CN104884644B - 方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN104884644B
CN104884644B CN201380068330.8A CN201380068330A CN104884644B CN 104884644 B CN104884644 B CN 104884644B CN 201380068330 A CN201380068330 A CN 201380068330A CN 104884644 B CN104884644 B CN 104884644B
Authority
CN
China
Prior art keywords
annealing
grain
secondary recrystallization
ppm
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380068330.8A
Other languages
English (en)
Other versions
CN104884644A (zh
Inventor
早川康之
新垣之启
山口广
松田广志
胁阪有衣子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN104884644A publication Critical patent/CN104884644A/zh
Application granted granted Critical
Publication of CN104884644B publication Critical patent/CN104884644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

将以质量%或质量ppm计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.5%以下,并且将S、Se和O抑制为分别小于50ppm,将sol.Al抑制为小于100ppm,进一步将N控制为[sol.Al]×(14/27)ppm≤N≤80ppm的范围,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯作为原料,制造方向性电磁钢板时,在冷轧后、二次再结晶退火开始前为止,实施氮量成为50质量ppm~1000质量ppm的氮化处理,使退火分离剂中合计含有0.2~15质量%的硫化物和/或硫酸盐,二次再结晶退火的升温过程中,将300~800℃的温度区域中的滞留时间确保为5小时以上而使氮化硅(Si3N4)和MnS析出,并用该氮化硅和MnS作为正常晶粒生长的抑制力,从而大幅度减少磁特性的偏差,在工业上稳定地制造具有良好的特性的方向性电磁钢板。

Description

方向性电磁钢板的制造方法
技术领域
本发明涉及可以廉价地得到具有优异磁特性的方向性电磁钢板的、磁特性优异的方向性电磁钢板的制造方法。
背景技术
方向性电磁钢板是作为变压器、发电机的铁芯材料使用的软磁性材料,具有属于铁的易磁化轴的<001>方位在钢板的轧制方向高度整合的结晶组织。这种集合组织通过二次再结晶形成,该二次再结晶在方向性电磁钢板的制造工序中在二次再结晶退火时使被称为所谓的高斯(Goss)方位的(110)〔001〕方位的晶粒优先地巨大生长。
以往,这种方向性电磁钢板可以通过以下方式制造:将含有4.5mass%以下左右的Si和MnS、MnSe、AlN等抑制剂成分的板坯加热至1300℃以上,使抑制剂成分临时固溶后,进行热轧,根据需要实施热轧板退火后,通过1次或隔着中间退火的2次以上的冷轧制成最终板厚,接下来,在湿润氢气氛中实施一次再结晶退火,进行一次再结晶和脱碳,接下来,涂布以氧化镁(MgO)为主剂的退火分离剂后,为了提纯二次再结晶和抑制剂成分,以1200℃进行5h左右的最终退火(例如,专利文献1、专利文献2、专利文献3)。
如上所述,在以往的方向性电磁钢板的制造时,可以采用以下工序:在板坯阶段含有MnS、MnSe、AlN等析出物(抑制剂成分),通过超过1300℃的高温的板坯加热,临时固溶这些抑制剂成分,在后续工序中使其微细析出,从而表达二次再结晶。如此,以往的方向性电磁钢板的制造工序中,需要超过1300℃的高温下的板坯加热,因此其制造成本极其高,无法应对近年的制造成本减少的要求,在方面存在问题。
为了解决上述问题,例如专利文献4中提出有含有0.010~0.060%的酸可溶性Al(sol.Al)且将板坯加热抑制在低温,脱碳退火工序中在适当的氮化气氛下进行氮化,从而在二次再结晶时使(Al、Si)N析出而用作抑制剂的方法。(Al、Si)N在钢中微细分散而作为有效的抑制剂发挥功能,但根据Al的含量决定抑制剂强度,因此有时在制钢中的Al量的精度不充分时,无法得到充分的晶粒生长抑制力。还提出有大量的这种在中途工序进行氮化处理,将(Al、Si)N或AlN作为抑制剂使用的方法,最近也公开有板坯加热温度超过1300℃的制造方法等。
另一方面,还研究有对板坯不含抑制剂成分而表达二次再结晶的技术,例如专利文献5中开发了不含抑制剂成分也可以二次再结晶的技术,所谓的无抑制剂法。该无抑制剂法是利用更高纯度化的钢,通过材质(集合组织的控制)表达二次再结晶的技术。
该无抑制剂法无需高温的板坯加热,可制造低成本的方向性电磁钢板,但由于不具有抑制剂,在制造时受到中途工序中的温度的偏差等影响,具有制品的磁特性也容易发生偏差的特征。另外,集合组织的控制是在该技术中重要的要素,提出有用于控制集合组织的温轧等大量的技术。但是,这样的集合组织控制无法充分地进行时,与使用抑制剂的技术相比,二次再结晶后的向高斯方位((110)〔001〕)的集合度较低,存在磁束密度也变低的趋势。
先行技术文献
专利文献
专利文献1:美国专利第1965559号说明书
专利文献2:日本特公昭40-15644号公报
专利文献3:日本特公昭51-13469号公报
专利文献4:日本专利第2782086号公报
专利文献5:日本特开2000-129356号公报
发明内容
如上所述,使用到目前为止提出的无抑制剂法的方向性电磁钢板的制造方法中,稳定地实现良好的磁特性不一定容易。
本发明使用以将Al抑制为小于100质量ppm的无抑制剂成分为标准的成分,避免高温板坯加热,并且应用氮化,从而使得不是AlN而是使氮化硅(Si3N4)析出,进而,通过在退火分离剂中含有硫化物和/或硫酸盐而使MnS析出,该氮化硅和MnS作为正常晶粒生长的抑制力发挥功能,从而大幅度减少磁特性的偏差,可以在工业上稳定地制造具有良好的磁特性的方向性电磁钢板。
本发明的发明人等进行了以下研究:为了抑制板坯加热温度且得到减少了磁特性的偏差的方向性电磁钢板,使用无抑制剂法进行一次再结晶集合组织的制作,其中通过中途工序利用氮化使氮化硅析出,将其作为抑制剂使用。
即,本发明的发明人等考虑如果可使方向性电磁钢板中一般含有数%左右的硅作为氮化硅析出,将其作为抑制剂使用,则是否通过控制氮化处理时的氮化量,不论氮化物形成元素(Al、Ti、Cr、V等)的多少,可得到同等的晶粒生长抑制力。
另一方面,已知纯粹的氮化硅与AlN中固溶有Si的(Al、Si)N不同,与钢的晶格的整合性差,且具有共价键性的复杂的晶体结构,因此使其在晶粒内微细地析出极其困难。因此,认为在如以往方法那样的氮化后,难以使其在晶粒内微细地析出。
然而,如果将其反过来使用,则有可能抑制晶粒内析出,能够使氮化硅在晶界选择性地析出。然后,认为如果可使其在晶界选择性地析出,即使析出物变得粗大也可得到充分的抑制力。
此外,本发明的发明人等考虑是否可通过在退火分离剂中含有硫化物和/或硫酸盐,使MnS形成,将它们与氮化硅并用,期待进一步提高晶粒生长抑制力。
因此,本发明的发明人等根据上述观点,从原料的成分组成开始,对氮化处理后的氮量、以及用于使氮扩散至晶界而形成氮化硅的热处理条件和退火分离剂的成分等反复进行了深入研究。
其结果发现了新的并用氮化硅与MnS的有用性,完成了本发明。
即,本发明的要旨构成如下所述。
1.一种方向性电磁钢板的制造方法,是将以质量%或质量ppm计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.5%以下,并且将S、Se和O分别抑制为小于50ppm,将sol.Al抑制为小于100ppm,进一步将N控制为[sol.Al]×(14/27)ppm≤N≤80ppm的范围,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯,在不进行再加热或再加热后通过热轧制成热轧板后,实施退火和冷轧而制成最终板厚的冷轧板,接下来,实施一次再结晶退火后,涂布退火分离剂,其后实施二次再结晶退火,其中,
在冷轧后、二次再结晶退火开始前为止,实施氮量成为50质量ppm~1000质量ppm的氮化处理,
使退火分离剂中合计含有0.2~15质量%的硫化物和/或硫酸盐,
二次再结晶退火的升温过程中,将300~800℃的温度区域中的滞留时间确保为5小时以上。
2.如上述1所述的方向性电磁钢板的制造方法,其中,上述硫化物和/或硫酸盐为选自Ag、Al、La、Ca、Co、Cr、Cu、Fe、In、K、Li、Mg、Mn、Na、Ni、Sn、Sb、Sr、Zn和Zr的硫化物以及硫酸盐中的1种或2种以上。
3.如上述1或2所述的方向性电磁钢板的制造方法,其中,上述钢板坯由以质量%计进一步含有选自
Ni:0.005~1.50%、Sn:0.01~0.50%、
Sb:0.005~0.50%、Cu:0.01~0.50%、
Cr:0.01~1.50%、P:0.0050~0.50%、
Mo:0.01~0.50%和Nb:0.0005~0.0100%
中的1种或2种以上的组成构成。
根据本发明,可以在无需高温板坯加热的情况下大幅度减少磁特性的偏差,在工业上稳定地制造具有良好的磁特性的方向性电磁钢板。
此外,本发明将不是与Al复合析出的纯粹的氮化硅与MnS复合利用,因此在提纯时,仅通过提纯扩散相对较早的氮和硫黄就可以达成钢的提纯。
而且,利用如以往的Al、Ti作为析出物时,从最终的提纯和可靠的抑制剂效果的观点出发,需要ppm等级的控制,但在中途工序如本发明那样利用Si和S作为析出物时,在制钢时完全无需这样的控制。
附图说明
图1是表示在脱碳退火后,进行氮量成为100质量ppm(同图a)、500质量ppm(同图b)的氮化处理,以规定的升温速度升温至800℃后,立即进行水冷的组织的电子显微镜照片,以及利用上述组织中的析出物的EDX(能量分散型X射线分光法)的鉴定结果的图(同图c)。
具体实施方式
以下,具体地说明本发明。
首先,对本发明中将钢板坯的成分组成限定于上述范围的理由进行说明。应予说明,成分所涉及的“%”和“ppm”表述只要无特别说明,则意味着“质量%”和“质量ppm”。
C:0.08%以下
C是在改善一次再结晶集合组织方面有用的元素,但若含量超过0.08%则反而导致一次再结晶集合组织的劣化,因此C量限定于0.08%以下。从磁特性的观点出发,优选含量为0.01~0.06%的范围。另外,所需的磁特性的水平并不那么高的情况下,为了省略或简化一次再结晶退火中的脱碳,也可以将C量设为0.01%以下。
Si:2.0~4.5%
Si是通过提高电阻而改善铁损的有用元素,但若含量超过4.5%则冷轧性显著劣化,因此Si量限定于4.5%以下。另一方面,Si需要作为氮化物形成元素发挥功能,因此需要含有2.0%以上。此外,从铁损的观点出发也优选的含量为2.0~4.5%的范围。
Mn:0.5%以下
Mn具有使制造时的热加工性提高的效果,因此优选含有0.03%以上,但是含量超过0.5%时,一次再结晶集合组织变差而导致磁特性的劣化,因此Mn量限定于0.5%以下。
S、Se和O:分别小于50ppm
S、Se和O量分别为50ppm以上则二次再结晶变得困难。其理由是因为粗大的氧化物、通过板坯加热而粗大化的MnS、MnSe使得一次再结晶组织不均匀。因此,S、Se和O均抑制为小于50ppm。另外,它们的含量也可以为0ppm。
sol.Al:小于100ppm
Al在表面形成致密的氧化膜,使得在氮化时难以控制其氮化量,或有时也阻碍脱碳,因此将Al抑制为以sol.Al量计小于100ppm。但是,氧亲和力高的Al通过在制钢工序中微量添加可减少钢中的溶解氧量,预计可减少导致特性劣化的氧化物系夹杂物等,因此在抑制磁性劣化方面,添加20ppm以上是有利的。也可以为0ppm。
[sol.Al]×(14/27)ppm≤N≤80ppm
本发明具有在氮化后使氮化硅析出的特征,因此,重要的是预先含有相对于所含的Al量作为AlN析出所需的N量以上的N。即,AlN是分别以1:1结合,因此通过含有(sol.Al的质量ppm)×[N原子量(14)/Al原子量(27)]以上的N,可以在氮化处理前完全地析出钢中所含的微量Al。另一方面,N有时在板坯加热时成为气泡等缺陷的原因,因此N量需要抑制为80ppm以下。优选为60ppm以下。
以上,对基本成分进行了说明,本发明中,作为工业上稳定地改善磁特性的成分,可以适当含有以下元素。
Ni:0.005~1.50%
Ni具有通过提高热轧板组织的均匀性而改善磁特性的作用,因此优选含有0.005%以上。另一方面,若Ni含量超过1.50%则二次再结晶变得困难,磁特性劣化。因此,优选在0.005~1.50%的范围含有Ni。
Sn:0.01~0.50%
Sn是抑制二次再结晶退火中的钢板的氮化、氧化,促进具有良好的结晶取向的晶粒的二次再结晶而使磁特性提高的有用元素,因此优选含有0.01%以上。另一方面,若Sn含有超过0.50%则冷轧性劣化。因此,优选在0.01~0.50%的范围含有Sn。
Sb:0.005~0.50%
Sb是抑制二次再结晶退火中的钢板的氮化、氧化,促进具有良好的结晶取向的晶粒的二次再结晶而有效地提高磁特性的有用元素,为了该目的,优选含有0.005%以上。另一方面,若含有超过0.50%的Sb则冷轧性劣化。因此,优选在0.005~0.50%的范围含有Sb。
Cu:0.01~0.50%
Cu具有抑制二次再结晶退火中的钢板的氧化,促进具有良好的结晶取向的晶粒的二次再结晶而有效地提高磁特性的作用,因此优选含有0.01%以上。另一方面,若含有超过0.50%的Cu则导致热轧性的劣化。因此,优选在0.01~0.50%的范围含有Cu。
Cr:0.01~1.50%
Cr具有使镁橄榄石被膜的形成稳定化的作用,因此优选含有0.01%以上。另一方面,Cr若含量超过1.50%则二次再结晶变得困难,磁特性劣化。因此,优选在0.01~1.50%的范围含有Cr。
P:0.0050~0.50%
P具有使镁橄榄石被膜的形成稳定化的作用,因此优选含有0.0050%以上。另一方面,若P含量超过0.50%则冷轧性劣化。因此,优选在0.0050~0.50%的范围含有P。
Mo:0.01~0.50%、Nb:0.0005~0.0100%
Mo和Nb均具有介由抑制由板坯加热时的温度变化所致的裂纹等而抑制热轧后的疤痕的效果。如果它们没有分别含有0.01%以上的Mo、0.0005%以上的Nb,则疤痕抑制的效果较小,另一方面,若Mo超过0.50%、若Nb超过0.0100%,则形成碳化物、氮化物等而残留到最终制品中时,引起铁损的劣化,因此Mo和Nb含量优选分别设为上述范围。
接着,对本发明的制造方法进行说明。
将调整至上述优选成分组成范围的钢板坯在不进行再加热或再加热后供给于热轧。应予说明,将板坯再加热时,再加热温度优选设为1000℃~1300℃左右。这是因为,超过1300℃的板坯加热在板坯的阶段钢中几乎不含抑制剂的本发明中无意义,仅增加成本,另一方面,小于1000℃时,轧制负荷变高,轧制变得困难。
接下来,根据需要对热轧板实施热轧板退火后,实施1次冷轧或隔着2次以上中间退火的冷轧,制成最终冷延板。该冷轧可以在常温下进行,也可以设为将钢板温度提升至高于常温的温度例如250℃左右而进行轧制的温轧。
接下来,对最终冷轧板实施一次再结晶退火。
该一次再结晶退火的目的是使具有轧制组织的冷轧板一次再结晶,调整成最适合二次再结晶的一次再晶粒径。因此,一次再结晶退火的退火温度优选设为800℃以上且小于950℃左右。此外,通过将此时的退火气氛设为湿氢氮或湿氢氩气氛,还可以兼具脱碳退火。
然后,本发明中,在上述冷轧后、二次再结晶退火开始为止之间实施氮化处理。对于该氮化方法,只要可以控制氮化量即可,没有特别的限定。例如,可以是过去实施的钢圈形态原样下使用NH3气氛气体进行气体氮化,也可以对移动的带钢连续地进行气体氮化。这种情况下的优选处理条件为处理温度:600~800℃、处理时间:10~300s。此外,也可以利用与气体氮化相比氮化能力高的盐浴氮化处理。这里,作为盐浴,优选为NaCN-Na2CO3-NaCl系的盐浴。这种情况下的优选处理条件为盐浴温度:400~700℃、处理时间:10~300s。
上述氮化处理中重要的方面是在表层形成氮化物层。为了抑制扩散至钢中,优选以800℃以下的温度进行氮化处理,但通过将时间设为短时间(例如30秒左右),即使更高的温度也可以使氮化物层仅形成于表面。
这里,氮化后的氮量需要设为50质量ppm~1000质量ppm。氮量小于50质量ppm时,无法充分得到其效果,另一方面,若超过1000质量ppm则氮化硅的析出量变得过多,难以产生二次再结晶。优选为200质量ppm以上且小于1000质量ppm的范围。
实施上述一次再结晶退火和氮化处理后,在钢板表面涂布退火分离剂。为了在二次再结晶退火后的钢板表面形成镁橄榄石被膜,需要使用以氧化镁(MgO)为主体的退火分离剂,但在无需镁橄榄石被膜的形成时,作为退火分离剂主剂,可以使用氧化铝(Al2O3)、氧化钙(CaO)等具有高于二次再结晶退火温度的熔点的适当的氧化物。
应予说明,以氧化镁(MgO)为主体的退火分离剂是指含有50质量%以上、优选含有80质量%以上的氧化镁(MgO)的退火分离剂。
这里,退火分离剂中含有0.2~15质量%的硫化物和/或硫酸盐可在二次再结晶退火中使MnS形成而确保晶粒生长抑制力,提高在二次再结晶取向的理想高斯取向的集合度,因此很重要。
这是因为若退火分离剂中的硫化物和/或硫酸盐的含量小于0.2质量%,则无法出现如上述的效果,另一方面,若超过15质量%则基底被膜形成变得困难。
因此,退火分离剂中的硫化物和/或硫酸盐的含量设为0.2~15质量%的范围。优选为2~10质量%的范围。
另外,含有Cu作为钢成分时,除MnS以外一并析出CuS作为硫化物,该CuS也与MnS同样有助于晶粒生长抑制力的提高。
此外,作为退火分离剂中添加的硫酸盐、硫化物,优选为选自Ag、Al、La、Ca、Co、Cr、Cu、Fe、In、K、Li、Mg、Mn、Na、Ni、Sn、Sb、Sr、Zn和Zr的硫化物以及硫酸盐中的1种或2种以上。
随后进行二次再结晶退火。该二次再结晶退火中需要确保升温过程的300~800℃的温度区域中的滞留时间为5小时以上。在此期间,通过氮化处理形成的表层的以Fe2N、Fe4N为主体的氮化物层分解,N扩散至钢中。本发明的成分系统中未残留可形成AlN的Al,因此作为晶界偏析元素的N以晶界为扩散路径,扩散至钢中。
氮化硅与钢的整合性差(misfit率较大),因此析出速度极慢。然而,氮化硅的析出是以抑制正常晶粒生长为目的,因此在进行正常晶粒生长的800℃的阶段需要使足够的量选择性地析出于晶界上。对于该方面,通过将300~800℃的温度区域中的滞留时间设为5小时以上,虽然无法使氮化硅在晶粒内析出,但可以从晶界扩散而来的N和Si结合,选择性地析出于晶界上。对滞留时间的上限不必一定设置,但即使进行超过150小时的退火效果也不会提高,因此,上限优选设为150小时。更优选的滞留时间为10~100时间的范围。应予说明,退火气氛适合N2,Ar,H2或它们的混合气体中的任一者。
S的情况下,在二次再结晶退火中的硫化物和/或硫酸盐的分解开始后,与N相比扩散速度较小,因此从表层形成MnS(进而为CuS)且进行扩散,与氮化物相比表层中的S浓度显著提高。其结果,强烈抑制在表层的晶粒生长,因此二次再结晶的开始从板厚内部进行。在板厚表层通过热轧或冷轧利用与轧制辊的摩擦力而集合组织变化较大,因此,其结果,生成取向偏移的二次再晶粒的概率提高。因此,提高加强在表层部的晶粒生长抑制力,与单独的氮化处理相比,格外地提高向二次再晶粒取向的理想高斯方位的集合。
如上所述,添加抑制钢中的Al量且相对于AlN析出过量的N,进一步相对于几乎不含以MnS、MnSe等为代表的抑制剂成分的板坯,经过上述工序制造的方向性电磁钢板在二次再结晶退火的升温过程中,二次再结晶开始为止的阶段中,可以使与以往抑制剂相比粗大的尺寸(100nm以上)的氮化硅在晶界上选择性地形成,此外,退火分离剂中含有的硫化物或硫酸盐在二次再结晶退火中分解而扩散,从而可以在表层使MnS(进而为CuS)以高密度析出。另外,对氮化硅的粒径的上限值没有特别的限制,优选设为10μm以下。
图1(a)、(b)是将在脱碳退火后分别进行成为100质量ppm、500质量ppm的氮量的氮化处理,以300~800℃的温度区域中的滞留时间为8小时的升温速度升温至800℃后,立即进行水冷的组织利用电子显微镜进行观察、鉴定而成的图。此外,图1(c)是表示利用上述组织中的析出物的EDX(能量分散型X射线分光法)的鉴定结果的图。
由图1可明确,与以往使用的微细析出物(<100nm)不同,确认了最小也超过100nm的粗大的氮化硅被在晶界上析出。
在作为本发明的特征的利用不是与Al的复合析出的纯粹的氮化硅的方面,在钢中以数%的等级存在且有效地活用对铁损改善具有效果的Si的方面具有极高的稳定性。即,目前为止的技术中使用的Al、Ti这样的成分是与氮的亲和力较高、在高温下稳定的析出物,因此有可能最终容易残留于钢中,且由于残留而成为使磁特性劣化的主要原因。
然而,利用氮化硅时,仅通过提纯扩散相对快的氮、以及硫就可达成对磁特性有害的析出物的提纯。此外,对于Al、Ti,从最终必须提纯的观点以及必须可靠地得到抑制剂效果的观点出发,需要ppm等级的控制,但利用Si和S时,在制钢时无需这样的控制也是本发明的重要特征。
另外,毫无疑问在制造上在氮化硅的析出中利用二次再结晶升温过程是在能量效率上最有效的,但若利用同样的热循环则有可能氮化硅的晶界选择析出,因此在长时间的二次再结晶退火之前,也可以通过氮化硅分散退火的方式实施而制造。
上述二次再结晶退火后,也可以在钢板表面进一步涂布、烧结绝缘被膜。对于该绝缘被膜的种类,没有特别的限定,以往公知的所有绝缘被膜是适合的。例如,优选将日本特开昭50-79442号公报、日本特开昭48-39338号公报中记载的含有磷酸盐-铬酸盐-胶体二氧化硅的涂布液涂布于钢板,在800℃左右烧结的方法。
此外,也能够通过平坦化退火调整钢板的形状,进而也可以兼具该平坦化退火与绝缘被膜的烧结处理。
实施例
(实施例1)
将含有C:0.04%、Si:3.4%、Mn:0.08%、S:0.002%、Se:0.001%、O:0.001%、Al:0.006%、N:0.0035%、Cu:0.10%和Sb:0.06%,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯以1200℃加热30分钟后,通过热轧制成2.2mm厚的热轧板,实施1065℃、1分钟的退火后,通过冷轧制成0.23mm的最终板厚,接下来,从所得的冷轧钢圈的中央部提取100mm×400mm尺寸的试样,在实验室进行兼具一次再结晶和脱碳的退火。接下来,在表1所示的条件下进行利用气体处理或盐浴处理的氮化处理,使钢中的氮量增加。
作为气体处理的氮化条件,使用NH3:30vol%、N2:70vol%的混合气氛。此外,作为盐浴处理的氮化条件,使用NaCN-Na2CO3-NaCl的3元系盐。
在上述氮化处理后测定钢板的N量。
其后,在以MgO为主成分且含有5%的TiO2的退火分离剂中在表1所示的条件下添加硫酸镁,制成水糊状后进行涂布干燥,烧结于钢板上后,在表1的条件下进行最终退火,接下来,涂布烧结磷酸盐系的绝缘张力涂层而制成制品。
对于所得的制品,评价磁化力:800A/m下的磁束密度B8(T)。
如表1所示,明确了发明例与通过以往的无抑制剂的制造工序制造的例子相比改善了磁特性。
(实施例2)
将含有表2所示的成分的钢板坯(其中,S、Se和O均小于50ppm)以1200℃加热20分钟后,通过热轧制成2.5mm厚的热轧板,在1050℃、1分钟的退火后,通过冷轧制成板厚:0.27mm的最终板厚后,在P(H2O)/P(H2)=0.4的气氛下在成为退火温度:840℃的条件下进行保持2分钟的脱碳退火。其后,对一部分钢圈在750℃进行20秒钟的气体氮化处理(NH3:30vol%+N2:70vol%气氛下)后,测定钢板的N量。
接下来,涂布将以MgO为主成分且添加了10%的TiO2、10%的硫酸铝的退火分离剂与水混合而制成糊状的糊状物后,缠绕成钢圈,以300~800℃间的滞留时间为30小时的升温速度进行最终退火,接下来,以磷酸盐系的绝缘张力涂层的涂布烧结和钢带的平坦化为目的实施平坦化退火而制成制品。
从如此得到的制品钢圈提取Epstein试验片,测定磁束密度B8,将其结果示于表2。
由表2可明确地知道,按照本发明而得到的发明例均可得到高磁束密度。
(实施例3)
将含有C:0.03%、Si:3.3%、Mn:0.09%、S:0.003%、Se:0.001%、O:0.001%、Al:0.005%、N:0.003%、Cu:0.09%和Sb:0.05%,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯以1220℃加热20分钟后,通过热轧制成2.5mm厚的热轧板,在1050℃、1分钟的退火后,通过冷轧制成板厚:0.27mm的最终板厚后,在P(H2O)/P(H2)=0.4的气氛下在成为退火温度:840℃的条件进行保持2分钟的脱碳退火。其后,在550℃进行240秒钟的盐浴氮化处理(NaCN-Na2CO3-NaCl的3元系盐)后,测定钢板的N量。N量为240质量ppm。
接下来,涂布将以MgO为主成分且添加了10%的TiO2、表3所示的条件下的硫化物和/或硫酸盐的退火分离剂与水混合而制成糊状的糊状物后,缠绕成钢圈,以300~800℃间的滞留时间为30小时的升温速度进行最终退火,接下来,以磷酸盐系的绝缘张力涂层的涂布烧结和钢带的平坦化为目的实施平坦化退火而制成制品。
从如此得到的制品钢圈提取Epstein试验片,测定磁束密度B8,将其结果示于表3。
[表3]
由表3可明确地知道,按照本发明而得到的发明例均可得到高磁束密度。

Claims (4)

1.一种方向性电磁钢板的制造方法,将以质量%或质量ppm计,C:0.08%以下、Si:2.0~4.5%和Mn:0.5%以下,并且S、Se和O分别小于50ppm,sol.Al为80ppm以下,进一步将N控制为[sol.Al]×(14/27)ppm≤N≤80ppm的范围,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯在不进行再加热或再加热后,通过热轧制成热轧板后,实施退火和冷轧而制成最终板厚的冷轧板,接下来,实施一次再结晶退火后,在涂布以MgO为主体的退火分离剂后实施二次再结晶退火,其中,
在冷轧后、二次再结晶退火开始前为止,实施氮量成为50质量ppm~1000质量ppm的氮化处理,
使以MgO为主体的退火分离剂中合计含有0.2~15质量%的硫化物和/或硫酸盐,
二次再结晶退火的升温过程中,将300~800℃的温度区域中的滞留时间确保为20小时以上,
其中,以MgO为主体的退火分离剂是指含有50质量%以上的MgO的退火分离剂。
2.如权利要求1所述的方向性电磁钢板的制造方法,其中,所述硫化物和/或硫酸盐为选自Ag、Al、La、Ca、Co、Cr、Cu、Fe、In、K、Li、Mg、Mn、Na、Ni、Sn、Sb、Sr、Zn和Zr的硫化物以及硫酸盐中的1种或2种以上。
3.一种方向性电磁钢板的制造方法,将以质量%或质量ppm计,C:0.08%以下、Si:2.0~4.5%和Mn:0.5%以下,以及选自
Ni:0.005~1.50%、Sn:0.01~0.50%、
Sb:0.005~0.50%、Cu:0.01~0.50%、
Cr:0.01~1.50%、P:0.0050~0.50%、
Mo:0.01~0.50%和Nb:0.0005~0.0100%
中的1种或2种以上,并且
S、Se和O分别小于50ppm,sol.Al为80ppm以下,将N控制为[sol.Al]×(14/27)ppm≤N≤80ppm的范围,剩余部分由Fe和不可避免的杂质的组成构成的钢板坯在不进行再加热或再加热后,通过热轧制成热轧板后,实施退火和冷轧而制成最终板厚的冷轧板,接下来,实施一次再结晶退火后,在涂布以MgO为主体的退火分离剂后实施二次再结晶退火,其中,
在冷轧后、二次再结晶退火开始前为止,实施氮量成为50质量ppm~1000质量ppm的氮化处理,
使以MgO为主体的退火分离剂中合计含有0.2~15质量%的硫化物和/或硫酸盐,
二次再结晶退火的升温过程中,将300~800℃的温度区域中的滞留时间确保为20小时以上,
其中,以MgO为主体的退火分离剂是指含有50质量%以上的MgO的退火分离剂。
4.如权利要求3所述的方向性电磁钢板的制造方法,其中,所述硫化物和/或硫酸盐为选自Ag、Al、La、Ca、Co、Cr、Cu、Fe、In、K、Li、Mg、Mn、Na、Ni、Sn、Sb、Sr、Zn和Zr的硫化物以及硫酸盐中的1种或2种以上。
CN201380068330.8A 2012-12-28 2013-12-25 方向性电磁钢板的制造方法 Active CN104884644B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012288612 2012-12-28
JP2012-288612 2012-12-28
PCT/JP2013/085321 WO2014104393A1 (ja) 2012-12-28 2013-12-25 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN104884644A CN104884644A (zh) 2015-09-02
CN104884644B true CN104884644B (zh) 2017-03-15

Family

ID=51021448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380068330.8A Active CN104884644B (zh) 2012-12-28 2013-12-25 方向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US9708682B2 (zh)
EP (1) EP2940160B1 (zh)
JP (1) JP5692479B2 (zh)
KR (1) KR101651797B1 (zh)
CN (1) CN104884644B (zh)
RU (1) RU2608258C1 (zh)
WO (1) WO2014104393A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214793B2 (en) 2013-02-18 2019-02-26 Jfe Steel Corporation Method and device for nitriding grain-oriented electrical steel sheet
JP5942885B2 (ja) * 2013-02-18 2016-06-29 Jfeスチール株式会社 方向性電磁鋼板の窒化処理方法および窒化処理装置
BR112018005469B1 (pt) * 2015-09-28 2021-08-31 Nippon Steel Corporation Chapa de aço elétrico com grão orientado, chapa de aço laminada a quente para chapa de aço elétrico com grão orientado e seus métodos de produção
US11459629B2 (en) * 2016-02-22 2022-10-04 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
JP6455468B2 (ja) * 2016-03-09 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101919528B1 (ko) * 2016-12-22 2018-11-16 주식회사 포스코 방향성 전기강판 및 이의 제조방법
US11053574B2 (en) 2017-01-16 2021-07-06 Nippon Steel Corporation Non-oriented electrical steel sheet
RU2716052C1 (ru) 2017-02-20 2020-03-05 ДжФЕ СТИЛ КОРПОРЕЙШН Способ изготовления текстурированных листов из электротехнической стали
CA3061297C (en) * 2017-05-12 2022-06-14 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing the same
BR112020000223A2 (pt) * 2017-07-13 2020-07-07 Nippon Steel Corporation folha de aço eletromagnética orientada
KR102044322B1 (ko) * 2017-12-26 2019-11-13 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR102164329B1 (ko) * 2018-12-19 2020-10-12 주식회사 포스코 방향성의 전기강판 및 그 제조 방법
US20220064764A1 (en) * 2019-01-08 2022-03-03 Nippon Steel Corporation Grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and annealing separator utilized for manufacture of grain-oriented electrical steel sheet
US20220333220A1 (en) * 2019-09-06 2022-10-20 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same
JP2022055869A (ja) 2020-09-29 2022-04-08 株式会社日立製作所 軟磁性鉄板、該軟磁性鉄板の製造方法、該軟磁性鉄板を用いた鉄心および回転電機
CN113416901B (zh) * 2021-06-29 2022-03-01 宝武集团鄂城钢铁有限公司 一种低温韧性优异的高磁感性耐候软磁钢及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158167A (ja) * 1992-11-19 1994-06-07 Nippon Steel Corp 高磁束密度方向性電磁鋼板およびその製造法
CN1256321A (zh) * 1998-10-09 2000-06-14 川崎制铁株式会社 铁损低的晶粒取向电磁钢板的制造方法
JP2001107147A (ja) * 1999-10-12 2001-04-17 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
CN1400319A (zh) * 2001-07-24 2003-03-05 川崎制铁株式会社 方向性电磁钢板的制造方法
CN1708594A (zh) * 2002-10-29 2005-12-14 杰富意钢铁株式会社 方向性电磁钢板的制造方法以及方向性电磁钢板
JP2006152364A (ja) * 2004-11-29 2006-06-15 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2007314823A (ja) * 2006-05-24 2007-12-06 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
CN102149830A (zh) * 2008-09-10 2011-08-10 新日本制铁株式会社 方向性电磁钢板的制造方法
CN102471819A (zh) * 2009-07-17 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
US3333992A (en) * 1964-06-29 1967-08-01 Armco Steel Corp Production of oriented silicon-iron using grain growth inhibitor during primary recrystallization heat treatment
JPS5113469B2 (zh) 1972-10-13 1976-04-28
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS5844152B2 (ja) * 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
JPS6474817A (en) 1987-09-17 1989-03-20 Asahi Glass Co Ltd Ultrasonic delay line
JPH0230740A (ja) * 1988-04-23 1990-02-01 Nippon Steel Corp 鉄損の著しく優れた高磁束密度一方向性電磁鋼板及びその製造方法
DE69032461T2 (de) * 1989-04-14 1998-12-03 Nippon Steel Corp Verfahren zur Herstellung von kornorientierten Elektrostahlblechen mit hervorragenden magnetischen Eigenschaften
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
JP3415377B2 (ja) * 1996-11-13 2003-06-09 Jfeスチール株式会社 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
IT1290172B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.
IT1290171B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per il trattamento di acciaio al silicio, a grano orientato.
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US7942982B2 (en) * 2006-11-22 2011-05-17 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in coating adhesion and method of producing the same
JP5994981B2 (ja) * 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158167A (ja) * 1992-11-19 1994-06-07 Nippon Steel Corp 高磁束密度方向性電磁鋼板およびその製造法
CN1256321A (zh) * 1998-10-09 2000-06-14 川崎制铁株式会社 铁损低的晶粒取向电磁钢板的制造方法
JP2001107147A (ja) * 1999-10-12 2001-04-17 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
CN1400319A (zh) * 2001-07-24 2003-03-05 川崎制铁株式会社 方向性电磁钢板的制造方法
CN1708594A (zh) * 2002-10-29 2005-12-14 杰富意钢铁株式会社 方向性电磁钢板的制造方法以及方向性电磁钢板
JP2006152364A (ja) * 2004-11-29 2006-06-15 Jfe Steel Kk 方向性電磁鋼板の製造方法
JP2007314823A (ja) * 2006-05-24 2007-12-06 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
CN102149830A (zh) * 2008-09-10 2011-08-10 新日本制铁株式会社 方向性电磁钢板的制造方法
CN102471819A (zh) * 2009-07-17 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法

Also Published As

Publication number Publication date
EP2940160A1 (en) 2015-11-04
US9708682B2 (en) 2017-07-18
KR20150095911A (ko) 2015-08-21
JP5692479B2 (ja) 2015-04-01
WO2014104393A1 (ja) 2014-07-03
RU2608258C1 (ru) 2017-01-17
US20150299819A1 (en) 2015-10-22
EP2940160B1 (en) 2017-02-01
EP2940160A4 (en) 2016-04-06
JPWO2014104393A1 (ja) 2017-01-19
WO2014104393A8 (ja) 2015-05-07
KR101651797B1 (ko) 2016-08-26
CN104884644A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
CN104884644B (zh) 方向性电磁钢板的制造方法
CN104870665B (zh) 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN104870666B (zh) 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN107746942B (zh) 一种b800≥1.962t低温超高磁感取向硅钢及生产方法
CN101395284B (zh) 磁特性非常优异的方向性电磁钢板的制造方法
CN107109563B (zh) 取向性电磁钢板及其制造方法
KR101462044B1 (ko) 1차 냉간 압연 공정을 포함하고 있는 규소 강철의 제조방법
CN109112283A (zh) 低温高磁感取向硅钢的制备方法
CN107002162B (zh) 取向性电磁钢板的制造方法
CN100455702C (zh) 一种具有良好底层的低温加热生产取向硅钢的方法
CN107614725B (zh) 取向性电磁钢板及其制造方法
EP3128028B1 (en) Primary recrystallization annealed sheet for oriented electromagnetic steel sheet, and method for producing oriented electromagnetic steel sheet
JP2019148009A (ja) 方向性電磁鋼板およびその製造方法
CN108291268A (zh) 方向性电磁钢板的制造方法
CN113166872B (zh) 双取向电工钢板及其制造方法
CN106661656A (zh) 取向性电磁钢板的制造方法和氮化处理设备
CN107109585A (zh) 磁性能优异的取向电工钢板及其制造方法
CN110100024A (zh) 取向电工钢板及其制造方法
CN108350545A (zh) 取向电工钢板及其制造方法
WO2017111547A1 (ko) 방향성 전기강판 및 이의 제조방법
CN110100023A (zh) 取向电工钢板及其制造方法
JP5857983B2 (ja) 方向性電磁鋼板の製造方法および焼鈍分離剤用MgO
JP6191564B2 (ja) 方向性電磁鋼板の製造方法および窒化処理設備
JP5939156B2 (ja) 方向性電磁鋼板の製造方法
JP5904151B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant