CN104891454A - 一种氮化硼纳米管的制备方法 - Google Patents
一种氮化硼纳米管的制备方法 Download PDFInfo
- Publication number
- CN104891454A CN104891454A CN201510247967.4A CN201510247967A CN104891454A CN 104891454 A CN104891454 A CN 104891454A CN 201510247967 A CN201510247967 A CN 201510247967A CN 104891454 A CN104891454 A CN 104891454A
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- preparation
- nitride nano
- mol
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
一种氮化硼纳米管的制备方法,属于氮化硼线材的制备方法。该方法是在氩气气氛中,将氟硼酸氨、氨基钠和还原铁粉混合物置于特制不锈钢反应釜并密封,放入电阻坩锅炉内加热,产物经醇洗、酸洗和水洗至中性,分离干燥即可获得氮化硼纳米管。该制备氮化硼纳米管的方法,所需设备简单,反应温度较低,反应时间变短、环境友好、操作简单易控,所得产物形貌较好,原料廉价,反应条件温和,操作简便,易于实现工业化生产,在相关领域的应用提供了进一步的便利条件,具有重大的实用价值。
Description
技术领域
本发明属于无机合成技术领域,涉及一种氮化硼纳米管的制备方法。
背景技术
氮化硼纳米管作为一维纳米材料近年来备受关注。它具有稳定的绝缘性,高热稳定性、化学稳定性,以及特殊的力学和电学性能,电子结构计算表明,其能带宽度为5.5eV,氮化硼纳米管可以在纳米电子器件、纳米结构陶瓷材料、储氢材料以及防止氧化的包覆层材料等方面具有良好的应用前景。
目前已有大量的合成方法被用于氮化硼纳米结构的合成,例如,金属催化法,碳热还原法,热解法,球磨-退火法,共热解法和氨气直接氮化法等,上面所提到的方法需要相对较高的反应温度才能进行。其它方法如弧光放电法,电子束辐射法,激光蒸发法,化学气相沉积法(CVD),激光剥蚀法,化学气相沉积(CVD)则依赖大型仪器设备。
因此,在更低温度下、更温和条件下制备氮化硼纳米管,对于提升氮化硼及其相关复合材料以及扩大应用都有特别重要的意义。
发明内容
本发明的目的是提供一种氮化硼纳米管的制备方法,实现氮化硼纳米管的低温制备。
本发明是这样实现的:以氟硼酸氨、氨基钠和还原铁粉为原料,经过密封固相反应,制备出氮化硼纳米管,具体技术方案如下:
步骤1. 在氩气氛中将0.028 mol氟硼酸氨、0.020 mol氨基钠和0.042 mol还原铁粉加入到50毫升特制不锈钢反应釜,并密封;
步骤2. 将特制不锈钢反应釜放入电阻坩锅炉中,通过控温仪以10℃/min 的升温速率在400-600 oC下恒温12-24 小时;
步骤3. 将步骤3的特制不锈钢反应釜取出,自然冷却至室温,打开反应釜,取出反应釜内产物;
步骤4. 将步骤3的产物用乙醇浸洗30分钟,经过离心分离、用酸浸洗30分钟,用蒸馏水洗3-5次,再用乙醇洗2-3次;
步骤5. 将步骤4的产物离心分离并在真空干燥器内于60?C下干燥6小时,获得灰白色粉末产品,即氮化硼纳米管。
上述的氮化硼纳米管的制备方法中,所述惰性气体优选为氩气。
上述的氮化硼纳米管的制备方法中,所述乙醇优选为95%-100%乙醇。
上述的氮化硼纳米管的制备方法中,所述酸优选为盐酸、硫酸、硝酸和/或其任意体积比例的混合液。其中,所述酸最优为1mol/L盐酸。
上述的氮化硼纳米管的制备方法中,所述的真空干燥温度为60±1?C,干燥时间为6±0.5小时。
有益效果,由于采用了上述方案,
(1) 本发明以氟硼酸氨、氨基钠和还原铁粉为原料,在氩气氛中采用固相合成法制备氮化硼纳米管,解决了氮化硼纳米管制备过程中污染问题;
(2) 本发明克服了文献方法中氮化硼纳米管制备过程依赖大型设备的缺陷;
达到了本发明的目的。
优点:该制备氮化硼纳米管的方法,所需设备简单,反应温度较低,反应时间变短、环境友好、操作简单易控,所得产物形貌较好,原料廉价,反应条件温和,操作简便,易于实现工业化生产,在相关领域的应用提供了进一步的便利条件,具有重大的实用价值。
具体实施方式
通过以下实施例进一步详细说明本发明,但应注意本发明的范围并不受这些实施例的限制。
实施例1:一种氮化硼纳米管的制备方法
称取0.028 mol氟硼酸氨、0.020 mol氨基钠和0.042 mol还原铁粉,在氩气体气氛中将上述物质加入到50毫升特制不锈钢反应釜并充分混合,然后将高压釜密封后放在电炉中,通过控温仪以10℃/min 的升温速率在400 oC下恒温24 小时,然后让其自然冷却至室温。开釜,所得产物经95%乙醇浸洗,1mol/L盐酸浸洗,水洗至pH中性,离心分离并置于真空干燥箱中于60?C下干燥6小时,最后得到灰白色粉末产品,即氮化硼纳米管。
采用H-800型透射电子显微镜(TEM)观察产物的形貌。
采用Rigaku公司DmaxrA型X-射线衍射仪(Cu Kα线,波长λ = 1.5418?,扫描步速为0.08o/秒)对产物作物相分析。
采用VECTOR-22(Bruker)型傅里叶变换红外光谱仪(通过KBr压片法,光谱扫描范围为400-4000 cm-1)对产物结构分析。
实施例2:一种氮化硼纳米管的制备方法
称取0.014 mol氟硼酸氨、0.010 mol氨基钠和0.021 mol还原铁粉,在氩气体气氛中将上述物质加入到50毫升特制不锈钢反应釜并充分混合,然后将高压釜密封后放在电炉中,通过控温仪以8℃/min 的升温速率在500 oC下恒温16 小时,然后让其自然冷却至室温。开釜,所得产物经95%乙醇浸洗,1mol/L盐酸浸洗,水洗至pH中性,离心分离并置于真空干燥箱中于60?C下干燥6小时,最后得到灰白色粉末产品,即氮化硼纳米管。
采用VGESCALAB MKII X-射线光电子能谱(XPS)仪上进行光电子能谱分析,用Mg Kα = 1253.6 eV作为激发源对所得产物的结合能进行标定。
实施例3:一种氮化硼纳米管的制备方法
称取0.056 mol氟硼酸氨、0.040 mol氨基钠和0.084 mol还原铁粉,在氩气体气氛中将上述物质加入到80毫升特制不锈钢反应釜并充分混合,然后将高压釜密封后放在电炉中,通过控温仪以5℃/min 的升温速率在600 oC下恒温12 小时,然后让其自然冷却至室温。开釜,所得产物经95%乙醇浸洗,1mol/L盐酸浸洗,水洗至pH中性,离心分离并置于真空干燥箱中于60?C下干燥6小时,最后得到灰白色粉末产品,即氮化硼纳米管。
采用H-800型透射电子显微镜(TEM)观察产物的形貌。
Claims (8)
1.一种氮化硼纳米管的制备方法,其特征是由下列步骤组成:
步骤1. 在氩气氛中将0.028 mol氟硼酸氨、0.020 mol氨基钠和0.042 mol还原铁粉加入到50毫升特制不锈钢反应釜,并密封;
步骤2. 将特制不锈钢反应釜放入电阻坩锅炉中,通过控温仪以5-10℃/min 的升温速率在400-600 oC下恒温12-24 小时;
步骤3. 将步骤3的特制不锈钢反应釜取出,自然冷却至室温,打开反应釜,取出反应釜内产物;
步骤4. 将步骤3的产物用乙醇浸洗30分钟,经过离心分离、用酸浸洗30分钟,用蒸馏水洗3-5次,再用乙醇洗2-3次;
步骤5. 将步骤4的产物离心分离并在真空干燥器内于60?C下干燥6小时,获得灰白色粉末产品,即氮化硼纳米管。
2.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤1所述的氟硼酸氨用量为0.028 mol,氨基钠用量为0.020 mol,还原铁粉用量为0.042 mol,特制不锈钢反应釜体积为50±1毫升。
3.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤2所述的升温速率为5-10℃/min,电阻坩锅炉内加热温度400-600?C,时间为12-24小时。
4.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤4的产物用乙醇浸洗30±1分钟,用酸浸洗30±1分钟,用蒸馏水洗3-5次,用乙醇洗2-3。
5.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤4中所述的酸优选为盐酸、硫酸、硝酸和/或其任意体积比例的混合液。
6.其中,所述酸最优为1mol/L盐酸。
7.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤4中所述的酸最优为1mol/L盐酸。
8.根据权利要求1所述的氮化硼纳米管的制备方法,其特征是:步骤5中所述的真空干燥温度为60±1?C,干燥时间为6±0.5小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510247967.4A CN104891454A (zh) | 2015-05-15 | 2015-05-15 | 一种氮化硼纳米管的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510247967.4A CN104891454A (zh) | 2015-05-15 | 2015-05-15 | 一种氮化硼纳米管的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104891454A true CN104891454A (zh) | 2015-09-09 |
Family
ID=54024494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510247967.4A Pending CN104891454A (zh) | 2015-05-15 | 2015-05-15 | 一种氮化硼纳米管的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104891454A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1312217A (zh) * | 2001-04-23 | 2001-09-12 | 南京大学 | 一种bn纳米管及其制法 |
CN1789115A (zh) * | 2005-12-20 | 2006-06-21 | 山东大学 | 一种制备氮化硼纳米环、纳米管的方法 |
CN101259960A (zh) * | 2008-03-28 | 2008-09-10 | 山东大学 | 一种制备氮化硼包覆碳纳米管/纳米线及氮化硼纳米管的方法 |
CN102674271A (zh) * | 2012-06-04 | 2012-09-19 | 蔡佩君 | 一种氮化硼纳米管的制备方法 |
-
2015
- 2015-05-15 CN CN201510247967.4A patent/CN104891454A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1312217A (zh) * | 2001-04-23 | 2001-09-12 | 南京大学 | 一种bn纳米管及其制法 |
CN1789115A (zh) * | 2005-12-20 | 2006-06-21 | 山东大学 | 一种制备氮化硼纳米环、纳米管的方法 |
CN101259960A (zh) * | 2008-03-28 | 2008-09-10 | 山东大学 | 一种制备氮化硼包覆碳纳米管/纳米线及氮化硼纳米管的方法 |
CN102674271A (zh) * | 2012-06-04 | 2012-09-19 | 蔡佩君 | 一种氮化硼纳米管的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102757042B (zh) | 液相化学制备薄层石墨烯的方法 | |
CN108358191B (zh) | 一种低缺陷石墨烯及其制备方法 | |
CN103145120B (zh) | 一种多孔石墨烯的制备方法 | |
CN103922295B (zh) | 一种氮化硼纳米管的制备方法 | |
CN107651708A (zh) | 一种微波水热制备1T@2H‑MoS2的方法 | |
CN103253661B (zh) | 一种大规模制备石墨烯粉体的方法 | |
CN107029694B (zh) | 一种掺杂碳材料及其制备方法 | |
CN104324715A (zh) | 三维MoS2/SnO2异质半导体纳米材料及其制备方法 | |
Chang et al. | Cu 1.8 S-Passivated carbon dots for enhancing photocatalytic activity | |
CN101704552A (zh) | 一种二硫化钼纳米管及其制备方法 | |
CN102464312B (zh) | 石墨烯的制备方法 | |
CN104692363A (zh) | 一种超重力法制备石墨烯的方法 | |
CN105836715A (zh) | 一种组分可控的自组装三元硫硒化钼纳米管及其制备方法 | |
CN102674271A (zh) | 一种氮化硼纳米管的制备方法 | |
CN103803513B (zh) | 一种氮化硼纳米管的制备方法 | |
Li et al. | Fabrication of CuO nanofibers via the plasma decomposition of Cu (OH) 2 | |
Jia et al. | Synthesis and characterization of novel nanostructured fishbone-like Cu (OH) 2 and CuO from Cu4SO4 (OH) 6 | |
CN108408791B (zh) | 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法 | |
CN104692387B (zh) | 一种以含硅生物质为原料低温制备纳米碳化硅的方法及所制备得到的纳米碳化硅 | |
Sharma et al. | Growth of nanocrystalline β-silicon carbide and nanocrystalline silicon oxide nanoparticles by sol gel technique | |
CN103159208A (zh) | 一种制备石墨烯的方法 | |
CN104891454A (zh) | 一种氮化硼纳米管的制备方法 | |
Ji et al. | Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries | |
CN105152165A (zh) | 基于等离子体化学增强气相沉积直接合成大面积氧化石墨烯的方法 | |
CN104891455A (zh) | 一种氮化硅纳米材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150909 |