CN104647828B - 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用 - Google Patents

一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用 Download PDF

Info

Publication number
CN104647828B
CN104647828B CN201310594956.4A CN201310594956A CN104647828B CN 104647828 B CN104647828 B CN 104647828B CN 201310594956 A CN201310594956 A CN 201310594956A CN 104647828 B CN104647828 B CN 104647828B
Authority
CN
China
Prior art keywords
coating
stainless steel
hydrogen resistance
resistance coating
complex gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310594956.4A
Other languages
English (en)
Other versions
CN104647828A (zh
Inventor
于庆河
郝雷
李帅
何迪
王笑静
杜淼
蒋利军
刘晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201310594956.4A priority Critical patent/CN104647828B/zh
Publication of CN104647828A publication Critical patent/CN104647828A/zh
Application granted granted Critical
Publication of CN104647828B publication Critical patent/CN104647828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用。该复合涂层由Cr2O3和Al2O3组成,包覆在不锈钢上。该复合涂层由金属‑有机化学气相沉积法制备,通过重复沉积氧化铝和氧化铬涂层,获得厚度约为0.1~20μm多层Cr2O3和Al2O3复合梯度阻氢涂层,该阻氢涂层可用于不锈钢结构件的氢渗透阻挡,特别是太阳能高温真空集热管内管不锈钢管的氢渗透阻挡。该阻氢涂层与基体结合强度高、制备工艺简单且成本低廉,阻氢性能提高100倍以上。

Description

一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用
技术领域
本发明涉及一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用,该涂层可应用于高温真空集热管的阻氢渗透。
背景技术
太阳能集热管中载热流体的老化会产生游离的氢,氢借助渗透作用穿过中央管,到达中央管和套管之间的真空环形空间,造成环形空间压强的升高,进而导致集热管热损失的增大。为保证管间环形隙的真空,必须采取相应的措施降低真空环形空间的氢气量。早期解决方法包括使用吸气材料,该方法的弊端在于吸气材料的容量有限,当吸气材料的容量耗尽时,环形空间的压强又会升高。因此,采用吸收的方式只能暂时控制而不能从根本上解决问题,为此,研究人员提出了采用阻氢涂层阻止氢渗透,从而有效控制集热管真空环形空间的压强,减少集热管的热损耗。
最早出现的阻氢涂层是CN1971168公开的采用Cr2O3作为阻氢材料,可以很大程度的阻止氢的渗透,使吸收管具有更少的热损失。但该类阻氢材料其热膨胀系数与基体存在较大失配,受到一定热冲击后,涂层与基体间产生较大热应力,导致涂层与基体分离,严重影响涂层的阻氢性能,为解决上述问题研究人员寻找其它与基体结合良好、热膨胀系数适配小的阻氢涂层,代表性的专利有南京航空航天大学持有的阻氢涂层组成包括玻璃粉和磨加物的专利CN101215709、CN101215710和CN101230460,其涂层制备工艺简单,与基体结合良好。研究人员对阻氢涂层材料进行了大量的筛选,包括Al2O3、Y2O3、Er2O3、SiO2-Cr2O3等多种材料。Al2O3由于其结构比较稳定,特别是在制备过程中能够形成α-Al2O3,对涂层性能有很大帮助,其绝缘电阻率比较高,阻氢性能经验证也比较好,因此,成为阻氢涂层中最常规的材料。由于化学气相沉积方法高温制备α-Al2O3时,比较容易形成大的颗粒,大颗粒往往可以形成脆性相,影响涂层的可靠性,也影响涂层材料的密度和阻氢性能。而Er2O3阻氢涂层绝缘电阻率高、自修复性能好,制备温度低于α-Al2O3,缺点是价格比较高,因此,为克服上述两种涂层的缺点,北京有色金属研究总院提供了两种改进的阻氢涂层,分别为CN101469409公开的由氧化铝和氧化铒构成的阻氢涂层和CN101469399公开的Fe-Er金属过渡层和Er2O3涂层。其提高了涂层可靠性的同时,降低了制备成本。
鉴于以上内容,有必要提供一种与基体结合良好、制备工艺简单、成本低廉的 复合梯度阻氢涂层材料。
发明内容
本发明的目的是提供一种多层Cr2O3/Al2O3复合梯度阻氢涂层及其制备方法。采用金属-有机化学气相沉积技术制备Cr2O3-Al2O3多层复合梯度阻氢涂层,该复合梯度涂层能有效降低H2在不锈钢的渗透率,从而很好的达到阻氢渗透的目的。
一种Cr2O3和Al2O3复合梯度阻氢涂层,该复合涂层由Cr2O3和Al2O3组成,包覆在不锈钢上。
优选的,Cr2O3/Al2O3复合涂层为Cr2O3涂层和Al2O3涂层交替结构,总层数大于等于4层;最内层为Cr2O3涂层,最外层为Al2O3涂层。
优选的,Cr2O3/Al2O3复合涂层的厚度在0.1~20μm之间。Cr2O3/Al2O3复合涂层的厚度在0.1~1μm之间即可将阻氢性能提高100倍以上。
优选的,所述的不锈钢为奥氏体不锈钢或马氏体不锈钢。
本发明还提供了上述Cr2O3和Al2O3复合梯度阻氢涂层的制备方法,该复合涂层可采用金属有机化学气相沉积技术制备。
Cr2O3/Al2O3复合涂层的具体制备步骤包括:
(1)将不锈钢表面抛光至粗糙度为0.1~2μm;
(2)采用金属-有机化学气相沉积技术在不锈钢表面制备Cr2O3涂层;具体工艺参数为:反应源温度为50~200℃;载气流量为40~500ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢表面制备Al2O3涂层,具体工艺参数为:反应源温度50~200℃;载气流量10~300ml/min;
(4)重复上述步骤(2)和步骤(3),交替制备Cr2O3涂层和Al2O3涂层;最终获得厚度约为0.1~20μm的多层Cr2O3/Al2O3复合梯度阻氢涂层。
针对目前高温真空集热管内表面难以制备高性能、均匀稳定的阻氢涂层的情况,本发明还提供了上述涂层在高温真空集热管的应用,即在高温真空集热管内表面首次采用双蒸发源分层制备Cr2O3-Al2O3多层复合梯度阻氢涂层。
高温真空集热管由外壁具有光谱选择性吸收涂层的不锈钢中央管和外层玻璃套管组成,其中,Cr2O3和Al2O3复合梯度阻氢涂层涂覆在高温真空集热管的不锈钢中央管内表面。
上述高温真空集热管用Cr2O3和Al2O3复合梯度阻氢涂层的制备方法,包括如下步骤:
(1)将高温真空集热管的不锈钢中央管内表面抛光至粗糙度为0.1~2μm;
(2)采用金属-有机化学气相沉积技术在不锈钢管内表面制备Cr2O3涂层;具 体工艺参数为:反应源温度为50~200℃;载气流量为40~500ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢管内表面制备Al2O3涂层,具体工艺参数为:反应源温度50~200℃;载气流量10~300ml/min;
(4)重复上述步骤(2)和步骤(3),交替制备Cr2O3涂层和Al2O3涂层;最终获得厚度约为0.1~20μm的多层Cr2O3/Al2O3复合梯度阻氢涂层。
本发明的原理是成长薄膜时,主要将载流气体通过有机金属反应源的容器时,将反应源的饱和蒸气带至反应腔中与其它反应气体混合,然后在被加热的基板上面发生化学反应促成薄膜的成长。
与现有技术相比,本发明具有以下优点和突出性成果:首次在高温真空集热管内壁实现氧化铬和氧化铝混合梯度阻氢涂层的制备,而且该方法形成的Cr2O3和Al2O3复合梯度阻氢涂层具有厚度可控,致密性高,成分较为均匀和阻氢性能优异的特点。
本发明的多层Cr2O3和Al2O3复合梯度阻氢涂层,可用于不锈钢结构件的氢渗透阻挡,特别是太阳能高温真空集热管内管不锈钢管的氢渗透阻挡。Cr2O3/Al2O3复合涂层由金属-有机化学气相沉积法制备,通过重复沉积氧化铝和氧化铬涂层,获得厚度约为0.1~20μm多层Cr2O3和Al2O3复合梯度阻氢涂层;该涂层由最内层为氧化铬和最外层为氧化铝的多层交替结构组成。该阻氢涂层与基体结合强度高、制备工艺简单且成本低廉,阻氢性能提高100倍以上。
下面参照附图结合实施例对本发明作进一步的描述。
附图说明
图1为多层Cr2O3和Al2O3复合梯度阻氢涂层结构示意图。
主要附图标记:
1、1’ Cr2O3涂层 2、2’ Al2O3涂层
3 不锈钢管 4 外玻管
5 真空区域 6 吸热涂层
具体实施方式
多层Cr2O3和Al2O3复合梯度阻氢涂层用于高温真空集热管的示意图如图1所示,该复合涂层由Cr2O3涂层1、Al2O3涂层2、Cr2O3涂层1’和Al2O3涂层2’交替复合组成,最内层为氧化铬涂层,最外层为氧化铝涂层。其中,最内层的Cr2O3涂层1包覆在高温真空集热管的不锈钢管(不锈钢中央管)3内表面上,高温真空集热管主要由外壁具有光谱选择性吸收涂层的不锈钢管3和外玻管(外层玻璃套管)4组成,不锈钢管3和外玻管4之间形成环形真空区域5,不锈钢管3外壁上还有 吸热涂层6。
实施例1
(1)将高温真空集热管的马氏体不锈钢管3内表面抛光至粗糙度1μm;
(2)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Cr2O3涂层;具体工艺参数为:反应源温度150℃;载气流量200ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Al2O3涂层;具体工艺参数为:反应源温度100℃;载气流量为100ml/min;
(4)重复上述步骤(2);
(5)重复上述步骤(3);
最终获得厚度约为0.5μm的多层Cr2O3和Al2O3复合梯度阻氢涂层。
测定多层Cr2O3和Al2O3复合梯度阻氢涂层在400℃的H2渗透率,阻氢性能提高100倍。
实施例2
(1)将高温真空集热管的奥氏体不锈钢管3内表面抛光至粗糙度0.5μm;
(2)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Cr2O3涂层;具体工艺参数为:反应源温度180℃;载气流量200ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Al2O3涂层;具体工艺参数为:反应源温度120℃;载气流量150ml/min;
(4)重复上述步骤(2);
(5)重复上述步骤(3);
最终获得厚度约为1μm的多层Cr2O3和Al2O3复合梯度阻氢涂层。
测定多层Cr2O3和Al2O3复合梯度阻氢涂层在400℃的H2渗透率,阻氢性能提高200倍。
实施例3
(1)将高温真空集热管的奥氏体不锈钢管3内表面抛光至粗糙度0.3μm;
(2)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Cr2O3涂层;具体工艺参数为:反应源温度200℃;载气流量200ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢管3内表面制备Al2O3涂层;具体工艺参数为:反应源温度160℃;载气流量80ml/min;
(4)重复上述步骤(2);
(5)重复上述步骤(3);
最终获得厚度约为0.8μm的多层Cr2O3和Al2O3复合梯度阻氢涂层;
测定多层Cr2O3和Al2O3复合梯度阻氢涂层在400℃的H2渗透率,阻氢性能提高260倍。

Claims (5)

1.一种Cr2O3和Al2O3复合梯度阻氢涂层,其特征在于:该复合涂层由Cr2O3和Al2O3组成,包覆在不锈钢上;所述的复合涂层为Cr2O3涂层和Al2O3涂层交替结构,总层数大于等于4层;所述的复合涂层的厚度为0.1~20μm,所述的复合涂层采用金属-有机化学气相沉积技术制备。
2.根据权利要求1所述的Cr2O3和Al2O3复合梯度阻氢涂层,其特征在于:所述的复合涂层最内层为Cr2O3涂层,最外层为Al2O3涂层。
3.根据权利要求1所述的Cr2O3和Al2O3复合梯度阻氢涂层,其特征在于:所述的不锈钢为奥氏体不锈钢或马氏体不锈钢。
4.根据权利要求1-3中任一项所述的Cr2O3和Al2O3复合梯度阻氢涂层的制备方法,包括如下步骤:
(1)将不锈钢表面抛光至粗糙度为0.1~2μm;
(2)采用金属-有机化学气相沉积技术在不锈钢表面制备Cr2O3涂层;工艺参数为:反应源温度为50~200℃;载气流量为40~500ml/min;
(3)采用金属-有机化学气相沉积技术在不锈钢表面制备Al2O3涂层,工艺参数为:反应源温度50~200℃;载气流量10~300ml/min;
(4)重复上述步骤(2)和步骤(3),交替制备Cr2O3涂层和Al2O3涂层;最终获得多层Cr2O3/Al2O3复合梯度阻氢涂层。
5.权利要求1-3中任一项所述的Cr2O3和Al2O3复合梯度阻氢涂层在高温真空集热管中的应用。
CN201310594956.4A 2013-11-21 2013-11-21 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用 Active CN104647828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310594956.4A CN104647828B (zh) 2013-11-21 2013-11-21 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310594956.4A CN104647828B (zh) 2013-11-21 2013-11-21 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104647828A CN104647828A (zh) 2015-05-27
CN104647828B true CN104647828B (zh) 2017-06-16

Family

ID=53239686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310594956.4A Active CN104647828B (zh) 2013-11-21 2013-11-21 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104647828B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931665A (zh) * 2017-03-29 2017-07-07 沧州天瑞星光热技术有限公司 一种新型中高温太阳能集热管及其制备方法
CN108220961B (zh) * 2018-01-12 2020-08-14 清华大学 一种不锈钢基复合阻氢渗透材料及其制备方法
CN108165991B (zh) * 2018-01-12 2019-11-08 清华大学 碳化铬弥散氧化铬/氧化铝复合阻氢涂层材料及制备方法
SG11202008268RA (en) 2018-03-19 2020-10-29 Applied Materials Inc Methods for depositing coatings on aerospace components
WO2019209401A1 (en) 2018-04-27 2019-10-31 Applied Materials, Inc. Protection of components from corrosion
CN111313069B (zh) * 2018-12-11 2021-01-05 有研工程技术研究院有限公司 一种复合质子导电陶瓷电解质薄膜、其制备方法及应用
EP3959356A4 (en) 2019-04-26 2023-01-18 Applied Materials, Inc. METHODS FOR PROTECTING AEROSPACE ELEMENTS AGAINST CORROSION AND OXIDATION
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) * 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
WO2022005696A1 (en) 2020-07-03 2022-01-06 Applied Materials, Inc. Methods for refurbishing aerospace components
CN111996502B (zh) * 2020-08-31 2022-09-02 中国科学院上海光学精密机械研究所 一种镍铬合金表面镀层结构及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223441B2 (en) * 2004-03-10 2007-05-29 Pilkington North America, Inc. Method for depositing gallium oxide coatings on flat glass
CN101629028B (zh) * 2009-08-27 2011-06-08 北京科技大学 一种多功能的氧化铝/金属微叠层涂层
CN103160828A (zh) * 2011-12-09 2013-06-19 北京有色金属研究总院 一种钢基阻氢渗透复合涂层及其制备方法

Also Published As

Publication number Publication date
CN104647828A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
CN104647828B (zh) 一种Cr2O3和Al2O3复合梯度阻氢涂层及其制备方法和应用
CN103398483B (zh) 一种吸收层由含硼化合物构成的太阳能中高温选择性吸收涂层及其制备方法
CN103895282B (zh) 一种高温真空集热管用复合梯度阻氢涂层及其制备方法
CN105198468B (zh) 在1000℃~2200℃高温下使用的真空绝热材料的制备方法
CN104788130B (zh) C/(SiC/BN)n复合界面相涂层、涂层纤维及其制备方法
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
CN105666956B (zh) 一种Y2O3/Al2O3复合梯度阻氢涂层及其制备方法
CN105729934A (zh) 一种M/MOx复合阻氢涂层及其制备方法
CN105667009B (zh) 一种Y2O3/Al2O3/Cr2O3复合梯度阻氢涂层及其制备方法
CN108914111A (zh) 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用
CN104708863A (zh) 氧化铬和氧化铝复合涂层及其制备方法
CN103290386B (zh) 一种含有孔隙结构C/SiC涂层及其制备方法
CN103234293A (zh) 耐高温太阳能选择性吸收镀层及其制备方法
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN106083206B (zh) 一种碳/碳复合材料SiC内涂层的制备方法
CN107043907A (zh) 一种金属氢化物表面阻氢渗透层及其制备方法
CN105644058B (zh) 一种Y2O3/Cr2O3复合梯度阻氢涂层及其制备方法
CN105500811A (zh) 高温真空集热管内壁弥散阻氢涂层及其制备方法
WO2017097236A1 (zh) 一种单铝靶磁控溅射太阳能选择性吸收涂层
Zhang et al. Preparation of Mg and Al phosphate coatings on ferritic steel by wet-chemical method as tritium permeation barrier
CA2809484A1 (en) Methods for in situ deposition of coatings and articles produced using same
CN102954611B (zh) 中高温光谱选择性吸收涂层
CN105349936B (zh) 一种金属钨表面WAl4-AlN-Al2O3高温绝缘涂层及其制备方法
Cheng et al. The investigation of Ag/ZnO interface system by first principle: The structural, electronic and optical properties
CN103963387A (zh) 一种高吸热低反射蓝膜镀膜玻璃及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190626

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: No. 2, Xinjie street, Xicheng District, Beijing, Beijing

Patentee before: General Research Institute for Nonferrous Metals