CN104835777B - 一种半导体器件及其制作方法 - Google Patents

一种半导体器件及其制作方法 Download PDF

Info

Publication number
CN104835777B
CN104835777B CN201410045903.1A CN201410045903A CN104835777B CN 104835777 B CN104835777 B CN 104835777B CN 201410045903 A CN201410045903 A CN 201410045903A CN 104835777 B CN104835777 B CN 104835777B
Authority
CN
China
Prior art keywords
layer
metallic compound
compound coating
low
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410045903.1A
Other languages
English (en)
Other versions
CN104835777A (zh
Inventor
邓浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201410045903.1A priority Critical patent/CN104835777B/zh
Publication of CN104835777A publication Critical patent/CN104835777A/zh
Application granted granted Critical
Publication of CN104835777B publication Critical patent/CN104835777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供一种半导体器件及其制作方法,所述制作方法包括,提供半导体衬底,在所述半导体衬底上形成低k层间介电层和位于所述低k层间介电层中的金属互连结构;采用硅烷和含硼化合物的混合气体处理所述金属互连结构的顶面,以形成第一金属化合物覆盖层;采用氮气或者氨气处理所述第一金属化合物覆盖层,以形成第二金属化合物覆盖层;在所述低k层间介电层和所述金属化合物覆盖层上形成电介质覆盖层。根据本发明,在形成的金属化合物覆盖层中引入硼原子,可以阻挡硅原子向金属连线中的扩散,为器件提供较低的线电阻和良好的电迁移性能,进而提高器件的可靠性,同时使金属化合物覆盖层的抗氧性得以提高。

Description

一种半导体器件及其制作方法
技术领域
本发明涉及半导体制造工艺,具体而言涉及一种实施金属互连工艺时形成金属化合物覆盖层的方法以及具有该覆盖层的半导体器件。
背景技术
随着半导体制造技术越来越精密,集成电路也发生着重大的变革,集成在同一芯片上的元器件数量已从最初的几十、几百个增加到现在的数以百万个。为了达到复杂度和电路密度的要求,半导体集成电路芯片的制作工艺利用批量处理技术,在衬底上形成各种类型的复杂器件,并将其互相连接以具有完整的电子功能,目前大多采用在导线之间以低k层间介电层作为隔离各金属内连线的介电材料,互连结构用于提供在IC芯片上的器件和整个封装之间的布线。在该技术中,在半导体衬底表面首先形成例如场效应晶体管(FET)的器件,然后在BEOL(集成电路制造后段制程)中形成互连结构。在降低互连线的RC延迟、改善电迁移等方面,金属铜与金属铝相比具有低电阻系数,高熔点和优良的电迁移耐力,在较高的电流密度和低功率的条件下也可以使用。目前,由金属铜和低k层间介电层组成的互连结构具有金属互连线层数目少,芯片速度高、功耗低、制造成本低、高抗电迁移性能等优势。
在当前的铜互连工艺中,作为布线材料的铜具有几个严重的缺点:它可以快速进入相邻的层间介电质区域,可导致在两互连线之间形成导通路径,产生短路;同时铜与层间介电层的附着力也很差,很容易产生脱落(peeling)现象。目前,在铜互连结构形成后,需要在其上形成电介质覆盖层,由于铜与电介质覆盖层的附着力很差,仍然会有铜扩散的现象出现,进而使互连线之间的击穿电压降低,引发器件的可靠性问题。为了解决铜与电介质覆盖层的粘附性问题,同时减少铜的电迁移,人们已提出了一种金属覆盖层的概念,即在金属铜上覆盖一层其他的物质,然后再沉积上层的电介质覆盖层,以提高金属铜与上层的电介质覆盖层的附着力。
如图1A-1D所示,为根据现有技术制作具有金属化合物覆盖层的铜互连结构的相关步骤所获得的器件的剖视图。
如图1A所示,提供一半导体衬底100,在半导体衬底上自下而上依次形成刻蚀停止层101和低k层间介电层102。刻蚀所述低k层间介电层102和刻蚀停止层101以露出半导体衬底100,形成沟槽。在所述沟槽内形成扩散阻挡层(未示出),并填充金属铜,之后采用化学机械研磨工艺处理所述半导体衬底的表面,最后形成金属铜层103。金属铜层很容易被氧化成氧化铜,因此,采用氨气来处理金属铜层103,通入的氨气还原互连结构中的氧化铜,最终去除互连结构中的氧化铜。
如图1B所示,采用硅烷(SiH4)处理所述金属铜层。将硅烷通入反应室内,经分解的硅烷中的硅与金属铜层103的表面发生反应,在金属铜层的表面形成硅化铜104。
如图1C所示,采用氮气或者氨气处理所述硅化铜104,以形成CuSiN金属化合物覆盖层105。使用氮气或者氨气的等离子体处理硅化铜层,氮气或者氨气经过等离子体分解,与硅化铜层发生反应生成CuSiN金属化合物覆盖层105,覆盖所述金属铜层103。CuSiN金属化合物覆盖层105不仅与金属铜有更好的粘附性,也可以有效减少铜的电迁移和提高了铜的温度依赖击穿特性。
如图1D所示,在所述CuSiN金属化合物覆盖层105和低k层间介电层102的表面形成电介质覆盖层106,可以采用等离子增强化学气相沉积工艺,电介质覆盖层的材料可以为氮化碳化硅。
然而,不断缩小的半导体器件的尺寸,以及在半导体衬底上由金属铜和低k层间介电层构成的互连结构所产生的电迁移(EM,electro migration)性能和线电阻(lineresistance)两者之间的权衡已成为目前研究的重点。在半导体器件的互连结构中电迁移是重要的金属失效机理。根据现有技术在形成CuSiN金属化合物覆盖层的过程中提供了大量的硅原子在半导体器件中,硅原子可以使器件具有较长的电迁移寿命,但是,在形成CuSiN金属化合物覆盖层的过程中提供给半导体器件较多的硅原子时,过量的硅原子会扩散到金属铜连线中,将增加线电阻的阻值,影响互连结构的电学性能。
因此,急需一种新的金属覆盖层的制造方法,以克服现有技术中的不足。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为了解决现有技术中存在的问题,本发明提出了一种制作半导体器件的方法,包括下列步骤,提供半导体衬底;在所述半导体衬底上形成低k层间介电层和位于所述低k层间介电层中的金属互连结构;采用硅烷和三甲基硼混合气体处理所述金属互连结构的顶面,以形成第一金属化合物覆盖层;采用氮气或者氨气处理所述金属化合物层,以形成第二金属化合物覆盖层;在所述低k层间介电层和所述第二金属化合物覆盖层上形成电介质覆盖层。
优选地,还包括采用硅烷和三甲基硼处理所述金属互连结构的顶面之前,使用氮气或者氨气处理所述金属互连结构顶面的步骤。
优选地,所述含硼化合物选自硼烷及其烷基取代衍生物;碳硼烷;硼氮苯分子及其烷基取代衍生物;胺类硼烷;及其组合。
优选地,所述第一金属化合物覆盖层的材料为CuSiB。
优选地,形成所述第一金属化合物覆盖层的工艺参数为:硅烷的流量为500立方厘米/分钟~1500立方厘米/分钟,通入所述含硼化合物的流量为500立方厘米/分钟~1500立方厘米/分钟,反应室内压力为0.1毫托~100毫托,反应温度为150℃~400℃,等离子体处理的时间为5s~300s。
优选地,所述第二金属化合物覆盖层的材料为CuSiBN。
优选地,所述金属互连结构包括金属铜。
优选地,所述低k层间介电层和所述半导体衬底之间形成有刻蚀停止层。
优选地,所述电介质覆盖层材料为氮化硅或者掺碳的氮化硅。
本发明还提供一种如上述制造方法制造的半导体器件,包括半导体衬底;在所述半导体衬底上形成的低k层间介电层和位于所述低k层间介电层中的金属互连结构;位于所述金属互连结构顶面上的金属化合物覆盖层;位于所述低k层间介电层和所述金属化合物覆盖层上的电介质覆盖层,其中所述金属化合物覆盖层含有硅、硼和氮。
优选地,所述金属化合物覆盖层为CuSiBN。
综上所示,根据本发明提供的采用硅烷和含硼化合物处理所述金属铜层以形成金属化合物覆盖层的方法,在形成的金属化合物覆盖层中引入硼原子,可以阻挡硅原子向金属铜连线中的扩散,为器件提供较低的线电阻和良好的电迁移性能,进而提高器件的可靠性,同时使金属化合物覆盖层的抗氧性得以提高。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。在附图中,
图1A-1D为根据现有技术制作具有金属化合物覆盖层的铜互连结构的相关步骤所获得的器件的剖视图;
图2A-2D为根据本发明一个实施方式制作具有金属化合物覆盖层的铜互连结构相关步骤所获得的器件的剖视图;
图3为根据本发明一个实施方式制作具有金属化合物覆盖层的铜互连结构的工艺流程图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底了解本发明,将在下列的描述中提出详细的步骤,以便说明本发明提出了一种采用硅烷和含硼化合物的混合气体处理所述金属铜层以形成金属化合物覆盖层的方法,以权衡电迁移寿命和线电阻两者之间的关系。显然本发明的较佳实施例详细的描述如下,然而去除这些详细描述外,本发明还可以具有其他实施方式。
本发明提出了一种采用硅烷和含硼化合物处理所述金属铜层以形成金属化合物覆盖层的方法。参照图2A至图2D,示出根据本发明一个方面的实施例的相关步骤的剖视图。
如图2A所示,提供半导体衬底200,半导体半导体衬底200可包括任何半导体材料,此半导体材料可包括但不限于:Si、SiC、SiGe、SiGeC、Ge合金、GeAs、InAs、InP,以及其它Ⅲ-Ⅴ或Ⅱ-Ⅵ族化合物半导体。半导体衬底200包括各种隔离结构,例如浅沟槽绝缘。半导体衬底200还可以包括有机半导体或者如Si/SiGe、绝缘体上硅(SOI)、或者绝缘体上SiGe(SGOI)的分层半导体。在半导体衬底200上沉积形成刻蚀停止层201,其材料为含碳的氮化硅(NDC),制备的方法可选用化学气相沉积(CVD)。作为一个实例,在进行化学气相沉积时,功率为200~400W,加热使腔体内的温度至300~400℃,腔体内的压力为2~5Torr,采用的三甲基硅烷(3MS)或者四甲基硅烷(4MS)的气体流量为100~200立方厘米/分钟(sccm),He的气体流量为350~450立方厘米/分钟(sccm),NH3气体流量为300~500立方厘米/分钟(sccm),沉积时间持续3s。然后,在刻蚀停止层201上沉积形成低k层间介电层202,其介电常数k小于3,通常采用化学气相旋涂工艺(SOG)、甩胶技术或化学气相沉积技术制备,其材料可以为硅玻璃(FSG)、氧化硅(silicon oxide)、含碳材料、孔洞性材料(porous-likematerial)或相似物。作为一个实例,低k层间介电层202为孔洞性材料包含有致孔剂,致孔剂可以是任何合适产生孔的材料,致孔剂材料可以是碳氢化合物、含有抗蚀剂的丙烯酸盐(丙烯酸脂)族的聚合物、氟化的聚合物等。可以在熔炉中或者通过其他工艺实施固化,例如紫外线固化、快速热固化、闪光灯固化、激光固化等。刻蚀低k层间介电层202中以露出半导体衬底200,形成沟槽。在所述沟槽中依次形成有扩散阻挡层(未示出)和铜金属层,其中扩散阻挡层的制备方法可选用物理气相沉积(PVD),阻挡层可于介于-40℃~400℃的温度与约介于0.1毫托(mTorr)~100毫托(mTorr)的压力下形成。扩散阻挡层材料为金属或金属化合物层的材质例如钽、氮化钽、钛、氮化钛、氮化锆、氮化钛锆、钨、氮化钨、其合金或其组成物。此外,扩散阻挡层亦可能包括多个膜层。优选在扩散阻挡层上先形成一层钴(Co)增强层(enhancement layer)(未示出),然后再形成铜晶种层(未示出)。钴增强层能够提高铜互连的电迁移耐力,同时可以有效地加强在较小几何沟槽/结构中的铜填充能力。在铜晶种层上使用电化学电镀的方法形成铜金属层,通过对有机物和无机物水浴成分和补给的即时分析可以维持稳定的电镀工艺,其中优选的铜电镀化学添加剂和电流波形可以完成对0.07um~0.1um的间隙填充。接着,采用化学机械研磨(CMP)工艺处理铜金属层,以去除多余的铜金属层,直到露出低k层间介电层202,使铜金属层203与低k层间介电层202的顶部齐平则停止化学机械研磨。由于空气氧化造成铜金属层203的表面被氧化生成氧化铜。采用氨气(NH3)等离子体处理铜金属层203,通入的氨气还原互连结构中的氧化铜,最终去除互连结构中的氧化铜。作为一个实例,采用氨气(NH3)等离子体处理铜金属层,气体的流量为200~300立方厘米/分钟(sccm),反应室内压力可为5~10毫托(mTorr),功率为900W~1100W,等离子体处理的时间为5s~10s。
如图2B所示,在反应室内通入所述硅烷(SiH4)和含硼化合物,并对其进行分解,经分解的生成的硅原子和硼原子与铜金属层203表面的铜进行反应,在铜金属层203表面形成第一金属化合物覆盖层204,其覆盖所述金属铜层203。示例性含硼化合物包括:硼烷及其烷基取代衍生物;碳硼烷;硼氮苯分子及其烷基取代衍生物;胺类硼烷;及其组合。应该理解,这些化合物或任意其他以上未列出的化合物在室温下可以是固体、液体或气体。因此,在引入反应室之前,非气相前体要经过升华或蒸发步骤,而这都是本领域公知的。
在此,优选三甲基硼作为硼源引入反应室,其中,通入硅烷的流量为500立方厘米/分钟(sccm)~1500立方厘米/分钟(sccm),通入三甲基硼(TMB)的流量为500立方厘米/分钟(sccm)~1500立方厘米/分钟(sccm),反应室内压力可为0.1毫托(mTorr)~100毫托(mTorr),等离子体处理的时间为5s~300s。经分解的生成的硅原子和硼原子与铜金属层203表面的铜进行反应,在铜金属层203表面形成CuSiB金属化合物覆盖层204,其覆盖所述金属铜层203
如图2C所示,采用氮气或者氨气处理CuSiB金属化合物覆盖层204,以使CuSiB金属化合物覆盖层204反应形成CuSiBN金属化合物覆盖层205。使用氮气或者氨气的等离子体处理CuSiB金属化合物覆盖层204,氮气或者氨气经过等离子体分解,与CuSiB金属化合物覆盖层发生反应最终生成CuSiBN金属化合物覆盖层205。作为一个实例,通入氨气的流量为50立方厘米/分钟(sccm)~150立方厘米/分钟(sccm),所述等离子分解所采用的功率为100W~200W。
如图2D所示,在所述CuSiBN金属化合物覆盖层205和低k层间介电层202上形成电介质覆盖层206。电介质覆盖层的材料为掺碳的氮化硅或者氮化硅,优选氮化硅材料。其可以防止铜扩散到周围的低k层间介电层,电介质覆盖层的粘合性、物理性能和电气性能对下面低k层间介电层和金属层的气密性、内应力性和弹性模量等性能和可靠性是非常重要的。作为一个实例,电介质覆盖层具有压应力,厚度范围为100埃~500埃。具有压应力的电介质覆盖层有良好的附着力、抑制铜的扩散并提供较强的机械结构,还具有较高的击穿电压、良好的气密性和钝化铜金属层。
参照图3,示出了根据本发明一个实施方式制作具有金属覆盖层的铜互连结构的工艺流程图,用于简要示出整个制造工艺的流程。
在步骤301中,提供一半导体衬底,在半导体衬底上形成刻蚀停止层、低k层间介电层和铜互连结构。采用氨气(NH3)等离子体处理铜互连结构,通入的氨气还原互连结构中的氧化铜,以去除铜互连结构中的氧化铜。
在步骤302中,采用硅烷和含硼化合物处理铜互连结构,在铜互连结构的表面形成第一金属化合物覆盖层。
在步骤303中,采用氮气或者氨气等离子体处理第一金属化合物覆盖层,以使铜互连结构的上表面形成第二金属化合物覆盖层。
在步骤304中,在第二金属化合物覆盖层和低k层间介电层上形成电介质覆盖层。
本发明还提供一种根据上述工艺制作的半导体器件,包括:半导体衬底;在所述半导体衬底上形成的低k层间介电层和位于所述低k层间介电层中的金属互连结构;位于所述金属互连结构顶面上的金属化合物覆盖层;位于所述低k层间介电层和所述金属化合物覆盖层上的电介质覆盖层,其中所述金属化合物覆盖层含有硅、硼和氮。所述金属化合物覆盖层为CuSiBN。
综上所示,根据本发明的制造工艺采用硅烷和含硼化合物处理所述金属铜层以形成金属化合物覆盖层,提高了金属化合物覆盖层的抗氧化性,为器件提供较低的线电阻和良好的电迁移性能,提高器件的可靠性和良品率。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。

Claims (11)

1.一种制作半导体器件的方法,包括:
提供半导体衬底;
在所述半导体衬底上形成低k层间介电层和位于所述低k层间介电层中的金属互连结构;
采用硅烷和含硼化合物的混合气体处理所述金属互连结构的顶面,以形成第一金属化合物覆盖层;
采用氮气或者氨气处理所述第一金属化合物覆盖层,以形成第二金属化合物覆盖层;
在所述低k层间介电层和所述第二金属化合物覆盖层上形成电介质覆盖层。
2.如权利要求1所述的方法,其特征在于,还包括采用硅烷和三甲基硼处理所述金属互连结构的顶面之前,使用氮气或者氨气处理所述金属互连结构顶面的步骤。
3.如权利要求1所述的方法,其特征在于,所述含硼化合物选自硼烷及其烷基取代衍生物;碳硼烷;硼氮苯分子及其烷基取代衍生物;胺类硼烷;及其组合。
4.如权利要求1所述的方法,其特征在于,所述第一金属化合物覆盖层的材料为CuSiB。
5.如权利要求1所述的方法,其特征在于,形成所述第一金属化合物覆盖层的工艺参数为:硅烷的流量为500立方厘米/分钟~1500立方厘米/分钟,通入所述含硼化合物的流量为500立方厘米/分钟~1500立方厘米/分钟,反应室内压力为0.1毫托~100毫托,反应温度为150℃~400℃,等离子体处理的时间为5s~300s。
6.如权利要求1所述的方法,其特征在于,所述第二金属化合物覆盖层的材料为CuSiBN。
7.如权利要求1所述的方法,其特征在于,所述金属互连结构包括金属铜。
8.如权利要求1所述的方法,其特征在于,所述低k层间介电层和所述半导体衬底之间形成有刻蚀停止层。
9.如权利要求1所述的方法,其特征在于,所述电介质覆盖层材料为氮化硅或者掺碳的氮化硅。
10.一种采用如权利要求1-9之一所述的方法制作获得的半导体器件,包括:半导体衬底;
在所述半导体衬底上形成的低k层间介电层和位于所述低k层间介电层中的金属互连结构;
位于所述金属互连结构顶面上的金属化合物覆盖层;
位于所述低k层间介电层和所述金属化合物覆盖层上的电介质覆盖层,其中所述金属化合物覆盖层含有硅、硼和氮。
11.如权利要求10所述的半导体器件,所述金属化合物覆盖层为CuSiBN。
CN201410045903.1A 2014-02-08 2014-02-08 一种半导体器件及其制作方法 Active CN104835777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410045903.1A CN104835777B (zh) 2014-02-08 2014-02-08 一种半导体器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410045903.1A CN104835777B (zh) 2014-02-08 2014-02-08 一种半导体器件及其制作方法

Publications (2)

Publication Number Publication Date
CN104835777A CN104835777A (zh) 2015-08-12
CN104835777B true CN104835777B (zh) 2017-11-14

Family

ID=53813567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410045903.1A Active CN104835777B (zh) 2014-02-08 2014-02-08 一种半导体器件及其制作方法

Country Status (1)

Country Link
CN (1) CN104835777B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527862B (zh) * 2016-06-22 2019-12-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制作方法
CN113078102B (zh) * 2021-03-24 2022-04-29 长鑫存储技术有限公司 半导体结构的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286494A (zh) * 2007-04-11 2008-10-15 台湾积体电路制造股份有限公司 半导体结构及其制造方法
CN102332425A (zh) * 2011-09-23 2012-01-25 复旦大学 一种提升铜互连技术中抗电迁移特性的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014356B2 (ja) * 2009-01-15 2012-08-29 パナソニック株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286494A (zh) * 2007-04-11 2008-10-15 台湾积体电路制造股份有限公司 半导体结构及其制造方法
CN102332425A (zh) * 2011-09-23 2012-01-25 复旦大学 一种提升铜互连技术中抗电迁移特性的方法

Also Published As

Publication number Publication date
CN104835777A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5201048B2 (ja) 半導体装置とその製造方法
TWI559447B (zh) 半導體裝置與其形成方法
TWI619171B (zh) 障壁層
TW201430958A (zh) 於銅基導體結構上形成石墨襯墊及/或蓋罩層之方法
CN102738025B (zh) 形成键合半导体结构的方法和用该方法形成的半导体结构
CN101859727A (zh) 内连线结构
CN105336680B (zh) 一种半导体器件及其制作方法和电子装置
CN105742233B (zh) 用于形成具有部件开口的半导体器件的方法
KR101391480B1 (ko) 상호접속 구조 및 이의 형성 방법
CN102376641B (zh) 铜填充硅通孔的制作方法
CN104835777B (zh) 一种半导体器件及其制作方法
CN103489840B (zh) 穿硅通孔及其制作方法
TW202232688A (zh) 半導體元件及其製備方法
CN103367310B (zh) 互连结构及其形成方法
CN105489548B (zh) 一种半导体器件的制作方法
US8163594B2 (en) Semiconductor device comprising a carbon-based material for through hole vias
JP2005150690A (ja) 半導体素子の金属配線形成方法
CN105206562B (zh) 一种半导体器件及其制作方法、电子装置
CN104299958B (zh) 互连结构及互连结构的形成方法
CN105097655B (zh) 一种半导体器件的制作方法
CN104299939B (zh) 互连结构的形成方法
CN104835778B (zh) 一种半导体器件的制作方法
CN102945825A (zh) 一种带金属帽盖的铜互连结构及其制造方法
CN104183537B (zh) 一种制作半导体器件的方法
CN104241192A (zh) 一种制作半导体器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant