CN104849672B - 基于等效电路模型的锂电池动态阻抗参数识别方法 - Google Patents

基于等效电路模型的锂电池动态阻抗参数识别方法 Download PDF

Info

Publication number
CN104849672B
CN104849672B CN201510277820.XA CN201510277820A CN104849672B CN 104849672 B CN104849672 B CN 104849672B CN 201510277820 A CN201510277820 A CN 201510277820A CN 104849672 B CN104849672 B CN 104849672B
Authority
CN
China
Prior art keywords
discharge
current
voltage
soc
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510277820.XA
Other languages
English (en)
Other versions
CN104849672A (zh
Inventor
孙权
潘正强
冯静
周星
程龙
刘天宇
黄彭奇子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201510277820.XA priority Critical patent/CN104849672B/zh
Publication of CN104849672A publication Critical patent/CN104849672A/zh
Application granted granted Critical
Publication of CN104849672B publication Critical patent/CN104849672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于等效电路模型的锂电池动态阻抗参数识别方法,首先基于一阶RC等效电路,制定充放电制度,对待测锂电池进行依据制定的充放电制度进行充放电测试,获得测试数据,提取参数,本发可在线对处于不同荷电状态和充放电条件下的锂电池进行动态内阻的估算,并在此基础上获得简单、实用的电池模型。本发明考虑阻抗与充放电电流相关,提高了锂电池阻抗参数提取的准确性,并且提出了简单可行的充放电测试方法与具体的参数提取算法,具有很强的实际操作性。

Description

基于等效电路模型的锂电池动态阻抗参数识别方法
技术领域
本发明属于锂电池状态估计技术领域,具体涉及一种基于动态阻抗,对锂电池单体的充放电特性进行精确建模,进而实现单体或电池组的状态估计的方法。
背景技术
锂电池作为电力系统中的重要储能载体,其技术发展和管理方式的发展受到业界极大的重视。由于其具有高能量密度和长寿命的特征,锂电池广泛应用于手机、数码相机、平板电脑等便携式电子设备中,以及电动汽车和智能电网的储能系统中。
为了优化设计和管理基于锂电池的储能系统,首先需要准确的模型来描述锂电池的充、放电特性。目前,大量的数学模型、等效电路模型和电化学模型相继被学者们提出,给锂电池的设计和管理带来了巨大的突破。通常,电化学模型的实现需要解大量的微分方程,运算量极大,只适合锂电池的设计和制造领域。C.M.Shepherd为代表的学者提出了一系列的数学模型,可以在恒流充放电的条件下较准确地描述锂电池的充放电特性,然而在变电流等复杂充放电的情况下,却不能描述其迟滞效应。随后,Min Chen等人提出了准确的等效电路模型,可以很好地描述锂电池的非线性开路电压以及与工作状态和外界环境相关的放电容量等动态特性。然而,现在的等效电路模型大都没有考虑充放电电流对等效内阻和等效电容的影响,这将导致模型不能适用于宽泛的工作电流。
发明内容
针对现有技术中存在的问题,本发明提供一种基于等效电路模型的锂电池动态阻抗参数识别方法。本发明从简单的一阶RC等效电路模型出发(如附图1),融合了动态阻抗的思想,认为阻抗不仅与SOC、温度等因素相关也与充放电电流相关,并提出了简单可行的测试方法进行参数识别。
本发明将动态阻抗的性质融入常用等效电路模型中,并给出了估计阻抗等相关模型参数的合理测试方式。为了达到上述目的,分别计算充电状态下的阻抗和放电状态下的阻抗,本发明基于等效电路模型的锂电池动态阻抗参数识别方法,主要包括以下步骤:
步骤一,基于一阶RC等效电路,确定充放电制度;
一、a.恒流转恒压充电制度;b.静置一段时间;c.采用小电流恒流放电至截止电压;d.转小电流恒流充电至截止电压C;
二、a.恒流转恒压制度将电池充满;b.静置;c.采用放电倍率α恒流放电至截止电压;重复上述步骤,但每次将恒流放电电流选为β、γ或δ等常用放电倍率;
三、a.以小电流恒流放电至截止电压;b.静置;c.采用充电倍率α恒流充电至截止电压;重复上述步骤,但每次将恒流充电倍率选为β、γ或δ等常用充电电流;
四、a.恒流转恒压制度将电池充满;b.静置;c.采用放电倍率α的脉冲电流进行放电;重复上述步骤,但每次将脉冲电流选为β、γ或δ等常用放电倍率;
五、a.以小电流恒流放电至截止电压;b.静置;c.采用充电倍率α的脉冲电流进行充电;重复上述步骤,但每次将脉冲电流选为β、γ或δ等常用充电倍率;
步骤二,对待测锂电池依次执行充放电制度,获得测试数据,提取参数;
对待测锂电池依次执行步骤一中的五条充放电制度,记录每次采样的时间、充/放电电流、端路电压和充/放电容量,将小电流放电的容量作为待测锂电池的总容量,用于后续的SOC计算;在不同恒流放电或充电电流下,处于相同荷电状态SOC的端电压不同,而其中的压差便是由待测锂电池总的动态内阻R1+R2造成;反过来,就能通过相同荷电状态下的压差,计算电池总的动态内阻;
在脉冲放电或脉冲充电测试中,每次放电电流或充电电流发生突变时,端路电压也会有一个瞬时突变,这是由待测锂电池的动态内阻R1导致的;从而能够通过欧姆定律计算出R1的阻值;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路导致;从而通过数学方法获得相关参数R2
本发明具有以下优点:
1.考虑阻抗与充放电电流相关,提高了锂电池阻抗参数提取的准确性。
2.提出了简单可行的充放电测试方法与具体的参数提取算法,具有很强的实际操作性。
附图说明
图1为一阶RC等效电路图
图2为0.5C的脉冲放电电流
图3为0.5C的脉冲充电电流
图4为0.04C充放电的端电压与SOC曲线
图5为开路电压与SOC曲线
具体实施方式
下面将结合具体实施例对本发明做进一步的说明。
本发明基于附图1中的等效电路,考虑电池的阻抗不仅与电池的荷电状态、温度等因素相关,还与充放电电流大小相关。本发明通过简单可行的锂电池充放电测试,可在线对处于不同荷电状态和充放电条件下的锂电池进行动态阻抗的估算,并在此基础上获得简单、实用的电池模型。其中,根据实测数据发现:电阻R1、R2的阻值与多种因素相关,特别是与SOC和充放电电流相关,这对电池等效电路模型的正确建立具有较大作用,然而大多数文献都忽视了充放电电流对电阻的影响。
本发明的具体充放电制度为:
一、(1)恒流转恒压充电制度,如:0.5C恒流充电至截止电压4.2V,转为恒压充电至电流小于0.01C;(2)静置一段时间,如:1h;(3)采用小电流恒流放电至截止电压,如:0.04C;(4)转小电流恒流充电至截止电压,如:0.04C。
二、(1)恒流转恒压制度将电池充满;(2)静置;(3)采用放电倍率α恒流放电至截止电压;重复上述步骤,但每次将恒流放电电流选为β、γ、δ等常用放电倍率。
三、(1)以小电流恒流放电至截止电压;(2)静置;(3)采用充电倍率α恒流充电至截止电压;重复上述步骤,但每次将恒流充电倍率选为β、γ、δ等常用充电电流。
四、(1)恒流转恒压制度将电池充满;(2)静置;(3)采用放电倍率α的脉冲电流进行放电,放电脉冲如附图2;重复上述步骤,但每次将脉冲电流选为β、γ、δ等常用放电倍率。
五、(1)以小电流恒流放电至截止电压;(2)静置;(3)采用充电倍率α的脉冲电流进行充电,充电脉冲如附图3;重复上述步骤,但每次将脉冲电流选为β、γ、δ等常用充电倍率。
下面以松下18650电池为例,说明使用基于动态阻抗的等效电路方法对单体进行建模,并通过设计的充放电制度对锂电池进行充放电测试,并基于测试数据,根据提出的参数识别方法提取参数具体数值的整个过程。
S1,根据充放电制度一中的步骤,对待测锂电池进行充放电测试,记录相应的放电曲线数据包括采样时间、端路电压以及放电电量;以充满电后的小电流(如:0.04C)放电电量作为电池总容量,则可以分别将“小电流恒流放电的端电压与放电电量曲线”和“小电流恒流充电的端电压与充电电量曲线”折算为两条“端电压与SOC曲线”(如附图4)。将得到的充放电“端电压与SOC曲线”取平均,得到一条新的“电压与SOC曲线”(如附图5),并将此曲线作为该电池的近似“开路电压与SOC”曲线。为了方便表述,在后续的叙述中,令OCV为电池的开路电压,V为电池的端路电压,I为电池的输出(输入)电流;
S2,在充放电制度二中,每次恒流放电前都有一段静置时间,默认在静置末期,电池达到了电动势平衡,则静置末期的开路电压反应了电池的SOC;根据S1中所得的“开路电压与SOC”曲线,能够通过电池恒流放电前的静置末期电压OCV,决定电池每次放电前的初始SOC;初始SOC一旦确定,根据安时积分法能够获得每条放电曲线所对应的“端电压与SOC曲线”;
S3,在充放电制度三中,每次恒流充电前都有一小时的静置时间,默认在静置末期,电池达到了电动势平衡,则静置末期的开路电压反应了电池的SOC,根据S1中所得的“开路电压与SOC”曲线,能够通过电池恒流充电前的静置末期电压OCV,决定电池每次充电前的初始SOC;初始SOC一旦确定,根据安时积分法获得每条充电曲线所对应的“端电压与SOC曲线”;
在恒流放电时,处于相同SOC状态下的开路电压OCV与端路电压V具有关系:OCV=V+I(R1+R2);因此,分别在放电电流α、β、γ、δ下,可根据式子R1+R2=(OCV-V)/I,计算处于每个SOC状态下的动态内阻R1+R2;这样得到4条“R1+R2与SOC”曲线,每条曲线对应于一个放电电流;
在恒流充电时,处于相同SOC状态下的开路电压OCV与端路电压V具有关系:OCV=V-I(R1+R2);因此,分别在充电电流α、β、γ、δ下,可根据式子R1+R2=(V-OCV)/I,计算处于每个SOC状态下的动态内阻R1+R2;这样得到4条“R1+R2与SOC”曲线,每条曲线对应于一个充电电流;
S4,充放电制度四采用脉冲放电的方式对电池进行测试,每次当放电电流发生突变时,端路电压也会有一个瞬时突变,这是由动态内阻R1(如图1)导致的;令突变前后的电压分别为V1和V2,从而计算出R1=|V1-V2|/I,其中I为脉冲电流;从而分别在α、β、γ、δ脉冲放电电流下,能够计算处于不同SOC状态下的动态内阻R1;又根据步骤S3中得到的放电电流为α、β、γ、δ下的“R1+R2与SOC”曲线,根据关系R2=(R1+R2)-R1,可得放电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路(如图1)导致的;根据一阶RC等效电路,假设突变前后的电流分别为I1、I2,并以突变时刻开始计时,则电压瞬时突变后的连续变化描述为:由于已得到放电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2,则可通过电压瞬时突变后的连续变化数据估计出相应条件下的时间常数R2C,从而可得与R2相同条件下的电容C;
S5,充放电制度五采用脉冲充电的方式对电池进行测试,每次当充电电流发生突变时,端路电压也会有一个瞬时突变,这是由动态内阻R1(如图1)导致的;令突变前后的电压分别为V1和V2,从而计算出R1=|V1-V2|/I,其中I为脉冲电流;从而分别在α、β、γ、δ脉冲充电电流下,计算处于不同SOC状态下的动态内阻R1;又根据步骤S3中得到的充电电流为α、β、γ、δ下的“R1+R2与SOC”曲线,根据关系R2=(R1+R2)-R1,可得充电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路(如图1)导致的;根据一阶RC等效电路,假设突变前后的电流分别为I1、I2,并以突变时刻开始计时,则电压瞬时突变后的连续变化描述为:由于已得到充电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2,则可通过电压瞬时突变后的连续变化数据估计出相应条件下的时间常数R2C,从而可得与R2相同条件下的电容C。
上述实施例方法中给出了在α、β、γ、δ放电电流下,处于不同SOC状态的R1、R2、C的测试方法,可使用函数形式F(SOC)=a+e-bsoc分别在α、β、γ、δ放电电流条件下对R1、R2、C与SOC的函数关系进行拟合。
为了求得其他放电电流i条件下,处于各SOC状态的R1、R2、C,可以采用三段插值的方法获得。首先通过拟合函数,分别计算在α、β、γ、δ放电电流下,处于某SOC状态下的参数R1、R2、C,使用三段插值的方法计算在放电电流为i的情况下,处于该SOC状态下的参数R1、R2、C。
为了求得其他充电电流i条件下,处于各SOC状态的R1、R2、C,同样采用三段插值的方法获得。首先通过拟合函数,分别计算在α、β、γ、δ充电电流下,处于某SOC状态下的参数R1、R2、C,使用三段插值的方法计算在充电电流为i的情况下,处于该SOC状态下的参数R1、R2、C。

Claims (2)

1.一种基于等效电路模型的锂电池动态阻抗参数识别方法,其特征在于包括以下步骤:
步骤一,基于一阶RC等效电路,确定充放电制度;
一、a.恒流转恒压充电制度;b.静置一段时间;c.采用小电流恒流放电至截止电压;d.转小电流恒流充电至截止电压C;
二、a.恒流转恒压制度将电池充满;b.静置;c.采用放电倍率α恒流放电至截止电压;重复充放电制度二中的步骤a-c,但每次将恒流放电电流的放电倍率选为β、γ或δ;
三、a.以小电流恒流放电至截止电压;b.静置;c.采用充电倍率α恒流充电至截止电压;重复充放电制度三中的步骤a-c,但每次将恒流充电倍率选为β、γ或δ的充电电流;
四、a.恒流转恒压制度将电池充满;b.静置;c.采用放电倍率α的脉冲电流进行放电;重复充放电制度四中的步骤a-c,但每次将脉冲电流的放电倍率选为β、γ或δ;
五、a.以小电流恒流放电至截止电压;b.静置;c.采用充电倍率α的脉冲电流进行充电;重复充放电制度五中的步骤a-c,但每次将脉冲电流的充电倍率选为β、γ或δ;
步骤二,对待测锂电池依次执行充放电制度,获得测试数据,提取参数;
对待测锂电池依次执行步骤一中的五条充放电制度,记录每次采样的时间、充/放电电流、端路电压和充/放电容量,将小电流放电的容量作为待测锂电池的总容量,用于后续的SOC计算;在不同恒流放电或充电电流下,处于相同荷电状态SOC的端电压不同,而其中的压差便是由待测锂电池总的动态内阻R1+R2造成;反过来,就能通过相同荷电状态下的压差,计算电池总的动态内阻;
在脉冲放电或脉冲充电测试中,每次放电电流或充电电流发生突变时,端路电压也会有一个瞬时突变,这是由待测锂电池的动态内阻R1导致的;从而能够通过欧姆定律计算出R1的阻值;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路导致;从而通过数学方法获得相关参数R2
2.根据权利要求1所述的基于等效电路模型的锂电池动态阻抗参数识别方法,其特征在于:
待测锂电池为松下18650锂电池,基于一阶RC等效电路,对待测锂电池依次执行充放电制度,获得测试数据,提取参数,具体步骤如下:
S1,根据充放电制度一中的步骤,对待测锂电池进行充放电测试,记录相应的放电曲线数据包括采样时间、端路电压以及放电电量;以充满电后的小电流放电电量作为电池总容量,则可以分别将“小电流恒流放电的端电压与放电电量曲线”和“小电流恒流充电的端电压与充电电量曲线”折算为两条“端电压与SOC曲线”;将得到的充放电“端电压与SOC曲线”取平均,得到一条新的“电压与SOC曲线”,并将此曲线作为该电池的近似“开路电压与SOC”曲线;这里令OCV为待测锂电池电池的开路电压,V为待测锂电池的端路电压,I为待测锂电池的输出/输入电流;
S2,在充放电制度二中,每次恒流放电前都有一段静置时间,默认在静置末期,电池达到了电动势平衡,则静置末期的开路电压反应了电池的SOC;根据S1中所得的“开路电压与SOC”曲线,能够通过电池恒流放电前的静置末期电压OCV,决定电池每次放电前的初始SOC;初始SOC一旦确定,根据安时积分法能够获得每条放电曲线所对应的“端电压与SOC曲线”;
S3,在充放电制度三中,每次恒流充电前都有一小时的静置时间,默认在静置末期,电池达到了电动势平衡,则静置末期的开路电压反应了电池的SOC,根据S1中所得的“开路电压与SOC”曲线,能够通过电池恒流充电前的静置末期电压OCV,决定电池每次充电前的初始SOC;初始SOC一旦确定,根据安时积分法获得每条充电曲线所对应的“端电压与SOC曲线”;
在恒流放电时,处于相同SOC状态下的开路电压OCV与端路电压V具有关系:OCV=V+I(R1+R2);因此,分别在放电电流α、β、γ、δ下,可根据式子R1+R2=(OCV-V)/I,计算处于每个SOC状态下的动态内阻R1+R2;这样得到4条“R1+R2与SOC”曲线,每条曲线对应于一个放电电流;
在恒流充电时,处于相同SOC状态下的开路电压OCV与端路电压V具有关系:OCV=V-I(R1+R2);因此,分别在充电电流α、β、γ、δ下,可根据式子R1+R2=(V-OCV)/I,计算处于每个SOC状态下的动态内阻R1+R2;这样得到4条“R1+R2与SOC”曲线,每条曲线对应于一个充电电流;
S4,充放电制度四采用脉冲放电的方式对电池进行测试,每次当放电电流发生突变时,端路电压也会有一个瞬时突变,这是由动态内阻R1导致的;令突变前后的电压分别为V1和V2,从而计算出R1=|V1-V2|/I,其中I为脉冲电流;从而分别在α、β、γ、δ脉冲放电电流下,能够计算处于不同SOC状态下的动态内阻R1;又根据步骤S3中得到的放电电流为α、β、γ、δ下的“R1+R2与SOC”曲线,根据关系R2=(R1+R2)-R1,可得放电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路导致的;根据一阶RC等效电路,假设突变前后的电流分别为I1、I2,并以突变时刻开始计时,则电压瞬时突变后的连续变化描述为:由于已得到放电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2,则可通过电压瞬时突变后的连续变化数据估计出相应条件下的时间常数R2C,从而可得与R2相同条件下的电容C;
S5,充放电制度五采用脉冲充电的方式对电池进行测试,每次当充电电流发生突变时,端路电压也会有一个瞬时突变,这是由动态内阻R1导致的;令突变前后的电压分别为V1和V2,从而计算出R1=|V1-V2|/I,其中I为脉冲电流;从而分别在α、β、γ、δ脉冲充电电流下,计算处于不同SOC状态下的动态内阻R1;又根据步骤S3中得到的充电电流为α、β、γ、δ下的“R1+R2与SOC”曲线,根据关系R2=(R1+R2)-R1,可得充电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2;此外,当这个电压瞬时突变发生后,电池端电压还会发生一定程度的连续变化,这由RC回路导致的;根据一阶RC等效电路,假设突变前后的电流分别为I1、I2,并以突变时刻开始计时,则电压瞬时突变后的连续变化描述为:由于已得到充电电流分别为α、β、γ、δ时处于不同SOC状态下的动态内阻R2,则可通过电压瞬时突变后的连续变化数据估计出相应条件下的时间常数R2C,从而可得与R2相同条件下的电容C。
CN201510277820.XA 2015-05-27 2015-05-27 基于等效电路模型的锂电池动态阻抗参数识别方法 Active CN104849672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510277820.XA CN104849672B (zh) 2015-05-27 2015-05-27 基于等效电路模型的锂电池动态阻抗参数识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510277820.XA CN104849672B (zh) 2015-05-27 2015-05-27 基于等效电路模型的锂电池动态阻抗参数识别方法

Publications (2)

Publication Number Publication Date
CN104849672A CN104849672A (zh) 2015-08-19
CN104849672B true CN104849672B (zh) 2017-09-15

Family

ID=53849456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510277820.XA Active CN104849672B (zh) 2015-05-27 2015-05-27 基于等效电路模型的锂电池动态阻抗参数识别方法

Country Status (1)

Country Link
CN (1) CN104849672B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717458B (zh) * 2016-02-04 2017-06-30 惠州市蓝微新源技术有限公司 一种电池内阻的在线实时检测方法
CN105811500B (zh) * 2016-03-17 2018-03-16 哈尔滨工业大学 一种锂离子电池组均衡控制方法
CN105738829A (zh) * 2016-04-08 2016-07-06 深圳市国创动力系统有限公司 动力锂电池的等效电路模型参数识别方法
CN107561445A (zh) * 2016-07-01 2018-01-09 深圳市沃特玛电池有限公司 电池参数在线辨识方法及系统
CN107255786B (zh) * 2017-05-18 2020-06-30 中山职业技术学院 一种磷酸铁锂电池loc模型
US10312699B2 (en) * 2017-07-31 2019-06-04 Robert Bosch Gmbh Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
KR102416548B1 (ko) * 2018-02-01 2022-07-01 주식회사 엘지에너지솔루션 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템
CN108363017B (zh) * 2018-02-26 2020-04-07 大连理工大学 一种长时间存放的退役锂电池稳定容量值标定方法
CN108646188A (zh) * 2018-04-28 2018-10-12 北京新能源汽车股份有限公司 一种动力电池动态内阻测试方法、装置、设备及汽车
CN109085509A (zh) * 2018-09-11 2018-12-25 山东鲁能智能技术有限公司 锂离子电池开路电压与soc关系的参数辨识方法及系统
CN109633464A (zh) * 2018-11-26 2019-04-16 国网浙江省电力有限公司台州供电公司 蓄电池动静态放电测试方法
CN111983492A (zh) * 2019-05-21 2020-11-24 彩虹无线(北京)新技术有限公司 电池健康分析方法、装置和设备
CN113495221B (zh) * 2020-03-19 2023-12-01 郑州深澜动力科技有限公司 一种电池直流阻抗的测试方法
CN114089189A (zh) * 2020-07-31 2022-02-25 财团法人工业技术研究院 电池管理系统的测试设备和测试方法
CN112098846B (zh) * 2020-08-17 2021-10-22 四川大学 一种退役动力锂电池的混合建模方法
CN112366375B (zh) * 2020-09-03 2022-03-18 万向一二三股份公司 一种锂离子动力电池快速充电方法
CN112379280B (zh) * 2020-11-10 2022-12-27 南京理工大学 基于恒压恒流充电曲线的电池模型参数与ocv-soc关系确定方法
CN113036846B (zh) * 2021-03-08 2023-03-17 山东大学 基于阻抗检测的锂离子电池智能优化快速充电方法及系统
CN113093039A (zh) * 2021-03-31 2021-07-09 东风商用车有限公司 一种锂离子电池阻抗模型和参数辨识方法
CN114325431B (zh) * 2021-12-31 2024-03-08 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021161A1 (de) * 2000-04-29 2001-10-31 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
KR100462661B1 (ko) * 2002-07-02 2004-12-20 금호석유화학 주식회사 임피던스 스펙트럼으로부터 모사된 등가회로 모델의 특정저항 인자 연산을 이용한 2차 전지의 용량 선별 방법
CN102062841B (zh) * 2009-11-11 2012-12-12 北汽福田汽车股份有限公司 动力电池荷电状态的估测方法及系统
JP5303528B2 (ja) * 2010-09-16 2013-10-02 カルソニックカンセイ株式会社 フィルタによるパラメータ推定装置
CN102156265B (zh) * 2011-03-16 2013-07-17 深圳市派司德科技有限公司 一种电池健康状态测试装置及其方法
CN102445663B (zh) * 2011-09-28 2014-04-02 哈尔滨工业大学 一种电动汽车电池健康状态估算的方法
CN102393508A (zh) * 2011-09-30 2012-03-28 湖南大学 无损诊断电池性能
KR101852322B1 (ko) * 2011-11-30 2018-04-27 주식회사 실리콘웍스 배터리 파라미터 관리시스템 및 배터리 파라미터 추정방법
CN102854471B (zh) * 2012-09-06 2016-01-13 北京百纳威尔科技有限公司 电池电量计量方法及计量装置
CN104111377B (zh) * 2014-08-06 2017-02-15 先进储能材料国家工程研究中心有限责任公司 二次电池不同荷电状态下直流内阻的测试方法

Also Published As

Publication number Publication date
CN104849672A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104849672B (zh) 基于等效电路模型的锂电池动态阻抗参数识别方法
CN103926538B (zh) 基于aic准则的变阶数rc等效电路模型及实现方法
CN104535932B (zh) 一种锂离子电池荷电状态估计方法
CN104360285B (zh) 一种基于改进的安时积分法的电池容量修正方法
CN104392080B (zh) 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN104267354B (zh) 一种动力电池的峰值功率预测方法
CN105912799B (zh) 一种液态或半液态金属电池的建模方法
CN103020445B (zh) 一种电动车车载磷酸铁锂电池的soc与soh预测方法
CN106483462B (zh) 一种电池充电电量的测量方法和装置
CN102590751B (zh) 动力电池包一致性评估方法和装置
CN110031770A (zh) 一种快速得到电池包中所有单体电池容量的方法
CN104657520B (zh) 一种基于大容量储能锂离子电池的电池建模方法
CN107247235A (zh) 一种考虑并联电池差异的电池组容量估算方法
CN103018679A (zh) 一种铅酸电池初始荷电状态soc0的估算方法
CN106250576A (zh) 一种基于动态阻抗的锂电池模型的建模方法
CN110398697A (zh) 一种基于充电过程的锂离子健康状态估计方法
CN106354964A (zh) 电动汽车用锂离子电容器荷电状态估计方法
CN109061505A (zh) 一种锂电池soh的检测方法
CN107169170B (zh) 一种电池剩余容量的预测方法
CN107340476A (zh) 电池的电气状态监测系统和电气状态监测方法
CN106872901B (zh) KiBaM-分数阶等效电路综合特征电池模型及参数辨识方法
Chen et al. A novel hybrid equivalent circuit model for lithium-ion battery considering nonlinear capacity effects
CN103278777A (zh) 一种基于动态贝叶斯网络的锂电池健康状况估计方法
CN104111429B (zh) 基于电压跟踪的锂电池剩余电量的计量方法
CN104237792B (zh) 电池容量预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant