物。在另一实施方案中,其可具有多层结构,包括彼此层叠的层,其中各层包含至少两种材料。
阳极层和阴极层的可能材料为对本领域技术人员而言可通过用于制备太阳能电池中的导电层的所有组分,其中该选择尤其取决于阳极层或阴极层是否必须为透光的。阳极层和阴极层的材料的优选实例包括透明和高度导电的材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锡(SnO2)、氧化锌(ZnO)、fluorotin氧化物(FTO)和氧化锑锡(ATO)。阳极层或阴极层材料的其他实例包括如下的超薄和薄金属层:镁(Mg)、铝(Al)、铂(Pt)、银(Ag)、金(Au)、铜(Cu)、钼(Mo)、钛(Ti)、钽(Ta)、这些中至少两种的组合(例如这些的合金、铝-锂、钙(Ca)、镁-铟(Mg-In)或镁-银(Mg-Ag),其可以以供沉积层的形式存在)和含碳材料,例如石墨和碳纳米管。就此而言,如果上述金属层是透光的,则其可为超薄的,或者也呈带栅形式,或者作为其纳米管、纳米线或网络用于覆盖。此外,包含导电材料的导电层,例如导电PEDOT:PSS层还可为上文所有作为阳极层或阴极层的透明材料的那些。阳极层和阴极层的厚度通常为2-500nm,特别优选为50-200nm。特别优选超薄透明或半透明金属层,且具有2-20nm的厚度。
电子传输层的可能材料特别为n型半导电金属氧化物,例如氧化锌、二氧化锡、钛二氧化物和低氧化物(TiOx)、氧化锡(IV)、氧化钽(V)、氧化铯、碳酸铯、钛酸锶、锡酸锌、Perowskit型配合物氧化物,特别是钛酸钡,二元铁氧化物或三元铁氧化物,特别优选碳酸铯、氧化锌或二氧化钛。电子传输层的厚度通常为2-500nm,特别优选为10-200nm。
因此,本发明有机光伏电池的特征优选在于使用包含导电聚合物的导电层作为空穴传输层,且在于将可通过本发明方法获得的层状体或本发明的层状体集成至有机光伏电池中以使得所述光活性层对应于光活性层,且包含导电聚合物的导电层对应于空穴传输层。在制备本发明的有机光伏电池中,在将空穴传输层施加至光活性层期间,优选在将作为空穴传输层的PEDOT:PSS层施加至作为光活性层的P3HT:PCBM层期间,优选使用上文对制备层状体所述的本发明方法。
根据一个实施方案,根据权利要求25的本发明有机光伏电池(5)包括:
a.阳极;
b.本文所定义的层状体;
c.合适的话,电子传输层;和
d.阴极。
根据所述有机光伏电池的第一优选实施方案,该电池为具有“倒置结构”的电池,其包括:
(α1)透明阴极,例如厚度为5-150nm且层叠在透明基材上的银、铝或ITO层;
(α2)阴极(α1)之后的电子传输层,例如厚度为10-200nm的氧化钛或氧化锌层;
(α3)电子传输层(α3)之后的光活性层,例如厚度为50-350nm的P3HT:PCBM层;
(α4)光活性层(α3)之后的空穴传输层,优选厚度为20-250nm的PEDOT:PSS层;
(α5)空穴传输层(α4)之后的阳极,例如厚度为20-200nm的银层;
其中光活性层(α3)对应于所述光活性层,且空穴传输层(α4)对应于层叠在光活性层上的导电层。在该有机光伏电池中,光从下方入射(即,通过透明阴极)。如果使用PEDOT:PSS层作为电极,则在(α4)中厚度可为至多1,000nm。
根据所述有机光伏电池的第二优选实施方案,该电池为具有“倒置结构”的电池,其包括:
(β1)层叠在基材上的阳极,例如厚度为5-150nm的铝层,其可任选层叠在厚度为5-200nm的氧化钛或氧化锌层(作为电子传输层)上;
(β2)阳极(β1)之后的光活性层,例如厚度为50-350nm的P3HT:PCBM层;
(β3)光活性层(β2)之后的空穴传输层,优选厚度为20-250nm的PEDOT:PSS层;
(β4)空穴传输层(β3)之后的阴极,优选呈金、铝、银或铜或这些中至少两种的带栅形式的金属层;
其中光活性层(β2)对应于所述光活性层,且空穴传输层(β3)对应于层叠在光活性层上的导电层。在该有机光伏电池中,光从上方入射(即,通过呈带栅形式的阳极)。
对实现至少一个上述目的的贡献还由一种太阳能电池组件作出,其包括至少一个,优选至少两个本发明的光伏电池。
对实现至少一个上述目的的贡献还由一种组合物,优选分散体作出,其包含基于该组合物的总重量为如下的组分:
-0.1-5重量%,特别优选0.4-3重量%,最优选0.5-0.7重量%的PEDOT:PSS;
-50重量%至<100重量%,特别优选68-99重量%,最优选78-96重量%的有机溶剂,其选自乙二醇、丙二醇、乙醇和这些中至少两种的混合物;
-0.1-1.1重量%,特别优选0.1-0.5重量%,最优选0.2-0.4重量%的表面活性剂,特别优选基于硅氧烷的表面活性剂,优选“双子型表面活性剂”;
-1-15重量%,特别优选2.5-12.5重量%,最优选5-10重量%的增粘剂添加剂,其选自二甲苯、甲苯、THF、苯乙烯、苯甲醚、环己烷、氯苯、二氯苯或这些中至少两种的混合物,特别优选二氯苯;
-0-15重量%,特别优选0.5-10重量%,最优选5-10重量%的一种或多种辅助物质,例如一种或多种助溶剂,特别优选异丙醇作为助溶剂。
就此而言,优选的表面活性剂和辅助物质为已在上文作为就本发明制备层状体的方法所优选的表面活性剂和辅助物质提及的那些表面活性剂和辅助物质。
此外,本发明优选本发明的组合物具有至少一种,但优选全部如下性质:
A)所述组合物包含基于该组合物总重量为小于6重量%,特别优选小于4重量%,最优先小于2重量%的水;
B)所述组合物中的PEDOT:PSS重量比为1:0.5-1:25,特别优选1:2-1:20,最优选1:2-1:6;
C)由所述组合物形成的导电膜的特征在于小于10,000Ω·cm,特别优选小于10Ω·cm,最优选小于1Ω·cm的比电阻。
本发明特别有利的组合物的特征在于如下性质或如下性质的组合:A)、B)、C)、A)B)、A)C)、B)C)和A)B)C),其中最优选性质A)B)C)的组合。
使用包含PEDOT:PSS的理想不含水的分散体可完全省略制备方法中的水,这在电子领域应用中是非常重要的。因此,也可使得分散体的处理在惰性保护气氛下,例如手套箱中进行,其中不惜以任何代价避免水分的影响。这使得所述分散体就制备方法而言与所有在排除水分下实施的方法兼容。因此,对OPV电池而言,完全避免了与敏感活性层的接触,这可对长期稳定性具有正面作用。
对实现至少一个上述目的的贡献还由本发明的组合物(或者就本发明方法所述的组合物)在P3HT:PCBM层上制备导电层或者改善P3HT:PCBM层上的导电层粘合性的用途作出。就导电层的优选实施方案而言,参考上文描述。
现在借助附图、测试方法和非限制实施例更详细地解释本发明。
图1显示了通过本发明层状体1或通过可通过本发明方法获得的层状体1的层顺序的示意图。层状体1包括光活性层3,其优选为包含P3HT:PCBM作为疏水性化合物的层。在光活性层3上施加包含导电聚合物的导电层2,其优选为PEDOT:PSS层。在光活性层3和导电层2之间设置有中间层4,其包含来自导电层2的导电聚合物和来自光活性层3的所述至少一种疏水性化合物的混合物。
图2显示了通过包括本发明层状体1或可通过本发明方法获得的层状体1的第一特别优选有机光伏电池的层顺序的示意图。该电池包括基材9(优选为玻璃),其上施加有约100nm厚的例如铝或银栅或ITO的透明阴极层8。阴极层8之后为电子传输层7,例如厚度为5-200nm的氧化钛或氧化锌层。其上为光活性层3',优选为厚度约80-250nm的P3HT:PCBM层。然后在该光活性层上通过本发明的方法施加空穴传输层2',由此形成包含层2'和3'组分的混合物的中间层4'。最后,在空穴传输层2'之后为阳极层6,其可例如为银层。在有机光伏电池的该实施方案中,光从下方透过基材层9入射,如图2所示。
图3a显示了通过包括本发明层状体1或可通过本发明方法获得的层状体1的第二特别优选有机光伏电池的层顺序的示意图。该电池同样包括基材9(优选为玻璃),其上施加有约100nm厚的例如铝的透明阴极层8。阴极层8之后可为厚度10-50nm的层7。其上为光活性层3',优选为厚度约80-250nm的P3HT:PCBM层。然后在该光活性层上通过本发明的方法施加空穴传输层2',由此形成包含层2'和3'组分的混合物的中间层4'。最后,在空穴传输层2'之后为阳极层6,其可呈金属,例如金或铜的带栅形式。在有机光伏电池的该实施方案中,光从上方透过PEDOT:PSS层入射,如图3所示。
除图3a的实施方案之外,图3b显示了构造为透光的电极收集层8和基材9。因此,所述光伏电池可从两侧将入射到这些上的入射光转化成电能。
图4显示了实施“横切带”测试的方式,从而测定包含导电聚合物的导电层(2),优选PEDOT:PSS层与光活性层,优选与P3HT:PCBM层的粘合强度。就此而言,将粘合带(“带”)10粘附在导电层2'上,然后沿图4所示的直箭头方向剥离。
图5显示了如何分析评价图4所示的“横切带”测试的结果。
测试方法
为了评价本发明方法中所用组合物的层与光活性层的粘合,实施如下程序:
基材清洁
在使用前,通过如下方法清洁ITO预涂覆的玻璃基材(5cm×5cm):1.用丙酮、异丙醇和水充分冲洗,2.在70℃的0.3%浓度Mucasol溶液浴中超声处理15分钟,3.用水充分冲洗,4.通过在离心机中旋走而干燥,5.在紧临使用前UV/臭氧处理(PR-100,UVPInc.,Cambridge,GB)15分钟。
ZnO层
首先,分别在两个玻璃烧杯中制备乙酸锌(164mg/ml)于2-甲氧基乙醇中的0.75M溶液和单乙醇胺(45.8mg/ml)于2-甲氧基乙醇中的0.75M溶液,并在室温下搅拌1小时。随后,将所述两种溶液在搅拌的同时以1:1的体积比混合,并搅拌所述混合物,直至形成均匀且澄清的Zn前体溶液。在使用前,还将这经针筒过滤器(0.45μm,SartoriusStedimMinisart)过滤。然后将这通过在2,000rpm下旋涂30秒而施加至经清洁的ITO基材上,然后在热板上在130℃下于空气中干燥15分钟。
活性层
通过旋涂将光活性层(例如光活性P3HT:PCBM层)施加至上文所述的ZnO涂覆的ITO基材上并干燥,从而形成均匀光滑的膜。在P3HT:PCBM的情况下,首先在螺旋盖药瓶中制备比例为1:1(总量3重量%)的1.5重量%P3HT(BASF,SepiolidP200)和1.5重量%PCBM(Solenne,99.5%纯度)于1,2-二氯苯中的溶液,并在60℃下在氮气气氛下搅拌至少4小时,或者直至所有物质溶解。随后,将所述溶液在搅拌的同时冷却至室温,并用针筒过滤器(0.45μm,SartoriusMinisartSRP25)过滤。整个活性层的施加工艺在氮气气氛下在手套箱中进行。现在将所述P3HT:PCBM溶液滴淌至ITO/ZnO基材上,通过在450rpm下旋涂50秒而旋走多余的溶液。然后将所述层直接在热板上于130℃下直接干燥15分钟。
导电层:PEDOT:PSS层
为了制备PEDOT:PSS层,将本发明的分散体,即涂料组合物滴淌至上述光活性层(层顺序:玻璃基材/ITO/ZnO/P3HT:PCBM作为前体(参见试样制备))上。借助吸移管将所述涂料组合物(I、II和III任一)施加至所述前体的P3HT:PCBM上以完全覆盖所述区域。在3分钟的作用时间后,通过旋涂(条件:30秒,约1,000rpm)旋走未渗入所述前体中的涂料组合物。随后,在三个步骤中在热板上实施干燥方法:在室温下1分钟,随后在130℃下15分钟。为了在具有相同层顺序玻璃基材/ITO/ZnO/P3HT:PCBM作为前体的含水对比实施例a)和b)上进行测试,又在所述P3HT:PCBM层上形成PEDOT:PSS层。借助吸移管将所述含水PEDOT:PSS类型施加至所述前体的P3HT:PCBM层上以完全覆盖所述区域,立即通过旋涂(条件:30秒,约1,500rpm)旋走。随后,在热板上在130℃下实施干燥方法15分钟。
OPV电池
为了进一步测试本发明所用的涂料组合物,制备具有如下倒置层结构的玻璃基材/ITO/ZnO/P3HT:PCBM/导电PEDOT:PSS层/银的OPV电池,其中ZnO以约50nm的层厚施加,P3HT:PCBM以约170nm的层厚施加,且PEDOT:PSS以约50nm的层厚施加,其中以根据上文已述的教导的给定顺序施加。就此而言,测试两种PEDOT:PSS分散体:在电池Ia中的具有增粘剂添加剂的本发明有机涂料组合物Ia和电池b)中的含水对比实施例b)。使用减压气相沉积单元(Edwards)在<5*10-6毫巴下通过掩模以约的气相沉积速率气相沉积具有300nm层厚的银电极。所述掩模定义了0.049cm3的光活性面积。为了精确测量光电流,用解剖刀小心划出单个电池,因此精确减小至所定义的面积,从而避免由于高导电性PEDOT:PSS而导致的额外收集电流的边缘效应。
润湿性
首先测试所述分散体是否完全充分润湿活性层。使用滴淌溶液与表面形成的接触角作为良好润湿的标准。接触角使用Krüss(EasyDrop)测定,其中将静止液滴沉积在水平放置的基材上。
表面溶解性质
检查光活性层的表面溶解,其中在每种情况下在3和10分钟后用异丙醇洗去覆盖光活性层的液体的静止膜,然后干燥该层。用吸移管将所述液体的膜施加在光活性层的大面积上。如果在覆盖期间发生表面溶解,则这导致该膜接触面积的颜色或强度的可见变化。由除导电聚合物之外特别包含增粘剂添加剂的组合物所导致的表面溶解效果通过UV/Vis光谱法(PerkinElmerLambda900)测定。就此而言,测定未处理活性层的吸收,并对比施加液膜之前以及洗去和干燥之后的完全相同的位置。为了进行对比,选择两个易于观察变化的活性材料吸收光谱的特征波长:对P3HT选择510nm,对PCBM选择400nm。然后将波长中的吸收变化表达为吸收减小和相关的材料剥离。如果液膜不导致任何表面溶解,则表面保持不变化;如果溶解完全,则膜在接触区域处缺失。
粘合性测量
粘合性可在标准带测试方法,即所谓的“横切带”测试(ASTMD3359-08的测试方法B)中根据规定的分级标度(参见ASTMD3359-08,图1,第4页)半定量测定。在该测试中,将10×10个1mm×1mm正方形的栅格(参见图5)切成层,并用粘合带(Post-it,3M)以第一“带”测试中的方式剥离。在对移除的正方形面积计数后,对粘合性进行分级(移除层的面积:0%=5B,<5%=4B,5-15%=3B,15-35%=2B,35-65%=1B,>65%=0B)。
电池表征
用波长为1.5AM的阳光模拟器(1,000W石英-卤素-钨灯,AtlasSolarCelltest575)测量制得的OPV电池。光强度可用插入的光栅滤光片减弱。试样平面处的强度使用Si光电池测定,且为约1,000W/m2。Si光电池事先用总日射表(CM10)校准。试样保持架的温度使用热传感器(PT100+testtherm9010)测量且在测量期间最高为40℃。将OPV电池的两个触点经由电缆与电流/电压源(Keithley2800)相连。对测量而言,将所述电池在-1.0V至1.0V且回复至-1.0V的范围内以0.01V步长扫描,并测量光电流。对每个电池总计测量3次,首先在黑暗中,然后在照射下,最后再次在黑暗中,从而确保电池在照射后完全发挥作用。基材具有9个电池,取其平均值。借助基于计算机的Labview程序记录数据。这获得了二极管的典型电流密度/电压特性曲线,由此可根据欧洲标准EN60904-3直接或通过计算确定OPV特性数据,例如“开路电压”(Voc)、“短路电流密度”(Jsc)、填充因子(FF)和效率或效力(Eff.)。然后根据方程1计算填充因子:
方程1: F F = V m p p J m p p V O C J S C
其中Vmpp为照射下的电池特性曲线上“最高功率点”(mmp)处的电压,Jmpp为此处的电流密度。
电导率:
电导率意指比电阻的倒数。比电阻由导电聚合物层的表面电阻和层厚的乘积计算。导电聚合物的表面电阻根据DINENISO3915测定。具体而言,将研究的聚合物以均匀膜形式借助旋涂机施加至尺寸为50mm×50mm且通过上述基材清洁方法充分清洁的玻璃基材上。在该程序中,借助吸移管将涂料组合物施加至基材上以完全覆盖所述区域,并通过旋涂直接旋走。涂料组合物I、II和III的旋涂条件为1000rpm下30秒,对比实施例a)和b)1,500rpm下30秒。随后,在热板上在130℃下实施干燥方法15分钟。将2.0cm长度的Ag电极在2.0cm距离下经由掩模气相沉积至聚合物层上。然后,通过用解剖刀划出两条线而使电极之间的层的正方形区域与该层的其余部分电隔离。借助欧姆计测量Ag电极之间的表面电阻。借助StylusProfilometer(Dektac150,Veeco)测量划开位置处的聚合物层厚度。
实施例
制备储备分散体的方法
a)储备分散体a:
制备基于PEDOT:PSS丝网印刷浆CleviosTMSV3的非水性PEDOT:PSS分散体(储备分散体)。所述储备分散体包含PEDOTCleviosSV3(37.7重量%)、二甘醇(5.2重量%)、丙二醇(27.0重量%)、Disparlon(0.1重量%)、乙醇(30.0重量%)。对所述储备分散体的批料而言,首先使用获自VMA-GetzmannGmbH的DispermatCV/S将241.7gPEDOTCleviosSV3在1,500rpm下分散1小时。然后在搅拌的同时以所述顺序添加33.64g二甘醇、73.17g1,2-丙二醇和0.58gDisparlon,使用获自VMA-GetzmannGmbH的DispermatCV/S在1,000rpm下分散4小时。然后将分散体经Seitz3500型过滤器过滤两次。然后向该批料中再次添加156.91g乙醇,用磁力搅拌器将该混合物在200-300rpm下搅拌15分钟。制得的储备分散体具有5.9重量%的残余水含量和0.7重量%的固含量。水含量通过卡尔〃费歇尔滴定法测定。
在使用前,将储备分散体在室温下经5μm针筒过滤器(Minisart,Sartorius)过滤。
b)储备分散体b:
在a)中获得的储备分散体的若干重要参数例如粘度、层的不透明度/浊度和过滤性可通过后处理显著改善。由所述储备分散体出发且得到经后处理的储备分散体的方法包括如下步骤:经深度过滤器过滤,随后超声处理。
对后处理而言,将2000g在a)中获得的储备分散体经Seitz3500型过滤器过滤一次。然后用SartoriusP型超声池处理由此获得的储备分散体。为此,在冷冰却下将2升/分钟的分散体在开放回路中泵送并通过超声池。将所述混合物以此方式处理约4小时,或者直至达到小于30mPas的粘度。由此获得的最终后处理储备分散体具有25-30mPas(与在a)中获得且具有50mPas分散体的储备分散体相比;参见表1)的降低的粘度。粘度使用由ThermoScientific获得的RotoVisco1在100/s剪切速率下测定。此外,在玻璃上测定薄、干的120nm厚后处理储备分散体层(制备用于测定电导率)的浊度(雾度)。
令人惊讶地,通过后处理,浊度由6(较不透明)降至0.3(透明)。浊度使用获自Byk的Haze-GardPlus测量。为了测量浊度(雾度),根据ASTMD1003测定总透射比(对发光体C而言)。该值为与入射光束偏离平均超过2.5°的透射光的百分比。储备分散体的电导率未因后处理而显著变化,且一直保持100-150S/cm的高水平。后处理储备分散体经5μm针筒过滤器的过滤性由于后处理而急剧提高,由初始的约3.5ml提高至大于100ml,因此能放大该物料的处理。经5μm针筒过滤器的过滤性通过测定在针筒过滤器上的适度指压下的滤液体积而测定。
表1:在a)中获得的储备分散体和在b)中获得的后处理储备分散体的性质对比
根据如下配方制备本发明的组合物:
处于有机溶剂中且具有表面活性剂和增粘剂添加剂的PEDOT:PSS(本发明 的组合物I):
组合物Ia:
批料中所述的重量百分比是针对5.00g组合物Ia的总批料大小的,其对应于100重量%。因此,组合物Ia的批料包含5重量%增粘剂添加剂。
4.47g[89.4重量%]在a)中获得的储备分散体
0.03g[0.6重量%]表面活性剂溶液(包含0.015g[0.3重量%]表面活性剂TEGOTMTWIN4000作为硅氧烷(Evonik)和0.015g[0.3重量%]异丙醇作为第一助溶剂)
0.50g[10.0重量%]增粘剂添加剂溶液(包含0.25g[5重量%]二氯苯和0.25g[5重量%]异丙醇作为第二助溶剂)
组合物Ib:
批料中所述的重量百分比是针对5.00g组合物Ib的总批料大小的,其对应于100重量%。因此,组合物Ib的批料包含15重量%增粘剂添加剂。
3.47g[69.4重量%]在a)中获得的储备分散体
0.03g[0.6重量%]表面活性剂溶液(包含0.015g[0.3重量%]表面活性剂TEGOTMTWIN4000作为硅氧烷(Evonik)和0.015g[0.3重量%]异丙醇作为第一助溶剂)
1.5g[30.0重量%]增粘剂添加剂溶液(包含0.75g[15重量%]二氯苯和0.75g[15重量%]异丙醇作为第二助溶剂)
提供所述储备分散体。然后在持续搅拌下以此顺序添加表面活性剂溶液和添加剂溶液。然后搅拌所述混合物,直至存在所述分散体与组分的均匀且充分混合的混合物以作为涂料组合物。涂料组合物Ia和Ib的电导率为100-150S/cm。
处于有机溶剂中且具有表面活性剂的PEDOT:PSS(本发明的组合物II):
批料中所述的重量百分比是针对5.00g组合物II的总批料大小的,其对应于100重量%。
4.97g[99.4重量%]在a)中获得的储备分散体
0.03g[0.6重量%]表面活性剂溶液(包含0.015g[0.3重量%]表面活性剂TEGOTMTWIN4000作为硅氧烷(Evonik)和0.015g[0.3重量%]异丙醇作为第一助溶剂)
提供所述储备分散体。然后在持续搅拌下添加表面活性剂溶液。然后搅拌所述混合物,直至存在所述分散体与组分的均匀且充分混合的混合物以作为涂料组合物。涂料组合物II的电导率为100-150S/cm。
处于有机溶剂中的PEDOT:PSS(本发明的组合物III):
批料中所述的重量百分比是针对5.00g组合物III的总批料大小的,其对应于100重量%。
5.00g[100重量%]在a)中获得的储备分散体
涂料组合物III的电导率为100-150S/cm。
具有a)水;b)水和表面活性剂的对比实施例:
为了进行对比,将非水性PEDOT:PSS类型(组合物Ia和Ib、II和III)与水性PEDOT:PSS型(对比实施例a)和b))对比。制备基于PEDOT:PSSCleviosTMPH510且无高沸物(二甲亚砜)的水性PEDOT:PSS分散体(对比储备分散体)。对比储备分散体基于PEDOTCleviosTMPH510。
对对比储备分散体的批料而言,首先将10.0gPEDOTCleviosTMPH510引入玻璃烧杯中,并添加8.0g水,同时搅拌。然后用磁力搅拌器将所述混合物在200rpm下搅拌,直至存在分散体的均一且充分混合的混合物。所述对比储备分散体具有1.0重量%的固含量。
对比实施例a):
批料中所述的重量百分比是针对5.00g对比实施例a)组合物的总批料大小的,其对应于100重量%。
5.00g[100重量%]上述对比储备分散体
所述不具有表面活性剂的水性PEDOT:PSS分散体直接且以未变化的形式使用。对比实施例1a)的电导率为0.1-1S/cm。在使用前,将分散体在室温下经亲水0.45μm针筒过滤器(SartoriusStedimMinisart)过滤。
对比实施例b):
批料中所述的重量百分比是针对5.00g对比实施例b)组合物的总批料大小的,其对应于100重量%。
4.97g[99.4重量%]上述对比储备分散体
0.03g[0.6重量%]表面活性剂溶液(包含0.015g[0.3重量%]表面活性剂TEGOTMTWIN4000作为硅氧烷(Evonik)和0.015g[0.3重量%]异丙醇作为第一助溶剂)
提供所述对比储备分散体。然后在持续搅拌下添加表面活性剂溶液。然后搅拌所述混合物,直至存在所述分散体与组分的均匀且充分混合的混合物作为涂料组合物。对比实施例1a)的电导率为0.1-1S/cm。在使用前,将分散体在室温下经亲水0.45μm针筒过滤器(SartoriusStedimMinisart)过滤。
表2(第1和2部分):具有表面活性剂含量、增粘剂添加剂和助溶剂的本发明和对比实施例的所有涂料组合物列表。
部分1
1)DCB=二氯苯
部分2
2)IPA=异丙醇
在表面溶解性质研究中,对具有5重量%增粘剂添加剂的本发明涂料组合物Ia发现在3分钟后(参见表3)在P3HT:PCBM层中PCBM(400nm)的稍稍选择性表面溶解。将>1%的吸光率降低评价为表面溶解过程。为了示意表面溶解的效果,选择10分钟的另一更长作用时间和具有15重量%的提高增粘剂添加剂浓度的涂料组合物Ib。在这种情况下,即使肉眼也发现颜色和强度发生明显变化,因此显然这超过了1%的吸光率降低。在所有情况下,PCBM的溶出程度都比P3HT要高得多,在这种情况下,该选择性过程对用于倒置OPV电池中的应用可能是有利的。另一方面,不含增粘剂添加剂的涂料组合物II和III以及水性对比实施例a)和b)未显示出表面溶解性质。
表3:PCBM在3和10分钟作用时间后的表面溶解性质的对比—在400nm特征波长下吸光率的降低
表4:活性层的润湿性和导电聚合物层的粘合性
++=无缺陷、均匀的层;+=均匀的层,层中具有<30面积%的空穴缺陷;0=均匀的层,层中具有大于30面积%至60面积%的空穴缺陷;-=层中具有大于60面积%的空穴缺陷;--=未形成层,成珠。
表4显示了本发明的涂料组合物Ia、II和III,其具有比对比实施例a)可检测地好的成层性能,其中具有增粘剂添加剂和助溶剂的有机类型Ia获得了最好的层。此外,还清楚看出在活性层上的<45°的较小接触角,对涂料Ia和II而言<30°。涂料组合物III的接触角可检测地小于对比实施例a)和b)。这强调了本发明的有机涂料组合物III与水性对比实施例a)和b)相比的更好涂覆性质。
在使用粘合带(3MPost-it)的“横切带”测试的粘合性测试(参见表4)中,发现具有增粘剂添加剂的涂料组合物Ia根本没有发生剥离,其因此为类别5B/0%。另一方面,在不含增粘剂添加剂的涂料组合物II和III以及对比实施例b)情况下,层的35-65%正方形或区域与P3HT:PCBM剥离,因此这些为类别1B/35-65%。所述测试仅可针对形成均匀的封闭层的组合物。
因此,可清楚地看出,通过将作为增粘剂添加剂的非极性溶剂二氯苯添加至本发明涂料组合物Ia的非水性PEDOT:PSS分散体中,可获得PEDOT:PSS层与P3HT:PCBM层的粘合性的改进。本发明涂料组合物II和III相对于对比实施例a)和b)的优越性也可由此清楚地看出。
表5:电池的OPV特性数据,在电池Ia中具有含增粘剂添加剂的本发明涂料组合物Ia,在电池III中具有不含表面活性剂和增粘剂添加剂的本发明涂料组合物III,在电池b)中具有含水对比实施例b)
OPV电池可由本发明的涂料组合物Ia和III制备。非本发明的涂料组合物a)和b)不适于制备OPV电池。即使使用非本发明的涂料组合物b)作为具有表面活性剂的水性体系,也不能制备OPV电池。另一方面,使用包含有机溶剂而不含表面活性剂的本发明涂料组合物III可成功地实现此点。
附图标记列表:
1层状体
2,2'包含导电聚合物(例如PEDOT:PSS)的导电层
3,3'光活性层(例如P3HT:PCBM)
4,4'中间层
5有机光伏电池
6空穴触点或空穴收集电极(例如银层)
7电子传输层(例如氧化锌或氧化钛)
8电子触点或电子收集电极(消费者与源极)(例如ITO,TCO=透明导电氧化物)
9基材
10粘合带

Claims (30)

1.一种制备层状体(1)的方法,其至少包括如下工艺步骤:
I)提供光活性层(3);
II)用至少包含如下的涂料组合物层叠光活性层(3):
a)导电聚合物,
b)有机溶剂,
III)从在工艺步骤II)中层叠的组合物中至少部分移除有机溶剂b),从而获得层叠在光活性层(3)上的导电层(2)。
2.根据权利要求1的方法,其中所述涂料组合物包含表面活性剂c)。
3.根据权利要求1或2的方法,其中所述涂料组合物包含作为增粘剂添加剂的d)另一不同于组分b)和组分c)且与组分b)混溶的有机溶剂,其中光活性层(3)可溶于该增粘剂添加剂中。
4.根据前述权利要求中任一项的方法,其中光活性层(3)为非极性层。
5.根据前述权利要求中任一项的方法,其中光活性层(3)包含聚-3-己基噻吩和苯基-C61-丁酸甲酯的混合物(P3HT:PCBM)作为疏水性化合物。
6.根据前述权利要求中任一项的方法,其中工艺步骤II)所用组合物中的导电聚合物a)为阳离子聚噻吩,其以阳离子聚噻吩与作为抗衡离子的聚阴离子的离子配合物形式存在。
7.根据前述权利要求中任一项的方法,其中导电聚合物a)以聚(3,4-乙撑二氧噻吩)和聚苯乙烯磺酸的离子配合物(PEDOT:PSS)形式存在。
8.根据前述权利要求中任一项的方法,其中有机溶剂b)选自如下组:甲醇、乙醇、1-丙醇、2-丙醇、1,2-丙二醇、1,3-丙二醇、乙二醇、二甘醇、丙二醇、二丙二醇、甘油以及这些有机溶剂中两种或更多种的混合物。
9.根据前述权利要求中任一项的方法,其中表面活性剂c)为非离子表面活性剂。
10.根据前述权利要求中任一项的方法,其中增粘剂添加剂b)为其中一个或多个氢原子可任选被卤原子代替的芳族化合物。
11.根据前述权利要求中任一项的方法,其中增粘剂添加剂b)选自如下组:丙酮、二甲苯、苯乙烯、苯甲醚、甲苯、硝基苯、苯、环己烷、四氢呋喃、氯萘和氯苯、其衍生物以及这些中至少两种的混合物。
12.根据前述权利要求中任一项的方法,其中工艺步骤II)中所用的组合物可通过包括如下工艺步骤的方法获得:
IIa)提供包含导电聚合物a)和有机溶剂b)的组合物A;
IIb)提供包含表面活性剂c)和第一助溶剂的组合物B;
IIc)提供包含增粘剂添加剂b)和第二助溶剂的组合物C;
IId)将组合物A、B和C以任意所需的顺序混合。
13.根据前述权利要求中任一项的方法,其中工艺步骤II)中所用的组合物包含在每种情况下基于该组合物总重量的:
-0.4-1重量%导电聚合物a);
-78-96重量%有机溶剂b);
-0.1-1.1重量%表面活性剂c);
-1-15重量%增粘剂添加剂b);和
-0-15重量%一种或多种辅助物质。
14.根据前述权利要求中任一项的方法,其中工艺步骤II)中所用的组合物包含小于6重量%的水,基于该组合物的总重量。
15.一种可通过根据前述权利要求中任一项的方法获得的层状体(1)。
16.根据权利要求15的层状体(1),其包括:
i)包含至少一种疏水性化合物的光活性层(3);
ii)包含导电聚合物且层叠在光活性层(3)上的导电层(2);和
iii)位于光活性层(3)和导电层(2)之间且包含来自导电层(2)的导电聚合物和来自光活性层(3)的所述至少一种疏水性化合物的混合物的中间层(4)。
17.根据权利要求16的层状体(1),其中光活性层(3)包含比中间层(4)更少的来自导电层(2)的导电聚合物,且导电层(2)包含比中间层(4)更少的来自光活性层(3)的所述至少一种疏水性化合物。
18.一种层状体(1),其包括:
i)包含至少一种疏水性化合物的光活性层(3);
ii)包含导电聚合物且层叠在光活性层(3)上的导电层(2);和
iii)位于光活性层(3)和导电层(2)之间且包含来自导电层(2)的导电聚合物和来自光活性层(3)的所述至少一种疏水性化合物的混合物的中间层(4)。
19.根据权利要求18的层状体(1),其中光活性层(3)包含比中间层(4)更少的来自导电层(2)的导电聚合物,且导电层(2)包含比中间层(4)更少的来自光活性层(3)的所述至少一种疏水性化合物。
20.根据权利要求18或19的层状体(1),其中光活性层(3)为非极性层。
21.根据权利要求18-20中任一项的层状体(1),其中光活性层(3)包含聚-3-己基噻吩和苯基-C61-丁酸甲酯的混合物(P3HT:PCBM)作为疏水性化合物。
22.根据权利要求18-21中任一项的层状体(1),其中工艺步骤II)所用组合物中的导电聚合物a)为阳离子聚噻吩,其以阳离子聚噻吩与作为抗衡离子的聚阴离子的离子配合物形式存在。
23.根据权利要求18-22中任一项的层状体(1),其中导电聚合物以聚(3,4-乙撑二氧噻吩)和聚苯乙烯磺酸的离子配合物(PEDOT:PSS)形式存在。
24.根据权利要求18-23中任一项的层状体(1),其中在本文所述的“横切带测试”中移除的导电层面积小于5%。
25.一种有机光伏电池(5),其包括根据权利要求15-24中任一项的层状体(1)。
26.根据权利要求25的有机光伏电池(5),其包括:
a.阳极(6);
b.如权利要求15-24中任一项所定义的层状体;
c.合适的话,电子传输层(7);和
d.阴极(8)。
27.太阳能电池组件,其包括至少一个根据权利要求25或26的有机光伏电池(6)。
28.一种组合物,其包含基于该组合物的总重量的:
-0.4-0.7重量%的PEDOT:PSS;
-78-96重量%的有机溶剂b),其选自乙二醇、丙二醇、乙醇以及这些中至少两种的混合物;
-0.1-1.1重量%的表面活性剂;
-1-15重量%的增粘剂添加剂,其选自二甲苯、甲苯、苯乙烯、苯甲醚、环己烷、四氢呋喃、氯苯、二氯苯或这些中至少两种的混合物;
-0-15重量%的一种或多种辅助物质。
29.根据权利要求28的组合物,其中所述组合物具有至少一种如下性质:
A)所述组合物包含基于该组合物总重量为小于6重量%的水;
B)所述组合物中的PEDOT:PSS重量比为1:2-1:6;
C)由所述组合物形成的导电膜的特征在于小于10,000Ω·cm的比电阻。
30.根据权利要求28或29的组合物在P3HT:PCBM层上制备导电层或者改善P3HT:PCBM层上的导电层粘合性中的用途。
CN201480018224.3A 2013-03-29 2014-03-27 作为pedot/pss分散体中的增粘剂添加剂的非极性溶剂 Pending CN105074947A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE102013005436 2013-03-29
DE102013005436.2 2013-03-29
US201361819070P 2013-05-03 2013-05-03
US61/819,070 2013-05-03
DE102013008460.1A DE102013008460A1 (de) 2013-05-21 2013-05-21 Unpolare Lösungsmittel als Haftvermittler-Additiv in PEDOT/PSS-Dispersionen
DE102013008460.1 2013-05-21
US201361827130P 2013-05-24 2013-05-24
US61/827,130 2013-05-24
PCT/EP2014/000829 WO2014154360A2 (en) 2013-03-29 2014-03-27 Non-polar solvents as an adhesion promoter additive in pedot/pss dispersions

Publications (1)

Publication Number Publication Date
CN105074947A true CN105074947A (zh) 2015-11-18

Family

ID=51625551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480018224.3A Pending CN105074947A (zh) 2013-03-29 2014-03-27 作为pedot/pss分散体中的增粘剂添加剂的非极性溶剂

Country Status (7)

Country Link
US (1) US20160056397A1 (zh)
EP (1) EP2979312A2 (zh)
JP (1) JP2016515759A (zh)
KR (1) KR20150135529A (zh)
CN (1) CN105074947A (zh)
TW (1) TW201446528A (zh)
WO (1) WO2014154360A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299454A (zh) * 2019-07-04 2019-10-01 湖南师范大学 一种以钛酸钡作为电子传输材料的钙钛矿薄膜太阳能电池及其制备方法
US11111586B2 (en) 2016-02-23 2021-09-07 South Dakota Board Of Regents Self-organized and electrically conducting PEDOT polymer matrix for applications in sensors and energy generation and storage
CN113707815A (zh) * 2021-08-03 2021-11-26 深圳市华星光电半导体显示技术有限公司 钙钛矿器件及其制备方法和钙钛矿层前驱液

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2997581A4 (en) 2013-05-17 2017-05-03 Biotectix LLC Impregnation of a non-conductive material with an intrinsically conductive polymer
JP6583969B2 (ja) * 2014-11-19 2019-10-02 ヘレウス・メディカル・コンポーネンツ・リミテッド・ライアビリティ・カンパニーHeraeus Medical Components LLC 3次元基材のための導電性ポリマーコーティング
EP3249708A1 (en) * 2014-11-21 2017-11-29 Heraeus Deutschland GmbH & Co. KG Pedot in perovskite solar cells
EP3223328B1 (en) * 2016-03-25 2020-07-29 Kolon Industries, Inc. Organic photovoltaic cell and manufacturing method thereof
KR101958203B1 (ko) * 2016-09-02 2019-03-14 주식회사 포리스 Pedot/pss 분산액, 상기 분산액으로 제조된 광경화형 대전 방지 코팅조성물, 및 상기 코팅조성물을 포함하는 집진통
GB2554404A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Solvent systems for preparation of photosensitive organic electronic devices
GB2559337A (en) 2017-01-30 2018-08-08 Saralon Gmbh Method of producing PEDOT:PSS based electrodes
KR102064650B1 (ko) * 2017-05-02 2020-01-09 주식회사 엘지화학 유기 태양 전지의 제조방법 및 이를 이용하여 제조된 유기 태양 전지
US20200392558A1 (en) * 2017-09-01 2020-12-17 Hitachi Chemical Diagnostics Systems Co., Ltd. Method for measuring cholesterol in low-density lipoprotein, measurement reagent, and measurement kit
CN111466038A (zh) * 2017-12-15 2020-07-28 日产化学株式会社 有机光电转换元件的空穴捕集层用组合物
CN111868171A (zh) * 2018-03-15 2020-10-30 日产化学株式会社 电荷传输性组合物
CN111595924B (zh) * 2020-04-29 2023-02-28 中国石油天然气股份有限公司 凝析油气侵程度的确定方法
CN112071660B (zh) * 2020-08-03 2021-08-24 陕西国防工业职业技术学院 一种超长聚吡咯纳米线型电极材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162955A (ja) * 1996-11-28 1998-06-19 Seiko Precision Kk 有機el素子の製造方法
CN1395456A (zh) * 2001-06-25 2003-02-05 三星Sdi株式会社 空穴迁移层以及制造利用该空穴迁移层的有机场致发光器件的方法
US20040096570A1 (en) * 2002-11-15 2004-05-20 Michael Weaver Structure and method of fabricating organic devices
EP1533818A1 (de) * 2003-11-14 2005-05-25 COMA Beteiligungsgesellschaft mbH Photoelektrochemische Solarzelle
CN1639297A (zh) * 2002-03-07 2005-07-13 阿克里奥公司 电化学器件
CN101225183A (zh) * 2008-01-29 2008-07-23 福州大学 一种聚碳酸酯抗静电光学球罩的制备方法
CN101821815A (zh) * 2007-08-29 2010-09-01 H.C.斯达克克莱维欧斯有限公司 通过喷墨印刷制备导电涂层的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795335B2 (en) * 2003-01-28 2010-09-14 Toppan Forms Co., Ltd. Conductive polymer gel and process for producing the same actuator, patch label for ion introduction, bioeletrode, toner, conductive functional member antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162955A (ja) * 1996-11-28 1998-06-19 Seiko Precision Kk 有機el素子の製造方法
CN1395456A (zh) * 2001-06-25 2003-02-05 三星Sdi株式会社 空穴迁移层以及制造利用该空穴迁移层的有机场致发光器件的方法
CN1639297A (zh) * 2002-03-07 2005-07-13 阿克里奥公司 电化学器件
US20040096570A1 (en) * 2002-11-15 2004-05-20 Michael Weaver Structure and method of fabricating organic devices
EP1533818A1 (de) * 2003-11-14 2005-05-25 COMA Beteiligungsgesellschaft mbH Photoelektrochemische Solarzelle
CN101821815A (zh) * 2007-08-29 2010-09-01 H.C.斯达克克莱维欧斯有限公司 通过喷墨印刷制备导电涂层的方法
CN101225183A (zh) * 2008-01-29 2008-07-23 福州大学 一种聚碳酸酯抗静电光学球罩的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C HE等: "Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes", 《J.MATER.CHEM》 *
C.Y. KWONG等: "Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells", 《CHEMICAL PHYSICS LETTERS》 *
SR DUPONT等: "Adhesion properties of inverted polymer solarcells: Processing and film structure parameters", 《ORGANIC ELECTRONICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111586B2 (en) 2016-02-23 2021-09-07 South Dakota Board Of Regents Self-organized and electrically conducting PEDOT polymer matrix for applications in sensors and energy generation and storage
US11905609B2 (en) 2016-02-23 2024-02-20 South Dakota Board Of Regents Self-organized and electrically conducting PEDOT polymer matrix for applications in sensors and energy generation and storage
CN110299454A (zh) * 2019-07-04 2019-10-01 湖南师范大学 一种以钛酸钡作为电子传输材料的钙钛矿薄膜太阳能电池及其制备方法
CN113707815A (zh) * 2021-08-03 2021-11-26 深圳市华星光电半导体显示技术有限公司 钙钛矿器件及其制备方法和钙钛矿层前驱液
CN113707815B (zh) * 2021-08-03 2023-06-30 深圳市华星光电半导体显示技术有限公司 钙钛矿器件及其制备方法和钙钛矿层前驱液

Also Published As

Publication number Publication date
WO2014154360A3 (en) 2014-12-18
JP2016515759A (ja) 2016-05-30
TW201446528A (zh) 2014-12-16
EP2979312A2 (en) 2016-02-03
US20160056397A1 (en) 2016-02-25
WO2014154360A2 (en) 2014-10-02
KR20150135529A (ko) 2015-12-02

Similar Documents

Publication Publication Date Title
CN105074947A (zh) 作为pedot/pss分散体中的增粘剂添加剂的非极性溶剂
Cai et al. Ionic additive engineering toward high‐efficiency perovskite solar cells with reduced grain boundaries and trap density
Pan et al. Advances in design engineering and merits of electron transporting layers in perovskite solar cells
Wang et al. V2O5-PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells
CN107001596B (zh) 在钙钛矿太阳能电池中的pedot
Gevorgyan et al. Improving, characterizing and predicting the lifetime of organic photovoltaics
US11373813B2 (en) Perovskite solar cell with wide band-gap and fabrication method thereof
TWI608628B (zh) 光伏系統及用於製造光伏系統之噴塗方法
WO2012042264A2 (en) Printable composition, method and uses thereof
Makha et al. Ternary semitransparent organic solar cells with a laminated top electrode
Kaçuş et al. The power conversion efficiency optimization of the solar cells by doping of (Au: Ag) nanoparticles into P3HT: PCBM active layer prepared with chlorobenzene and chloroform solvents
Li et al. Highly efficient and stable P3CT-Na based MAPbI3 solar cells with a Sn-rich ITO anode
KR20230068438A (ko) 통합 탠덤 태양광 모듈 제작을 위한 방법 및 소자
CN104733616A (zh) 一种太阳能电池及其制备方法
Shirvani et al. Comparative study on the electrochemical synthesis of zinc oxide nanorods using chronoamperometry and chronopotentiometry and their application in inverted polymer solar cells
Jia et al. Defect Passivation by Natural Piperine Molecule Enabling for Stable Perovskite Solar Cells with Efficiencies over 23%
JP5304448B2 (ja) 有機光電変換素子
JP2013026483A (ja) 有機光電変換素子、有機光電変換素子の製造方法及び太陽電池
Inaba et al. Eco-Friendly Push-Coated Polymer Solar Cells with No Active Material Wastes Yield Power Conversion Efficiencies over 5.5%
AU2012323822B2 (en) Structure directed vapour phase polymerisation of conductive polymers
JP5944120B2 (ja) 有機光電変換素子とその製造方法、およびそれを用いた有機太陽電池
KR101364018B1 (ko) 유기태양전지 및 그의 제조방법
JP2007035966A (ja) 有機光電変換素子とその製造方法
KR20100106779A (ko) 태양 전지 및 그 제조 방법
Jenekhe et al. Molecular and nanoscale engineering of high efficiency excitonic solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151118

WD01 Invention patent application deemed withdrawn after publication