CN105047754B - 一种光伏电池用纳米复合导电薄膜的制备方法 - Google Patents

一种光伏电池用纳米复合导电薄膜的制备方法 Download PDF

Info

Publication number
CN105047754B
CN105047754B CN201510375150.5A CN201510375150A CN105047754B CN 105047754 B CN105047754 B CN 105047754B CN 201510375150 A CN201510375150 A CN 201510375150A CN 105047754 B CN105047754 B CN 105047754B
Authority
CN
China
Prior art keywords
photovoltaic cell
conductive film
preparation
nano combined
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510375150.5A
Other languages
English (en)
Other versions
CN105047754A (zh
Inventor
张卫华
赵彦珍
洪繁
陈源清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201510375150.5A priority Critical patent/CN105047754B/zh
Publication of CN105047754A publication Critical patent/CN105047754A/zh
Application granted granted Critical
Publication of CN105047754B publication Critical patent/CN105047754B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种光伏电池用纳米复合导电薄膜的制备方法,具体为:将镀膜前驱溶液包覆的纳米光致发光陶瓷材料沉积气雾沉积在加热的基板上,即得到光伏电池用纳米复合导电薄膜。本发明采用红色荧光粉可以将太阳光的紫外光波段转变为可见光,便于光伏电池中硅器件的光电转换,提高光电转换利用率1%~1.5%;利用透明导电薄膜的导电性,提高并保持长期工作中的高透过率,提高了实际工况下的光电转换效率和利用率;利用透明导电膜红外反射特性,降低其热效应,稳定太阳能电池中硅器件的工作点,提高了其光电转换效率,从而有效改善和提高了目前太阳能电池的工程适用性,实现免维护和长周期工作。

Description

一种光伏电池用纳米复合导电薄膜的制备方法
技术领域
本发明属于光电薄膜制备技术领域,涉及一种光伏电池用纳米复合导电薄膜的制备方法。
背景技术
近年来,以高透光率为特征的玻璃深加工产品在光伏电池(太阳能)电池窗口的应用表现出越来越强劲的市场需求和技术优势,形成了一个代表性的玻璃深加工产业方向。
随着太阳能光伏电池从军事领域、航天领域普及进入工业、商业、农业、通信、家用电器以及公用设施等领域,其便捷灵活性尤其适用于在边远地区、高山、沙漠、海岛和农村的地域,表现出强劲的市场需求。但是,作为其关键组件之一的窗口玻璃,主要的技术要求是在可见光和近红外区域的高透过率。目前服役中的市场化太阳能电池,主要采用超白玻璃和表面涂覆增透膜的方法来提高其透过率,但是由于窗口玻璃表面静电荷累积、导致使用过程中的窗口玻璃表面的灰尘吸附严重,直接影响其实际透光率和光电转换效率,因此,玻璃表面的防静电涂层制备对于抑制太阳能电池窗口玻璃表面灰尘静电吸附十分重要。
另外,对于太阳能电池的光电转换而言,其硅晶体的光波长吸收转换波长介于400nm~1100nm,而太阳光中的紫外波段(400nm以下)的光能不能利用,大大降低其光电转换利用率,因此利用光致发光材料,将紫外波段的太阳光能转换为可见波长的发光(593nm~703nm),对于提高太阳能电池的光电转换利用率、抑制高能量紫外线对硅晶体器件的损伤非常必要。
因此,如何拓宽太阳能光电转换波长范围、抑制表面灰尘吸附是光伏电池窗口玻璃相关镀膜产品开发和应用研究的热点领域。
发明内容
本发明的目的是提供一种光伏电池用纳米复合导电薄膜的制备方法,解决了现有单一氧化硅基增透膜涂层增透效果有限、表面静电灰尘吸附的局限,同时延宽了其吸收波长到紫外波段、稳定太阳能电池中硅器件的工作点,从根本上提高了其光电转换效率,改善和提高了目前太阳能电池的工程适用性,实现免维护和长周期工作。
本发明所采用的技术方案是,一种光伏电池用纳米复合导电薄膜的制备方法,具体按以下步骤实施:
步骤1,制备沉积气雾:
1.1将纳米光致发光陶瓷材料放入粉体定量给料器中,采用高速气流虹吸效应携带纳米光致发光陶瓷材料形成雾化气流;
1.2将镀膜前驱溶液注入雾化器中,通过上述雾化气流将镀膜前驱溶液雾化,形成镀膜前驱溶液包覆的纳米光致发光陶瓷材料沉积气雾,并将其导入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将基板在加热室中加热,由传送器送入雾化沉积室,沉积气雾在基板上沉积,得到光伏电池用纳米复合导电薄膜。
本发明的特点还在于,
步骤1中镀膜前驱溶液采用市售的锑掺杂氧化锡ATO、氟掺杂氧化锡FTO、锡掺杂氧化铟ITO醇基或水基溶液,pH约为5~7,浓度为10wt%~30wt%。
步骤1中纳米光致发光陶瓷材料采用市售的稀土铕掺杂的钒酸钇Eu:YVO4或稀土铕掺杂的钒磷酸钇Eu:Y(P1-xVx)O4,x=0.4~0.6红色荧光粉,纳米光致发光陶瓷材料粒径为15nm~50nm。
步骤1.1中所述雾化气流气源为过滤干燥的压缩空气、氮气、氧气。
步骤1.2中粉体定量给料器给料速度为0.1g/min~2g/min,高速气流流量为1L/min~7L/min。
步骤2中加热温度为480℃~650℃,气雾沉积时间为5~30s。
制备得到的光伏电池用纳米复合导电薄膜厚度为50nm~200nm。
本发明的有益效果是,
1、通过纳米粒子的红色荧光粉可以将太阳光的220nm~328nm波段内紫外光波段转变为593nm~704nm波段内的可见光,便于光伏电池中硅器件的光电转换,提高光电转换利用率1%~1.5%;
2、通过ATO、FTO、ITO的导电性,去除表面的静电累积,避免静电吸尘,提高并保持长期工作中的高透过率,实现免清洁,同时提高实际工况下的光电转换效率和利用率;
3、ATO、FTO、ITO透明导电膜具有可见光透过和红外反射特性,可以反射太阳光中的红外波段,降低其热效应,有利于稳定太阳能电池中硅器件的工作点,提高其光电转换效率。
因此,本发明能够从根本上有效改善和提高目前太阳能电池的工程适用性,实现免维护和长周期工作,同时大幅度提高其实际光电转换效率和光电转换利用率。
附图说明
图1是本发明光伏电池用纳米复合导电薄膜的制备方法工艺流程图;
图2是本发明制备得到的纳米复合导电薄膜结构示意图;
图3是本发明实施例2制备得到稀土铕掺杂钒酸钇(Eu:YVO4)纳米粒子复合FTO薄膜的SEM照片;
图4是本发明实施例3制备得到的稀土铕掺杂钒酸钇(Eu:YVO4)纳米粒子复合ATO薄膜紫外激发可见光光谱图;
图5是本发明实施例4制备得到的稀土铕掺杂钒磷酸钇(Eu:Y(P0.5,V0.5)O4)纳米粒子复合ITO薄膜紫外激发可见光光谱图;
图6是本发明实施例5制备得到的稀土铕掺杂钒酸钇(Eu:YVO4)纳米粒子复合ITO薄膜紫外-可见光透光率曲线。
图中,1.光致发光纳米粒子,2.透明导电膜,3.基板。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了一种光伏电池用纳米复合导电薄膜的制备方法,如图1所示,具体按以下步骤实施:
步骤1,制备沉积气雾:
1.1将纳米光致发光陶瓷材料放入粉体定量给料器中,控制给料速度为0.1g/min~2g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为1L/min~7L/min;
雾化用气流采用过滤干燥的压缩空气、氮气、氧气等气源。
1.2将镀膜前驱溶液注入雾化器中,通过上述雾化气流将镀膜前驱溶液雾化,形成镀膜前驱溶液包覆的纳米光致发光陶瓷材料沉积气雾,并将其导入到雾化沉积室中。
其中镀膜前驱溶液采用市售商品化的锑掺杂氧化锡ATO、氟掺杂氧化锡FTO、锡掺杂氧化铟ITO醇基或水基溶液,pH约为5~7,浓度为10wt%~30wt%;锑掺杂氧化锡ATO、氟掺杂氧化锡FTO、锡掺杂氧化铟ITO醇基溶液为锑掺杂氧化锡ATO、氟掺杂氧化锡FTO、锡掺杂氧化铟ITO与异丙醇混合而成。
纳米光致发光陶瓷材料采用市售商品化的稀土铕掺杂的钒酸钇(Eu:YVO4)或钒磷酸钇(Eu:Y(P1-xVx)O4,x=0.4~0.6)红色荧光粉,纳米光致发光陶瓷材料粒径为15nm~50nm。
步骤2,纳米粒子复合薄膜沉积:
将基板在加热室中加热至480℃~650℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积5~30s,得到厚度为50nm~200nm的光伏电池用纳米复合导电薄膜,如图2所示。
基板采用光伏电池用超白玻璃基板,基板采用红外加热器、或红外加热窑炉加热。
本发明的技术原理是:
1、利用高速气流的虹吸负压原理,通过给料装置将光致发光陶瓷材料的纳米粒子按按设定比例携带混入,形成混合有光致发光陶瓷材料的雾化气流。
2、携带有光致发光材料的纳米粒子的雾化气流作为雾化气源,在雾化器内将注入的镀膜前驱溶液(ATO、FTO、ITO醇基或水基溶液)进行雾化,形成由前驱溶液包覆的光致发光纳米粒子的沉积气雾,并将其导入到雾化沉积室。
3、雾化沉积室中,当一定温度(480℃~650℃)的玻璃基板匀速进入后,在基板的高温作用下,沉积气雾发生热分解反应,形成包裹有纳米级光致发光陶瓷材料的连续的透明导电ATO或FTO或ITO薄膜。
4、通过调节前驱溶液浓度和粉体定量给料器给料速度,可以控制纳米粒子分散程度和比例;控制雾化气流量可以控制雾化沉积速率或膜厚生长速度,从而得到复合比例和不同膜厚的纳米粒子复合透明导电膜。
实施例1
步骤1,制备沉积气雾:
1.1将铕掺杂钒磷酸钇纳米陶瓷粉料(Eu:YPxV(1-x)O4,x=0.4~0.6,市售,15nm~20nm)放入粉体定量给料器中,控制给料速度为0.1g/min~0.22g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为1L/min~1.5L/min;
1.2雾化气流将雾化器中水体系的ATO(锑掺杂氧化锡)溶液(浓度:10wt%~12wt%)雾化,形成沉积气雾,并将其通入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将光伏电池用超白玻璃基板在加热室中加热至480℃~500℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积25~30s,得到厚度为50nm~600nm的光伏电池用纳米复合导电薄膜,薄膜方阻4000Ω/sq~5000Ω/sq,相对透过率≥95%。
实施例2
步骤1,制备沉积气雾:
1.1将铕掺杂钒酸钇纳米陶瓷粉料(Eu:YVO4,市售,30nm~40nm)放入粉体定量给料器中,控制给料速度为1.8g/min~2g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为6L/min~7L/min;
1.2雾化气流将雾化器中水体系的FTO(氟掺杂氧化锡)溶液(浓度:15wt%~20wt%)雾化,形成沉积气雾,并将其通入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将光伏电池用超白玻璃基板在加热室中加热至500℃~520℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积5~10s,得到厚度为150nm~170nm的光伏电池用纳米复合导电薄膜,薄膜方阻500Ω/sq~1000Ω/sq,相对透过率≥95%。其SEM照片如图3所示,Eu:YVO4纳米粒子在FTO薄膜表面弥散分布。
实施例3
步骤1,制备沉积气雾:
1.1将铕掺杂钒酸钇纳米陶瓷粉料(Eu:YVO4,市售,20nm~30nm)放入粉体定量给料器中,控制给料速度为0.5g/min~0.8g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为4L/min~5L/min;
1.2雾化气流将雾化器中异丙醇体系的ATO(锑掺杂氧化锡)溶液(浓度:15wt%~17wt%)雾化,形成沉积气雾,并将其通入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将光伏电池用超白玻璃基板在加热室中加热至640℃~650℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积18~20s,得到厚度为120nm~150nm的光伏电池用纳米复合导电薄膜,薄膜方阻1500Ω/sq~2000Ω/sq,相对透过率≥95%,其Eu:YVO4纳米粒子复合ATO薄膜紫外激发和可见光发射光谱如图4所示,紫外激发波段主要为280nm~325nm,特征发射光谱波段主要集中在618nm、614nm、593nm、698nm、704nm。
实施例4
步骤1,制备沉积气雾:
1.1将铕掺杂钒磷酸钇纳米陶瓷粉料(Eu:YPxV(1-x)O4,x=0.4~0.6,市售,40nm~50nm)放入粉体定量给料器中,控制给料速度为0.8g/min~1g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为3L/min~4L/min;
1.2雾化气流将雾化器中异丙醇体系的ITO(锡掺杂氧化铟)溶液(浓度:25wt%~30wt%)雾化,形成沉积气雾,并将其通入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将光伏电池用超白玻璃基板在加热室中加热至550℃~570℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积10~15s,得到厚度为170nm~200nm的光伏电池用纳米复合导电薄膜,薄膜方阻100Ω/sq~200Ω/sq,相对透过率≥93%,其紫外激发和可见光发射光谱如图5所示,紫外激发波段主要为220nm~328nm,特征发射光谱波段主要集中在619nm、614nm、593nm、698nm、703nm。
实施例5
步骤1,制备沉积气雾:
1.1将铕掺杂钒酸钇纳米陶瓷粉料(Eu:YVO4,市售,15nm~20nm)放入粉体定量给料器中,控制给料速度为0.5g/min~0.7g/min,采用高速气流虹吸负压使纳米光致发光陶瓷材料形成雾化气流,控制气流流量为3L/min~4L/min;
1.2雾化气流将雾化器中异丙醇体系的ITO(锡掺杂氧化铟)溶液(浓度:10wt%~12wt%)雾化,形成沉积气雾,并将其通入雾化沉积室。
步骤2,纳米粒子复合薄膜沉积:
将光伏电池用超白玻璃基板在加热室中加热至600℃~620℃,通过传送器送入雾化沉积室,使沉积气雾在基板上沉积25~30s,得到厚度为100nm~120nm的光伏电池用纳米复合导电薄膜,薄膜方阻500Ω/sq~900Ω/sq,相对透过率≥98%,其紫外-可见光透光率光谱如图6所示,在可见光400nm~800nm波段内。

Claims (7)

1.一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,具体按以下步骤实施:
步骤1,制备沉积气雾:
1.1将纳米光致发光陶瓷材料放入粉体定量给料器中,采用高速气流虹吸效应携带纳米光致发光陶瓷材料形成雾化气流;
1.2将镀膜前驱溶液注入雾化器中,通过上述雾化气流将镀膜前驱溶液雾化,形成镀膜前驱溶液包覆的纳米光致发光陶瓷材料沉积气雾,并将其导入雾化沉积室;
步骤2,纳米粒子复合薄膜沉积:
将基板在加热室中加热,由传送器送入雾化沉积室,沉积气雾在基板上沉积,得到光伏电池用纳米复合导电薄膜。
2.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,步骤1中所述镀膜前驱溶液采用锑掺杂氧化锡ATO、氟掺杂氧化锡FTO、锡掺杂氧化铟ITO醇基或水基溶液,pH为5~7,浓度为10wt%~30wt%。
3.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,步骤1中所述纳米光致发光陶瓷材料采用稀土铕掺杂的钒酸钇Eu:YVO4或稀土铕掺杂的钒磷酸钇Eu:Y(P1-xVx)O4,x=0.4~0.6红色荧光粉,纳米光致发光陶瓷材料粒径为15nm~50nm。
4.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,步骤1.1中所述雾化气流气源为过滤干燥的压缩空气、氮气、氧气。
5.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,步骤1.2中所述粉体定量给料器给料速度为0.1g/min~2g/min,步骤1.1中所述雾化气流流量为1L/min~7L/min。
6.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,步骤2中所述加热温度为480℃~650℃,气雾沉积时间为5~30s。
7.根据权利要求1所述的一种光伏电池用纳米复合导电薄膜的制备方法,其特征在于,制备得到的光伏电池用纳米复合导电薄膜厚度为50nm~200nm。
CN201510375150.5A 2015-06-30 2015-06-30 一种光伏电池用纳米复合导电薄膜的制备方法 Expired - Fee Related CN105047754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510375150.5A CN105047754B (zh) 2015-06-30 2015-06-30 一种光伏电池用纳米复合导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510375150.5A CN105047754B (zh) 2015-06-30 2015-06-30 一种光伏电池用纳米复合导电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105047754A CN105047754A (zh) 2015-11-11
CN105047754B true CN105047754B (zh) 2017-02-22

Family

ID=54454140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510375150.5A Expired - Fee Related CN105047754B (zh) 2015-06-30 2015-06-30 一种光伏电池用纳米复合导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105047754B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505117A (zh) * 2016-10-10 2017-03-15 江苏神科新能源有限公司 一种光伏组件和光伏发电系统
CN114807856A (zh) * 2022-04-28 2022-07-29 浙江大学 一种氟掺杂氧化铟锡透明导电薄膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546407A (zh) * 2003-12-02 2004-11-17 智 雷 F、Mn共掺杂沉积纳米SnO2透明隔热薄膜
CN101866964A (zh) * 2009-04-17 2010-10-20 张为 一种具有改善短波响应功能的薄膜太阳能电池
CN101857379B (zh) * 2010-06-09 2012-07-04 西安理工大学 氟掺杂氧化锡导电薄膜喷涂液及其制备方法

Also Published As

Publication number Publication date
CN105047754A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
CN104752546B (zh) 一种金属氧化物紫外探测器
CN105470400B (zh) 一种钙钛矿膜的制备方法和应用
CN102190448B (zh) 一种复合宽带减反增透薄膜及其制备方法
CN102969366B (zh) 一种具有光学减反射和波长转换功能的复合薄膜材料
CN105895829B (zh) 一种Cu:NiO纳米粒子、发光二极管及其制备方法
Yuan et al. Preparation and DSC application of the size-tuned ZnO nanoarrays
CN103183479A (zh) 一种具有光转化作用的减反射薄膜的制备方法
CN105047754B (zh) 一种光伏电池用纳米复合导电薄膜的制备方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
He et al. Downshifting and antireflective thin films for solar module power enhancement
CN102351434B (zh) 一种铈-铝共掺杂氧化锌薄膜的制备方法
Gökçeli et al. Investigation of hydrogen post-treatment effect on surface and optoelectronic properties of indium tin oxide thin films
CN102167520B (zh) 掺杂纳米azo系列透明隔热玻璃的制备方法
CN102251236A (zh) 一种钇-铝共掺杂氧化锌薄膜及其制备方法
Lim et al. Improved adhesion of multi-layered front electrodes of transparent a-Si: H solar cells for varying front colors
KR101466842B1 (ko) 투명전극용 산화아연계 박막 제조방법
CN101673773A (zh) 一种表面镀膜的太阳能电池组件玻璃及其制备方法
CN100351323C (zh) 一种涂膜材料及其制备方法
Senthilvelan et al. Novel sol-gel synthesis of cerium-doped ZnO thin films for photocatalytic activity
CN102891216B (zh) 一种双结构绒面ZnO基透明导电薄膜的制备方法
CN103866253B (zh) 一种高载流子浓度的超薄azo透明导电薄膜及其制备方法
CN103113897B (zh) 一种三氟醋酸盐溶液制备稀土金属氟化物ref3薄膜的方法
CN103337524B (zh) 自洁高效太阳能电池
CN105908127A (zh) 一种p型掺杂二氧化锡透明导电膜及其制备方法
CN101481790B (zh) 一种zao系半导体纳米导电膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20200630

CF01 Termination of patent right due to non-payment of annual fee