CN108408791B - 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法 - Google Patents

一种MPCVD法制备石墨烯包覆Co3O4粉体的方法 Download PDF

Info

Publication number
CN108408791B
CN108408791B CN201810202763.2A CN201810202763A CN108408791B CN 108408791 B CN108408791 B CN 108408791B CN 201810202763 A CN201810202763 A CN 201810202763A CN 108408791 B CN108408791 B CN 108408791B
Authority
CN
China
Prior art keywords
graphene
powder
coated
pressure
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810202763.2A
Other languages
English (en)
Other versions
CN108408791A (zh
Inventor
杨黎
段钰
郭胜惠
冯双龙
彭金辉
侯明
王梁
刘花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810202763.2A priority Critical patent/CN108408791B/zh
Publication of CN108408791A publication Critical patent/CN108408791A/zh
Application granted granted Critical
Publication of CN108408791B publication Critical patent/CN108408791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种MPCVD法制备石墨烯包覆Co3O4粉体的方法,属于微波等离子与复合材料技术领域。将Co3O4基底粉体平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:1~5通入,保持压强为1~90Torr,开启微波等离子体,在温度为300~500℃下沉积反应30~120min,反应结束后,切断CH4气体,保持通入非氧化气体冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。本发明制备过程中采用Co3O4粉体为镀覆基体,制备得到的石墨烯包覆Co3O4粉体,与常规石墨烯包覆复合粉体材料相比,本发明的石墨烯包覆Co3O4粉体中石墨烯为少层鳞片状石墨烯,包覆均匀性好。

Description

一种MPCVD法制备石墨烯包覆Co3O4粉体的方法
技术领域
本发明涉及一种MPCVD法制备石墨烯包覆Co3O4粉体的方法,属于微波等离子与复合材料技术领域。
背景技术
自2004年曼彻斯特大学Andre Geim和Konstantin Novoselov使用胶带机械剥离高定向热解石墨并成功得到单层石墨烯以来,石墨烯作为一种新型二维材料一直是世界前沿科技关注的焦点。石墨烯具有电子迁移率高、比表面积大、透光性好、导热系数高等诸多优良性能。近年来,将石墨烯与金属氧化物等功能材料结合形成的复合体系,利用复合异质结构间形成的界面协同效应,可将石墨烯复合材料广泛应用于超级电容器、传感器等技术领域。而在功能材料表面实现石墨烯的均匀包覆是制备该类复合材料的关键。
为了更好的利用石墨烯的诸多优异性能,已有一系列在材料表面包覆石墨烯制备复合粉体材料的相关报道。反应液化学合成是合成石墨烯复合粉体材料的主要方法之一。叶常琼等首先参考Hummer法制备出氧化石墨烯,之后将制得的氧化石墨烯超声分散于去离子水中,加入一定量硝酸锰溶液和葡萄糖粉体,搅拌水浴变干后研磨煅烧,得到石墨烯包覆Mn3O4纳米复合粉体。刘剑洪等发明了一种石墨烯包覆氧化铝复合粉体的制备方法,他们采用LPAN为碳源,先将LPAN溶液在100~200℃下搅拌100~200h,再在200~300℃下热处理1~10h,之后与铝化合物按比例混合后干燥得前驱体,最后将前驱体高温煅烧得到石墨烯包覆氧化铝。该种类方法主要的缺点是产量较少,可实现反应的材料有限,反应条件不易控制,并且制备过程繁琐,往往需要多个步骤,制备周期时间长。另一种合成石墨烯复合粉体材料的方法是采用球磨法机械复合。李伟平等先用改进Hummers法制得氧化石墨,之后用机械搅拌法和高速球墨法进行复合,发现高速球磨法能将石墨烯有效地分散在金属铜粉体中,并且通过球磨机高能量将石墨烯与铜粉体进行复合,以及包覆于其表面,制备出了石墨烯包覆铜粉体的复合材料。燕绍久等将铝合金粉末添加到石墨烯分散液中,封装在球磨罐中机械球磨24h,之后干燥处理得到石墨烯铝合金复合粉末,用于后续的成型过程。虽然机械球磨法能够使石墨烯与多种材料符合,但混合方式为物理包裹,所得产品包覆效果不均匀,且过程复杂,存在较高能耗。此外,球磨过程也会引起磨球对基底和石墨烯的破坏作用,使复合材料质量下降。气相沉积法也是制备石墨烯复合粉体材料的另外一种方法。上海交通大学独涛研究了cvd法制备石墨烯包覆铜粉体的工艺过程,以乙炔为碳源,需要将炉腔在Ar气H2气与碳源气体气氛下加热至750℃反应。一般气相沉积方法的优点在于反应稳定,操作简便,能够制备大面积石墨烯,且石墨烯质量较高。但其缺点在于反应温度高,能耗较大,不适用于熔点较低的基底。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种MPCVD法制备石墨烯包覆Co3O4粉体的方法。本发明制备过程中采用Co3O4粉体为镀覆基体,制备得到的石墨烯包覆Co3O4粉体,与常规石墨烯包覆复合粉体材料相比,本发明的石墨烯包覆Co3O4粉体中石墨烯为少层鳞片状石墨烯,具有包覆质量高、均匀性好的特点。相比于常规方法能够更好的提升粉末与石墨烯层的结合度及其电化学性能。同时本发明采用微波等离子体较高的电离和分解性能,极大提高了反应效率,并降低了反应温度,具有操作简单、反应时间短、温度低、环保节能、石墨烯包覆的均匀性好等优点,并且能够有效避免机械包覆过程对石墨烯及基底材料的物理损伤,提高了所得复合材料的产品质量。本发明通过以下技术方案实现。
一种MPCVD法制备石墨烯包覆Co3O4粉体的方法,步骤包括:
将Co3O4基底粉体平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:1~5通入,保持压强为1~90Torr,开启微波等离子体,在温度为300~500℃下沉积反应30~120min,反应结束后,切断CH4气体,保持通入非氧化气体冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。
所述Co3O4基底粉体为球形Co3O4粉体。
所述Ar流量为9~180sccm,H2流量为10~200sccm,CH4流量为1~100ccm。
所述非氧化气体为氢气、氩气、氮气或其他惰性气体中的一种或几种任意比例混合气体。
本发明的有益效果是:
(1)本发明可直接使用可购买的Co3O4粉体,无需预处理,整体实验流程操作简单方便。
(2)本发明利用微波等离子体较高的电离和分解性能,加速了气体的分解反应,提高了反应效率与气体利用率。
(3)本发明制备过程中采用Co3O4粉体为镀覆基体。
(4)本发明的反应温度低,有效降低了反应能耗。
(5)本发明的石墨烯包覆Co3O4粉体中石墨烯为少层鳞片状石墨烯,具有包覆质量高、均匀性好的特点。相比于常规方法能够更好的提升粉末与石墨烯层的结合度及其电化学性能。
(6)本发明环保无污染,经济成本低,易于实现工业化生产。
附图说明
图1是本发明实施例1制备得到的石墨烯包覆Co3O4粉体SEM图;
图2是本发明实施例2制备得到的石墨烯包覆Co3O4粉体SEM图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1
该MPCVD法制备石墨烯包覆Co3O4粉体的方法,步骤包括:
将Co3O4基底粉体(Co3O4基底粉体为球形Co3O4粉体)平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:5(Ar流量为180sccm,H2流量为200sccm,CH4流量为100sccm)通入,保持压强为90Torr,开启微波等离子体,在温度为400℃下沉积反应60min,反应结束后,切断CH4气体,保持通入非氧化气体(非氧化气体为氢气)冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。
本实施例制备得到的石墨烯包覆Co3O4粉体SEM图如图1所示,从图1中可以看出石墨烯包覆Co3O4粉体中石墨烯为少层鳞片状石墨烯。
将本实施例制备得到的石墨烯包覆Co3O4粉体可作为超级电容器电极材料应用,在电流密度为5A/g测试条件下,比电容量可以达到315F/g,在3000次循环内比电容量保持在85%以上。
实施例2
该MPCVD法制备石墨烯包覆Co3O4粉体的方法,步骤包括:
将Co3O4基底粉体(Co3O4基底粉体为球形Co3O4粉体)平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:3(Ar流量为90sccm,H2流量为100sccm,CH4流量为30sccm)通入,保持压强为1Torr,开启微波等离子体,在温度为400℃下沉积反应60min,反应结束后,切断CH4气体,保持通入非氧化气体(非氧化气体为氩气)冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。
本实施例制备得到的石墨烯包覆Co3O4粉体SEM图如图2所示,从图2中可以看出石墨烯包覆Co3O4粉体中石墨烯为少层鳞片状石墨烯。
将本实施例制备得到的石墨烯包覆Co3O4粉体可作为超级电容器电极材料应用,具有更高的比电容量及优良的循环性能。
实施例3
该MPCVD法制备石墨烯包覆Co3O4粉体的方法,步骤包括:
将Co3O4基底粉体(Co3O4基底粉体为球形Co3O4粉体)平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:1(Ar流量为9sccm,H2流量为10sccm,CH4流量为1sccm)通入,保持压强为20Torr,开启微波等离子体,在温度为300℃下沉积反应120min,反应结束后,切断CH4气体,保持通入非氧化气体(非氧化气体为体积比为1:1的氩气和氮气混合气体)冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。
将本实施例制备得到的石墨烯包覆Co3O4粉体可作为超级电容器电极材料应用,具有更高的比电容量及优良的循环性能。
实施例4
该MPCVD法制备石墨烯包覆Co3O4粉体的方法,步骤包括:
将Co3O4基底粉体(Co3O4基底粉体为球形Co3O4粉体)平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:5(Ar流量为90sccm,H2流量为100sccm,CH4流量为50sccm)通入,保持压强为60Torr,开启微波等离子体,在温度为500℃下沉积反应30min,反应结束后,切断CH4气体,保持通入非氧化气体(非氧化气体为体积比为1:1的氩气和氮气混合气体)冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体。
将本实施例制备得到的石墨烯包覆Co3O4粉体可作为超级电容器电极材料应用,具有更高的比电容量及优良的循环性能。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (1)

1.一种用于超级电容器电极材料的片状石墨烯包覆Co3O4粉体的制备方法,其特征在于步骤包括:
将Co3O4基底粉体平铺,抽真空至压强1mTorr以内,然后Ar、H2、CH4按照气体流量比为9:10:1~5通入,保持压强为1~90Torr,开启微波等离子体,在温度为300~500℃下沉积反应30~120min,反应结束后,切断CH4气体,保持通入非氧化气体冷却至室温后关闭非氧化气体,抽真空至压强为1mTorr,通入空气至常压得到石墨烯包覆Co3O4粉体;
所述Co3O4基底粉体为球形Co3O4粉体;
所述Ar流量为9~180sccm,H2流量为10~200sccm,CH4流量为1~100sccm;
所述非氧化气体为氢气、氩气、氮气或其他惰性气体中的一种或几种任意比例混合气体。
CN201810202763.2A 2018-03-13 2018-03-13 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法 Active CN108408791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810202763.2A CN108408791B (zh) 2018-03-13 2018-03-13 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810202763.2A CN108408791B (zh) 2018-03-13 2018-03-13 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法

Publications (2)

Publication Number Publication Date
CN108408791A CN108408791A (zh) 2018-08-17
CN108408791B true CN108408791B (zh) 2021-02-19

Family

ID=63131188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810202763.2A Active CN108408791B (zh) 2018-03-13 2018-03-13 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法

Country Status (1)

Country Link
CN (1) CN108408791B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658065B (zh) * 2018-08-22 2020-10-09 恒力(厦门)石墨烯科技产业集团有限公司 一种石墨烯掺杂制备和修复方法
CN110903514A (zh) * 2019-11-26 2020-03-24 安徽正合雅聚新材料科技有限公司 一种耐水性能优异的抗菌剂及其制备方法与抗菌制品
EP4100362A1 (en) 2020-02-03 2022-12-14 CealTech AS Process and device for large-scale production of graphene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058971A (zh) * 2017-04-10 2017-08-18 中国科学院重庆绿色智能技术研究院 石墨烯复合材料的制备方法及应用

Also Published As

Publication number Publication date
CN108408791A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
CN108408791B (zh) 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法
CN106587030B (zh) 一种常压低温化学气相沉积制备石墨烯薄膜的方法
US20190127222A1 (en) Boron Nitride Nanomaterial, and Preparation Method and Use Thereof
CN109809372B (zh) 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
Gao et al. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
CN108033439B (zh) 一种等离子体辅助溅射固态碳源的石墨烯低温制备方法
CN102229426A (zh) 一种单层、有序排布的等角六边形石墨烯的制备方法
CN104876217A (zh) 一种石墨烯的制备方法
CN103482623B (zh) 一种用直流电弧法制备纳米金刚石的方法
CN104108708A (zh) 一种氮掺杂石墨烯及其制备方法
CN103407988A (zh) 一种低温制备石墨烯薄膜的方法
CN105347346A (zh) 一种空气辅助制备多孔纳米硅的方法
CN107673332B (zh) 一种利用复合金属模板制备大面积3d石墨烯的方法
CN110666158A (zh) 一种石墨烯包覆纳米铜的方法
CN109534329A (zh) 一种石墨烯薄膜的制备方法及制备得到的石墨烯薄膜
WO2016149934A1 (zh) 石墨烯的生长方法
CN104773725A (zh) 一种利用低温等离子体制备石墨烯的方法
CN109850908B (zh) 一种二氧化硅/石墨烯复合物的制备方法及产品
CN113410287B (zh) 二维SnSe-SnSe2 p-n异质结及其制备方法
CN112661123A (zh) 一种双层带状氮化硼分级结构的制备方法及产品
CN114751408B (zh) 一种低压下基于石墨制备金刚石的方法
CN103101907B (zh) 石墨烯、石墨烯制备方法及应用
CN109775690A (zh) 一种连续制备碳纳米管阵列的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant