CN105036733A - 红外高屏蔽核壳结构遮光剂及其制备方法和应用 - Google Patents

红外高屏蔽核壳结构遮光剂及其制备方法和应用 Download PDF

Info

Publication number
CN105036733A
CN105036733A CN201510412397.XA CN201510412397A CN105036733A CN 105036733 A CN105036733 A CN 105036733A CN 201510412397 A CN201510412397 A CN 201510412397A CN 105036733 A CN105036733 A CN 105036733A
Authority
CN
China
Prior art keywords
shell structure
opalizer
weight
homogeneous
infrared high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510412397.XA
Other languages
English (en)
Other versions
CN105036733B (zh
Inventor
刘洪丽
李亚静
李婧
李洪彦
康伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN201510412397.XA priority Critical patent/CN105036733B/zh
Publication of CN105036733A publication Critical patent/CN105036733A/zh
Application granted granted Critical
Publication of CN105036733B publication Critical patent/CN105036733B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开红外高屏蔽核壳结构遮光剂及其制备方法和应用,遮光剂结构为TiO2包覆SiC的中空核壳结构陶瓷微球,其空心尺寸Φ0.8-1.5μm,核层SiC厚度0.1-0.2μm,壳层TiO2厚度0.1-0.3μm。将钛酸丁酯、聚硅氮烷、二乙烯基苯依次加入熔融石蜡中,磁力搅拌获得均一油相;乳化剂在超声条件分散于去离子水中,获得均一水相;将水相与油相高速搅拌乳化均匀;安装冷凝装置,乳液在油浴锅中反应,将产物离心清洗,烘干后进行烧结。在进行使用时,与SiO2气凝胶混合均匀并干压成型。本发明核壳结构陶瓷微珠尺寸可控、质轻、耐高温,这种核壳结构遮光剂能有效提高SiO2气凝胶的抗红外屏蔽性能。

Description

红外高屏蔽核壳结构遮光剂及其制备方法和应用
本申请是母案申请“一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法”的分案申请,母案申请的申请日为2014年1月17日,母案申请的申请号为2014100299668。
技术领域
本发明涉及一种尺寸可控的核壳结构陶瓷微球及其制备方法,更具体的说,涉及一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法,属于高温隔热材料领域。
背景技术
SiO2气凝胶是一种具有纳米孔结构的非晶态轻质材料,孔隙率高达99%,具有良好的隔热性能,用其制备的绝热材料具有轻质、热导率低、强度高等优点。可用于航空航天、建筑、工业、交通等重要领域。但是纯SiO2气凝胶在高温时对2-8μm红外波段的红外线具有穿透性,而且SiO2基隔热材料在超过800℃长时间使用时会使内部纳米孔隙结构遭到破坏,进而大幅降低SiO2的隔热效果。此外,SiO2气凝胶的强度很低,限制了其实际应用。因此,为了提高纳米SiO2多孔绝热材料的高温使用性能,引入具有高反射性能的红外遮光剂,从而有效减少材料辐射传热,对提高SiO2气凝胶的高温隔热性能具有积极意义。
目前针对SiO2气凝胶来说,主要的红外遮盖剂有炭黑、Al2O3无机陶瓷纤维、SiC微粉、六钛酸钾晶须、钛白粉等。其中炭黑是较早使用的一种红外遮光剂,但是其遇高温易氧化、使用温度低;Al2O3无机陶瓷纤维的纤维一般较长,其常用于制备纤维复合材料,遮光效果较差;SiC微粉、六钛酸钾晶须以及钛白粉与SiO2气凝胶掺杂后可明显降低纯SiO2气凝胶的红外透过率。但是这些粉体本身密度较大,在凝胶过程中极易发生沉淀,引起其在气凝胶中分散不均,降低了高温辐射传热遮蔽效果,而且沉淀物还会增加固相传热,致使气凝胶块体在干燥过程中开裂,严重影响其使用性能。
过去的几十年里,核壳结构以其特殊结构及独特的光电、磁、催化等性能被广泛的研究,然而大部分核壳结构的研究主要集中在催化性能、吸附性能以及电极材质等方面应用,对于热学方面的研究很少。随着“核-壳”结构粒子制备和表征技术的飞速发展,这类具有“核-壳”结构的粒子为解决隔热材料的技术瓶颈开辟了新的道路。已有研究表明,核壳结构较实心、多孔等结构具有更好的散射能力,并且核壳结构最优半径是0.3-1.6μm,壳层厚度是100-300nm。因此,开发研究尺寸可控且在高温环境下具有较强红外反射功能的核壳结构遮盖剂,以增强SiO2气凝胶的高温隔热性能显得尤为重要。
发明内容
本发明的目的在于克服现有技术的不足,提供一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法。采用乳液法与陶瓷先驱体转化法相结合,制备尺寸可控的核壳结构陶瓷微珠遮光剂,通过调整多界面核壳结构各层尺寸、界面状态,获得具有最佳结构的SiCTiO2抗红外遮光剂。将制得的核壳微球与SiO2气凝胶进行干压成型,分析其对SiO2气凝胶在高温环境中的抗红外辐射性能的影响。
陶瓷先驱体转化法是近年来制备高温陶瓷材料的新方法,该方法打破了陶瓷是由无机非金属粉体高温烧结制备的传统,采用含有所需陶瓷元素的有机聚合物为原料,通过高温裂解除去H、CH3等有机基团,形成无机陶瓷材料。由于该方法是从有机物出发,因此可以进行分子设计,最终能够获得一些无机反应难以获得的化合形式。该方法的另一个特点是,有机物裂解温度低,产物活性高,可在较低温度下获得高温性能优异的陶瓷材料。
本发明的目的通过下述技术方案予以实现:
一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法,其特征在于按照以下步骤进行:
1)将30重量份固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入1-3重量份钛酸丁酯、5-8重量份聚硅氮烷、1-3重量份二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将2-6重量份乳化剂在超声条件下分散在400重量份去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置,将均匀乳液在油浴锅中进行反应;
2)将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
3)将步骤2产物放入气氛炉中烧结;
4)将步骤3得到的20-40重量份粉末与100重量份粉末状SiO2气凝胶混合均匀,常温下进行干压成型得到掺杂改性的SiO2气凝胶。
所述用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂的尺寸可控的中空核壳结构陶瓷微球,其核壳结构是TiO2包覆SiC,其空心尺寸是Φ0.8-1.5μm,核层SiC厚度是0.1-0.2μm,壳层TiO2厚度是0.1-0.3μm,TiO2为金红石结构;
所述乳化剂可以是十二烷基磺酸钠、烷基酚聚氧乙烯醚、T-80、司班-80中的一种;
所述有机溶剂可以是正己烷、四氯化碳、三氯甲烷、苯、石蜡醚、二硫化碳、各种矿物油及植物油中的一种或其混合物;
所述均匀乳液可以在60-80℃的油浴锅中反应6-8小时;
所述干燥后产物可以在氮气保护的气氛炉中烧结,高温气氛炉温度800-1400℃,保温时间为0.5-2小时
本发明的优点及特点:
1.球形形貌。本发明遮光剂是球形形貌的粉体材料,由紧密堆积理论可知,球形结构粉体具有较高的松装密度,其反射能力强于无规则形貌的粉体材料。因此,为了提高粉体材料对于SiO2气凝胶红外遮蔽效果,具有球形结构的遮光材料更具优势。
2.质轻、低密度。本发明遮光剂是空心结构,空心结构密度远小于比实心结构,极大降低了掺杂后SiO2气凝胶的质量。
3.核壳结构。本发明遮光剂是以SiC为核层,TiO2为壳层的核壳结构。SiC具有高折射率和较好的高温稳定性,其能够强有力的支撑中空结构。同时,金红石型TiO2是目前红外散射隔热材料中首选的功能性填料。红外光线经过包覆涂层界面后强度不断减弱,从而提高SiO2气凝胶隔热材料在高温环境中的抗红外辐射性能。
4.尺寸可控。本发明遮光剂核壳结构的核层、壳层尺寸可通过调整各组分含量、固化反应时间、固化反应温度等工艺参数来得到控制。
附图说明
图1是中空核壳结构陶瓷微球的SEM照片。
图2是中空核壳结构陶瓷微球的TEM照片。
具体实施方式
为了更好的理解本发明,下面结合具体实施例进一步说明本发明的技术方案,但并不限制本发明。
实施例1
1)将3g固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入0.3g钛酸丁酯、0.8g聚硅氮烷、0.2g二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将0.5g十二烷基磺酸钠在超声条件下分散在40g去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置将均匀乳液在80℃油浴锅中反应8小时;
2)将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
3)将步骤2产物放入氮气保护气氛炉中于1200℃烧结1小时;
4)将步骤3得到的3g粉末与10g粉末状SiO2气凝胶混合均匀,常温下进行干压成型得到掺杂改性的SiO2气凝胶。
该用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂其空心尺寸是Φ1.2μm,核层SiC厚度是0.12μm,壳层TiO2厚度是0.15μm。SiO2气凝胶的有效消光系数为1.9-12.6m2/kg,掺杂后的SiO2气凝胶的有效消光系数为51.5-57.6m2/kg。
实施例2
1)将3g固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入0.2g钛酸丁酯、0.7g聚硅氮烷、0.15g二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将0.4g十二烷基磺酸钠在超声条件下分散在40g去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置,将均匀乳液在70℃油浴锅中反应8小时;
2)将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
3)将步骤2产物放入氮气保护气氛炉中于1000℃烧结1.5小时;
4)将步骤3得到的2.5g粉末与10g粉末状SiO2气凝胶混合均匀,常温下进行干压成型得到掺杂改性的SiO2气凝胶。
该用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂其空心尺寸是Φ0.8μm,核层SiC厚度是0.1μm,壳层TiO2厚度是0.12μm。SiO2气凝胶的有效消光系数为1.9-12.6m2/kg,掺杂后的SiO2气凝胶的有效消光系数为50.1-55.6m2/kg。
实施例3
1)将3g固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入0.25g钛酸丁酯、0.6g聚硅氮烷、0.2g二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将0.4g十二烷基磺酸钠在超声条件下分散在40g去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置,将均匀乳液在65℃油浴锅中反应6小时;
2)将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
3)将步骤2产物放入氮气保护气氛炉中于1350℃烧结2小时;
4)将步骤3得到的4g粉末与10g粉末状SiO2气凝胶混合均匀,常温下进行干压成型得到掺杂改性的SiO2气凝胶。
该用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂其空心尺寸是Φ1.0μm,核层SiC厚度是0.1μm,壳层TiO2厚度是0.12μm。SiO2气凝胶的有效消光系数为1.9-12.6m2/kg,掺杂后的SiO2气凝胶的有效消光系数为49.8-56.2m2/kg。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (8)

1.红外高屏蔽核壳结构遮光剂,其特征在于,所述红外高屏蔽核壳结构遮光剂为尺寸可控的中空核壳结构陶瓷微球,其核壳结构是TiO2包覆SiC,其空心尺寸是Φ0.8-1.5μm,核层SiC厚度是0.1-0.2μm,壳层TiO2厚度是0.1-0.3μm,TiO2为金红石结构;按照以下步骤进行:
步骤1,将30重量份固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入1-3重量份钛酸丁酯、5-8重量份聚硅氮烷、1-3重量份二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将2-6重量份乳化剂在超声条件下分散在400重量份去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置,将均匀乳液在60-80℃的油浴锅中进行反应6-8小时;
步骤2,将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
步骤3,将步骤2产物放入气氛炉中烧结,在氮气保护的气氛炉中烧结,高温气氛炉温度800-1400℃,保温时间为0.5-2小时。
2.根据权利要求1所述的红外高屏蔽核壳结构遮光剂,其特征在于,所述乳化剂为十二烷基磺酸钠、烷基酚聚氧乙烯醚、T-80、司班-80中的一种。
3.根据权利要求1所述的红外高屏蔽核壳结构遮光剂,其特征在于,所述有机溶剂为正己烷、四氯化碳、三氯甲烷、苯、石蜡醚、二硫化碳的一种。
4.红外高屏蔽核壳结构遮光剂的制备方法,其特征在于,按照以下步骤进行:
步骤1,将30重量份固体石蜡预先放入52℃油浴三口瓶中熔化,依次放入1-3重量份钛酸丁酯、5-8重量份聚硅氮烷、1-3重量份二乙烯基苯,与熔化后的石蜡在磁力搅拌下混合均匀,获得均一油相;将2-6重量份乳化剂在超声条件下分散在400重量份去离子水中,获得均一水相;将水相与油相在磁力高速搅拌条件下乳化,制备均一乳液体系;安装好冷凝装置,将均匀乳液在60-80℃的油浴锅中进行反应6-8小时;
步骤2,将步骤1产物用有机溶剂离心清洗3分钟,放入50℃烘箱中烘干;
步骤3,将步骤2产物放入气氛炉中烧结,在氮气保护的气氛炉中烧结,高温气氛炉温度800-1400℃,保温时间为0.5-2小时。
5.根据权利要求4所述的红外高屏蔽核壳结构遮光剂的制备方法,其特征在于,所述乳化剂为十二烷基磺酸钠、烷基酚聚氧乙烯醚、T-80、司班-80中的一种。
6.根据权利要求4所述的红外高屏蔽核壳结构遮光剂的制备方法,其特征在于,所述有机溶剂为正己烷、四氯化碳、三氯甲烷、苯、石蜡醚、二硫化碳的一种。
7.如权利要求1—3之一所述的红外高屏蔽核壳结构遮光剂在改性二氧化硅气凝胶中的应用,其特征在于,将20—40重量份的红外高屏蔽核壳结构遮光剂与100重量份粉末状二氧化硅气凝胶混合均匀后,常温下进行干压成型得到掺杂改性的二氧化硅气凝胶。
8.根据权利要求7所述的应用,其特征在于,掺杂改性的二氧化硅气凝胶的有效消光系数为51.5—57.6m2/kg。
CN201510412397.XA 2014-01-17 2014-01-17 红外高屏蔽核壳结构遮光剂及其制备方法和应用 Expired - Fee Related CN105036733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510412397.XA CN105036733B (zh) 2014-01-17 2014-01-17 红外高屏蔽核壳结构遮光剂及其制备方法和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410029966.8A CN103880390B (zh) 2014-01-17 2014-01-17 一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法
CN201510412397.XA CN105036733B (zh) 2014-01-17 2014-01-17 红外高屏蔽核壳结构遮光剂及其制备方法和应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410029966.8A Division CN103880390B (zh) 2014-01-17 2014-01-17 一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105036733A true CN105036733A (zh) 2015-11-11
CN105036733B CN105036733B (zh) 2017-03-01

Family

ID=50949562

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410029966.8A Expired - Fee Related CN103880390B (zh) 2014-01-17 2014-01-17 一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法
CN201510412397.XA Expired - Fee Related CN105036733B (zh) 2014-01-17 2014-01-17 红外高屏蔽核壳结构遮光剂及其制备方法和应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410029966.8A Expired - Fee Related CN103880390B (zh) 2014-01-17 2014-01-17 一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法

Country Status (1)

Country Link
CN (2) CN103880390B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540379A (zh) * 2017-09-04 2018-01-05 清华大学 复合陶瓷粉体及陶瓷成型方法
CN107778015A (zh) * 2016-08-26 2018-03-09 天津城建大学 以SiCN为核层的红外遮光剂及其制备方法和应用
CN107790106A (zh) * 2016-08-29 2018-03-13 天津城建大学 聚硅氮烷‑二氧化钛复合气凝胶材料及其制备方法和应用
CN110600073A (zh) * 2019-08-15 2019-12-20 复旦大学 一种针对热辐射的热透明装置
CN111005207A (zh) * 2019-11-28 2020-04-14 江苏品创纺织科技有限公司 一种智能型蓄热调温面料的制备方法
CN113061037A (zh) * 2021-03-30 2021-07-02 西北有色金属研究院 一种聚硅氮烷转化的核壳结构SiCxNyOz微米球的制备方法
CN115182172A (zh) * 2022-07-29 2022-10-14 浙江圣山科纺有限公司 一种面料遮光用炭黑浆及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692804B (zh) * 2015-03-24 2016-09-14 中国人民解放军国防科学技术大学 一种多孔Fe-Si-C陶瓷微球的制备方法
CN106699143B (zh) * 2015-07-14 2019-05-21 天津城建大学 一种核壳陶瓷微球及其制备方法
CN107778875A (zh) * 2016-08-29 2018-03-09 天津城建大学 聚硅氮烷‑二氧化锆复合气凝胶材料及其制备方法和应用
CN106451167B (zh) * 2016-11-01 2018-05-04 江西德伊智能电力股份有限公司 一种隔热和电磁屏蔽功能的箱式变电站
CN107696630B (zh) * 2017-09-29 2020-07-28 西安交通大学 一种含吸热型遮光剂的气凝胶梯度隔热材料
CN111774018B (zh) * 2020-06-19 2022-03-15 浙江建业化工股份有限公司 一种高效除杂的增塑剂dotp节能反应系统
CN114105643B (zh) * 2021-10-12 2022-08-16 广东极客亮技术有限公司 耐超高温隔热抗氧化陶瓷涂层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090123985A1 (en) * 2007-11-10 2009-05-14 Chung Yuan Christian University Method for fabricating aerogels and their application in biocomposites
CN101439957A (zh) * 2008-12-19 2009-05-27 长沙星纳气凝胶有限公司 一种含纳米半导体红外遮光剂的气凝胶绝热复合材料及其制备方法
US20100160472A1 (en) * 2005-11-28 2010-06-24 Aspen Aerogels, Inc. Polyolefin aerogels and composites
CN102614818A (zh) * 2012-03-27 2012-08-01 复旦大学 一种磁性介孔二氧化钛核壳式复合微球及其制备方法和应用
CN102964088A (zh) * 2012-11-23 2013-03-13 山东鲁阳股份有限公司 超低导热率纳米气凝胶绝热材料及其制备方法
CN103387395A (zh) * 2013-07-25 2013-11-13 天津城建大学 一种空心陶瓷微球及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492870A (en) * 1994-04-13 1996-02-20 The Board Of Trustees Of The University Of Illinois Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology
CN101785983B (zh) * 2010-04-08 2012-04-04 哈尔滨工业大学 一种负载氧化锡的碳空心球复合材料的制备方法
CN102463105B (zh) * 2010-10-29 2013-08-21 中国科学院理化技术研究所 二氧化硅包覆二氧化钛中空核壳结构材料的制备方法
US20160015652A1 (en) * 2012-02-16 2016-01-21 The Administrators Of The Tulane Educational Fund Hollow nanoparticles with hybrid double layers
CN103359746B (zh) * 2013-07-12 2015-04-01 浙江大学 一种双层中空二氧化硅纳米球及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100160472A1 (en) * 2005-11-28 2010-06-24 Aspen Aerogels, Inc. Polyolefin aerogels and composites
US20090123985A1 (en) * 2007-11-10 2009-05-14 Chung Yuan Christian University Method for fabricating aerogels and their application in biocomposites
CN101439957A (zh) * 2008-12-19 2009-05-27 长沙星纳气凝胶有限公司 一种含纳米半导体红外遮光剂的气凝胶绝热复合材料及其制备方法
CN102614818A (zh) * 2012-03-27 2012-08-01 复旦大学 一种磁性介孔二氧化钛核壳式复合微球及其制备方法和应用
CN102964088A (zh) * 2012-11-23 2013-03-13 山东鲁阳股份有限公司 超低导热率纳米气凝胶绝热材料及其制备方法
CN103387395A (zh) * 2013-07-25 2013-11-13 天津城建大学 一种空心陶瓷微球及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778015A (zh) * 2016-08-26 2018-03-09 天津城建大学 以SiCN为核层的红外遮光剂及其制备方法和应用
CN107778015B (zh) * 2016-08-26 2020-08-21 天津城建大学 以SiCN为核层的红外遮光剂及其制备方法和应用
CN107790106A (zh) * 2016-08-29 2018-03-13 天津城建大学 聚硅氮烷‑二氧化钛复合气凝胶材料及其制备方法和应用
CN107540379A (zh) * 2017-09-04 2018-01-05 清华大学 复合陶瓷粉体及陶瓷成型方法
CN107540379B (zh) * 2017-09-04 2020-08-04 清华大学 复合陶瓷粉体及陶瓷成型方法
CN110600073A (zh) * 2019-08-15 2019-12-20 复旦大学 一种针对热辐射的热透明装置
CN110600073B (zh) * 2019-08-15 2021-06-22 复旦大学 一种针对热辐射的热透明装置
CN111005207A (zh) * 2019-11-28 2020-04-14 江苏品创纺织科技有限公司 一种智能型蓄热调温面料的制备方法
CN113061037A (zh) * 2021-03-30 2021-07-02 西北有色金属研究院 一种聚硅氮烷转化的核壳结构SiCxNyOz微米球的制备方法
CN113061037B (zh) * 2021-03-30 2022-05-20 西北有色金属研究院 一种聚硅氮烷转化的核壳结构SiCxNyOz微米球的制备方法
CN115182172A (zh) * 2022-07-29 2022-10-14 浙江圣山科纺有限公司 一种面料遮光用炭黑浆及其制备方法和应用

Also Published As

Publication number Publication date
CN103880390A (zh) 2014-06-25
CN105036733B (zh) 2017-03-01
CN103880390B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN103880390B (zh) 一种用于SiO2气凝胶的红外高屏蔽核壳结构遮光剂及其制备方法
CN103387395B (zh) 一种空心陶瓷微球及其制备方法
Hossain et al. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review
CN108276015A (zh) 一种纤维增强耐高温高发射率一体化材料及其制备方法
CN102276235A (zh) 一种改善气凝胶隔热复合材料红外遮光性能的方法
CN107163294A (zh) 一种远红外复合粉体
CN101792299A (zh) 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法
CN101445356A (zh) 一种纳米孔气凝胶绝热复合材料及其制备方法
CN101328073A (zh) 自增强型陶瓷纤维浇注料及其制备方法
CN104876616A (zh) 一种耐高温吸波材料及其制备方法
CN104587922A (zh) 一种二氧化钛二氧化硅复合纳米多孔微球的制备方法
CN107556885B (zh) 一种用于乙烯裂解炉的近红外辐射陶瓷涂料及其制备方法和应用
CN106634570A (zh) 一种高温高辐射防开裂节能涂料及制备方法
CN105753353A (zh) 一种高表观密度骨料的微波烧结方法
CN106630979A (zh) 一种耐高温频率选择透波结构及其制备方法
CN108751969A (zh) 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法
CN104232973A (zh) 一种中、低体积分数陶瓷颗粒增强铝基复合材料及其制备方法
CN107039778B (zh) 一种基于双层超材料的耐高温雷达吸波材料及其制备方法
CN103626510A (zh) 原位生长制备硼酸镁晶须多孔陶瓷的方法
CN105016734B (zh) 空心梯度红外热阻隔微球的制备方法
CN105860611B (zh) 一种红外辐射涂料及其制备方法
CN1328217C (zh) 核壳结构粉体的制作方法
CN109369153A (zh) 一种高发射高抗压一体化热防护材料及其制备方法
CN105834354A (zh) 一种高硬度防开裂云母粉改性石英基消失模涂料及其制备方法
CN104445954B (zh) 一种硼硅酸盐玻璃基低温共烧陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170301

Termination date: 20210117

CF01 Termination of patent right due to non-payment of annual fee