CN104716302B - 用于制造用于锂电池的功能层的方法 - Google Patents

用于制造用于锂电池的功能层的方法 Download PDF

Info

Publication number
CN104716302B
CN104716302B CN201410767736.1A CN201410767736A CN104716302B CN 104716302 B CN104716302 B CN 104716302B CN 201410767736 A CN201410767736 A CN 201410767736A CN 104716302 B CN104716302 B CN 104716302B
Authority
CN
China
Prior art keywords
lithium
functional layer
particle
carrier
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410767736.1A
Other languages
English (en)
Other versions
CN104716302A (zh
Inventor
C.恩格尔
M.布青
M.滕策
J.法努斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN104716302A publication Critical patent/CN104716302A/zh
Application granted granted Critical
Publication of CN104716302B publication Critical patent/CN104716302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及用于制造用于锂电池(28)的功能层(20)、尤其是用于锂金属阳极(30)的保护层(20)的方法,其中所述功能层(20)是锂离子导电的并且具有至少一种无机材料、尤其是陶瓷材料的颗粒(14),其中至少一种无机材料的颗粒(14)通过沉积被施加到载体(18)上。本发明此外涉及一种用于锂电池的功能层(20)、尤其是阳极保护层(20)以及包括所述功能层的锂电池或锂电池组,其中所述功能层通过前面所描述的方法来制造。

Description

用于制造用于锂电池的功能层的方法
技术领域
本发明涉及一种用于制造用于锂电池的功能层、尤其是用于锂金属阳极或锂金属阴极的保护层的方法、一种用于锂电池的功能层以及包括该功能层的锂电池或锂电池组。
背景技术
在不同类型的锂(Li)电池组、尤其是所谓的后锂离子电池组、诸如锂硫电池组或锂氧电池组中,金属锂阳极被用作阳极。该锂阳极尤其具有以下问题,即在该锂阳极上发生与电解质或包含在电解质中的物质(例如在LiS电池的情况下多硫化物)的寄生反应。由此不仅电解质而且锂本身被耗尽。为了防止这一点,在金属锂阳极上需要保护层,该保护层防止金属锂和电解质之间的直接接触并且同时具有足够高的锂离子导电性。
目前,大多数的构思以相对于枝晶生长稳定的层为出发点,该层阻止生长的枝晶穿过该层生长。为此需要高的机械稳定性。该稳定性例如可以通过陶瓷材料实现,所述陶瓷材料然而由于其脆性而不能单独被使用。
发明内容
在该背景下,利用本发明根据独立权利要求介绍一种用于制造用于锂电池的功能层的方法、一种用于锂电池或锂电池组的功能层以及一种包括该功能层的锂电池或锂电池组。有利的设计方案由相应的从属权利要求和随后的描述得出。
根据本发明的方法提供以下优点,即可以制造用于锂电池的功能层、尤其是用于锂金属阳极或锂金属阴极的功能层,该功能层不仅对于锂离子是灵活的而且相对于枝晶是稳定的。
锂电池尤其是可以被理解为电化学电池,该电化学电池的阳极(负电极)包括锂。例如在此可以涉及锂金属电池、具有由金属锂或锂合金构成的阳极(负电极)的电池、或必要时涉及锂离子电池、其阳极包括夹入材料、例如石墨的电池,锂可以可逆地插入到该夹入材料中并且从该夹入材料中移出。
有利的是,气溶胶沉积方法(ADM方法)被用于将至少一种无机材料的颗粒和聚合物粘合剂沉积到载体上。用于气溶胶沉积的沉积参数例如可以如下:
-原始粉末的粉末分布:50nm-5μm(d50=1-3μm)
-用于气溶胶产生的振动频率:80-800rpm
-喷嘴开口:0.5*10mm2
-喷嘴类型:拉瓦尔喷嘴
-载气流:1.5-6l/min
-载气类型:氩气、氨气、氮气
-(沉积腔和气溶胶发生器之间的)压力差:80-180mbar
-到衬底的喷嘴间距:3-15mm
-扫描速度(摆渡速度):0.1-3mm/s
-摆渡次数:1-60
-层厚度:0.5-20μm。
通过ADM方法,至少一种无机材料的颗粒可以碾碎地作为层被沉积到载体上,由此可以实现很低的、例如在小于或等于10%、尤其是小于或等于2%的范围内的、特别是0%的孔隙度。该措施用于具有阳极保护层的电池中的阳极和电解质的完全分离或具有阴极保护层的电池中的阴极和电解质的完全分离(枝晶生长,电解质分解)。
此外,有利的是,至少一种无机材料的颗粒和聚合物粘合剂的沉积同时或交替地进行。由此该功能层获得高的灵活性,因为形成一种合成物,在该合成物中聚合物链作为用于陶瓷颗粒的粘合剂起作用。
此外,有利的是,功能层在没有附加的退火步骤的情况下构成。即,换句话说,舍弃在常规的陶瓷材料、例如锂镧钛氧化物(LLTO)、磷酸锂镧钛(LATP)、石榴石、如锂镧锆氧化物的情况下在制造用于构造颗粒接触的层之后为了减小从一个颗粒到下一个颗粒的过渡电阻并且因此为了保证足够高的锂导电性所需的事后的退火或再烧结。这又能够实现在较低的温度下、尤其是在玻璃熔化温度之上、但是在聚合物的熔化温度之下的温度下、典型地在大约150℃的情况下制造功能层。在此情况下的优点是,可以实现聚合物的无定形区域的重新定向并且所使用的聚合物粘合剂不被耗尽,由此改进功能层的机械稳定性并且提高功能层的柔韧性。
此外,有利的是,压缩功能层。该压缩尤其是可以借助压延过程来实现。压缩例如可以借助压缩机、例如借助压延机来实现。通过压缩过程,可以以有利的方式制造紧密的功能层并且尤其是封闭可能以前形成的孔。此外,可以通过该压缩以有利的方式改进各个颗粒之间的接触。这又导致过渡电阻被最小化以及锂导电性和比能量密度被提高。
此外,有利的是,聚合物粘合剂是锂离子导电的和/或无机材料的颗粒在功能层的厚度方向上构造连续的锂离子导电路径和/或功能层具有至少一种锂导电盐。可以从由六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、四氟硼酸锂(LiBF4)、双乙二酸硼酸锂、硫化电解质、硫银锗矿、富锂反钙钛矿、锂镧钙钛矿和其混合物组成的组中选择该锂导电盐。由此进一步提高功能层针对锂离子的导电性。
此外,有利的是,锂导电盐与至少一种无机材料的颗粒和聚合物粘合剂一起通过沉积被施加到载体上。由此可以以快速并且成本低的方式和方法将锂导电盐与至少一种无机材料的颗粒和聚合物粘合剂一起作为第三组分借助ADM施加到载体上。
替代地,也可以在至少一种无机材料的颗粒和聚合物粘合剂沉积之后将锂导电盐引入到功能层中。
此外,有利的是,载体具有锂并且尤其是被构造为锂薄膜。由此可以以有利的方式舍弃用于将功能层施加到锂上的另一个过程步骤或另外的过程步骤。替代地,然而也可以将载体构造为载体衬底,功能层尤其是借助再层压(Umlaminier)或蚀刻过程从该载体衬底被去除。随后,功能层于是例如借助压延过程被施加到锂薄膜上。
附图说明
以下借助附图示例性地进一步解释本发明。
图1示出根据本发明的一个实施例的方法的示意图;和
图2示出根据本发明的锂电池的一种实施方式的示意性横截面。
在本发明的优选的实施例的随后的描述中,对于在不同的图中所示出的并且相似地起作用的元件使用相同或相似的附图标记,其中舍弃对这些元件的重复描述。
具体实施方式
在图1中描绘了气溶胶涂覆装置10,通过该气溶胶涂覆装置可以实施根据本发明的方法或产生根据本发明的功能层。该气溶胶涂覆装置10具有喷嘴12,该喷嘴例如可以被构造为拉瓦尔喷嘴。喷嘴12的喷嘴开口例如可以为0.5*10mm2。气溶胶涂覆装置10尤其是可以被构造用于实现用于气溶胶沉积的前面所提到的沉积参数。
按照所示出的根据本发明的方法,首先至少一种无机材料、尤其是陶瓷材料的颗粒14和至少一种聚合物粘合剂16通过沉积被施加在载体18上。沉积在此情况下是气溶胶沉积。至少一种无机材料、尤其是陶瓷材料的颗粒14和聚合物粘合剂在此可以借助气溶胶涂覆装置10同时或交替地被沉积。如从图1可以看出,颗粒14和粘合剂16在载体18上构成合成物,由此构造功能层20。
为了使功能层20可操作并且改进各个颗粒14之间的接触,功能层20在沉积之后借助压缩机21被压缩。压缩机21在此情况下被构造为压延机21,该压延机具有第一辊22和第二辊24。如从图1进一步可以看出,第一辊22用于引导锂薄膜26,使得功能层20被施加到该锂薄膜上。与第一辊22相对地被布置的第二辊24又用于引导载体18,使得该载体从功能层20被去除。由此形成的层复合体因此具有根据本发明的功能层20以及锂层26,该锂层被构造为锂薄膜26。如前面所解释的,可替代地设想,载体18具有锂并且尤其是被构造为锂薄膜。由此可以以有利的方式舍弃再层压步骤,通过该再层压步骤从功能层20去除载体18。
图2示出一种锂电池28,该锂电池具有阳极30(负电极)和阴极32(正电极)。此外,在阳极30的外侧上布置有例如由铜构成的阳极集流器34,并且在阴极32的外侧上布置有例如由铝构成的阴极集流器36。
在阳极30和阴极32之间布置有根据本发明的功能层20,该功能层可以以有利的方式用作用于阳极30或用于阴极32的保护层20,尤其是用于避免来自阳极30的枝晶生长。保护层20因此也可以被称为阳极保护层20或阴极保护层20。此外,在图2中所示出的实施方式中功能层20用作唯一的隔离器。由此也可以有利地实现比能量密度。
阳极30也可以是锂金属阳极30、即包括金属锂或锂合金的或由金属锂或锂合金构成的阳极。阴极例如可以包括硫或是氧电极。在图2中所示出的锂电池28例如可以是锂硫电池或锂氧电池。在图2中所示出的锂电池例如可以被构造为干电池或薄层电池。

Claims (12)

1.用于制造用于锂电池(28)的功能层(20)的方法,其中所述功能层(20)
-是锂离子导电的并且
-具有至少一种陶瓷材料的颗粒(14),
其中所述至少一种陶瓷材料的颗粒(14)通过沉积被施加到载体(18)上,
其中所述功能层(20)此外具有至少一种聚合物粘合剂(16),其中所述聚合物粘合剂(16)通过沉积被施加到载体(18)上,
其中所述至少一种陶瓷材料的颗粒(14)和所述聚合物粘合剂(16)的沉积同时或交替地进行,
其中所述聚合物粘合剂(16)是锂离子导电的和/或所述至少一种陶瓷材料的颗粒(14)在所述功能层(20)的厚度方向(38)上构造连续的锂离子导电路径和/或所述功能层(20)具有至少一种锂导电盐,
其中所述锂导电盐在所述至少一种陶瓷材料的颗粒(14)和所述聚合物粘合剂(16)沉积之后被引入到所述功能层(20)中,以及
所述载体(18)是载体衬底(18),所述载体衬底从所述功能层(20)借助再层压或蚀刻过程被去除,其中所述功能层(20)随后被施加到锂薄膜(26)上。
2.根据权利要求1所述的方法,其特征在于,所述功能层(20)是用于锂金属阳极(30)或用于锂金属阴极(32)的保护层。
3.根据权利要求1或2所述的方法,其特征在于,气溶胶沉积方法被用于沉积。
4.根据权利要求1或2所述的方法,其特征在于,从由聚环氧乙烷、聚环氧乙烷衍生物、聚丙烯酸酯、聚丙烯酸酯衍生物和其混合物组成的组中选择所述聚合物粘合剂和/或从由磷酸锂铝钛(LATP)、磷酸锂铝锗(LAGP)、石榴石、硫化玻璃、硫化电解质、硫银锗矿、富锂反钙钛矿、锂镧钙钛矿和其混合物组成的组中选择所述陶瓷材料。
5.根据权利要求1或2所述的方法,其特征在于,所述功能层(20)在没有附加的退火步骤的情况下构成。
6.根据权利要求1或2所述的方法,其特征在于,所述功能层(20)被压缩。
7.根据权利要求6所述的方法,其特征在于,所述功能层(20)借助压延过程被压缩。
8.根据权利要求1所述的方法,其特征在于,从由六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、四氟硼酸锂(LiBF4)、双乙二酸硼酸锂和其混合物组成的组中选择所述锂导电盐。
9.根据权利要求1或8所述的方法,其特征在于,所述锂导电盐与所述至少一种陶瓷材料的颗粒(14)和所述聚合物粘合剂(16)一起通过沉积被施加到所述载体(18)上。
10.用于锂电池(28)的功能层(20),通过根据权利要求1至9之一所述的方法来制造。
11.根据权利要求10所述的用于锂电池(28)的功能层(20),其特征在于,所述功能层(20)是阳极保护层或阴极保护层。
12.锂电池(28)或锂电池组,包括根据权利要求10或11所述的功能层(20)。
CN201410767736.1A 2013-12-16 2014-12-15 用于制造用于锂电池的功能层的方法 Active CN104716302B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226064.4A DE102013226064A1 (de) 2013-12-16 2013-12-16 Verfahren zur Herstellung einer Funktionsschicht für eine Lithium-Zelle
DE102013226064.4 2013-12-16

Publications (2)

Publication Number Publication Date
CN104716302A CN104716302A (zh) 2015-06-17
CN104716302B true CN104716302B (zh) 2019-06-18

Family

ID=53192367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410767736.1A Active CN104716302B (zh) 2013-12-16 2014-12-15 用于制造用于锂电池的功能层的方法

Country Status (3)

Country Link
US (1) US9472808B2 (zh)
CN (1) CN104716302B (zh)
DE (1) DE102013226064A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102585447B1 (ko) * 2015-05-20 2023-10-06 시온 파워 코퍼레이션 전극용 보호층
US10177406B2 (en) 2015-07-21 2019-01-08 Samsung Electronics Co., Ltd. Solid electrolyte and/or electroactive material
US10320031B2 (en) 2015-11-13 2019-06-11 Sion Power Corporation Additives for electrochemical cells
CN107369813B (zh) * 2016-05-12 2019-10-01 华为技术有限公司 锂金属电极及其制备方法、锂金属二次电极负极、电池
WO2017201376A1 (en) 2016-05-20 2017-11-23 Sion Power Corporation Protective layers for electrodes and electrochemical cells
KR101790890B1 (ko) * 2016-09-23 2017-10-26 주식회사 엘지화학 Li 리치 안티페로브스카이트 코팅 LCO계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
EP3457475A1 (en) * 2017-09-15 2019-03-20 Basf Se Protective layers for lithium electrodes
WO2019055303A2 (en) 2017-09-15 2019-03-21 Sion Power Corporation PROTECTIVE MEMBRANE FOR ELECTROCHEMICAL CELLS
US11456481B2 (en) 2017-10-12 2022-09-27 Robert Bosch Gmbh Ceramic-polymer composite single ion conducting thin film electrolyte
CN107768595A (zh) * 2017-10-20 2018-03-06 中国人民解放军国防科技大学 锂离子电池负极极片及其制备方法、锂离子电池
CN109638235B (zh) * 2018-11-09 2021-05-18 清华大学 金属锂表面保护方法及设备、负极极片和锂电池
US20200280104A1 (en) * 2019-03-01 2020-09-03 Ses Holdings Pte. Ltd. Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
US11881553B1 (en) 2019-09-23 2024-01-23 Ampcera Inc. Dendrite suppressing solid electrolyte structures and related methods and systems
DE102022116851A1 (de) 2022-07-06 2024-01-11 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Elektrode für eine Lithium-Ionen-Feststoffbatterie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601791A (zh) * 2004-10-21 2005-03-30 复旦大学 一种新型的全固态薄膜锂电池及其制备方法
CN102057522A (zh) * 2008-07-25 2011-05-11 松下电器产业株式会社 双极型电池
CN103339765A (zh) * 2010-11-15 2013-10-02 丰田自动车株式会社 电极薄膜、全固体锂电池及制造电极薄膜的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1784876B1 (en) * 2004-09-02 2018-01-24 LG Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100686848B1 (ko) * 2005-10-11 2007-02-26 삼성에스디아이 주식회사 리튬 이차 전지
JP2009146822A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
CN101911368B (zh) * 2007-12-26 2014-07-02 松下电器产业株式会社 非水电解质二次电池
KR101173867B1 (ko) * 2010-10-28 2012-08-14 삼성에스디아이 주식회사 리튬 이차 전지
WO2012076950A1 (en) * 2010-12-05 2012-06-14 Ramot At Tel-Aviv University Ltd. Electrophoretic deposition of thin film batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601791A (zh) * 2004-10-21 2005-03-30 复旦大学 一种新型的全固态薄膜锂电池及其制备方法
CN102057522A (zh) * 2008-07-25 2011-05-11 松下电器产业株式会社 双极型电池
CN103339765A (zh) * 2010-11-15 2013-10-02 丰田自动车株式会社 电极薄膜、全固体锂电池及制造电极薄膜的方法

Also Published As

Publication number Publication date
DE102013226064A1 (de) 2015-06-18
US9472808B2 (en) 2016-10-18
CN104716302A (zh) 2015-06-17
US20150171430A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
CN104716302B (zh) 用于制造用于锂电池的功能层的方法
Du et al. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization
US11888109B2 (en) Lithium anode device stack manufacturing
Lee et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes
Zhao et al. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition
KR102435872B1 (ko) 전해질 및 전극 보호층으로서의 리튬 보로실리케이트 유리
CN106165178B (zh) 具有复合固体电解质的Li/金属电池
EP3039737B1 (en) Li-ion battery with coated electrolyte
JP2021502671A (ja) リチウム金属アノードのための、カルコゲナイドを用いたエクスシトゥ固体電解質界面修飾
JP2019522879A (ja) 改善されたリチウム金属サイクリングのための中間相層
US20160172682A1 (en) Method for producing an electrode for a lithium-ion battery
KR20160002988A (ko) 고체 및 액체 전해질들을 갖는 전기화학 셀
CN105406113A (zh) 锂电池用电极体及锂电池
Jin et al. Self-healing wide and thin Li metal anodes prepared using calendared Li metal powder for improving cycle life and rate capability
JP2012014892A (ja) 非水電解質電池
US9876219B2 (en) Method for performing enrichment of an electrode of an electrochemical device with ionic species
CN107004826A (zh) 用于制备锂‑离子‑电池的方法
CN111211291A (zh) 具有均匀的沉积行为的复合电极
Li et al. Lithium metal anode
Pang et al. Stable lithium plating and stripping enabled by a LiPON nanolayer on PP separator
CN113314698A (zh) 复合参比电极基材及其相关方法
US10991976B2 (en) Solid-state electrolytes based on lithium halides for all-solid-state lithium-ion battery operating at elevated temperatures
CN117999698A (zh) 包含固态离子传导膜的电池
US20230095801A1 (en) Solid-state battery, multilayer structure for a solid-state battery, and method for manufacturing a multilayer structure for a solid-state battery
JP2013054999A (ja) 電極用薄膜の製造方法、当該方法により製造される電極用薄膜、及び当該電極用薄膜を備える電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant