CN104617160B - 肖特基二极管及其制造方法 - Google Patents

肖特基二极管及其制造方法 Download PDF

Info

Publication number
CN104617160B
CN104617160B CN201510044306.1A CN201510044306A CN104617160B CN 104617160 B CN104617160 B CN 104617160B CN 201510044306 A CN201510044306 A CN 201510044306A CN 104617160 B CN104617160 B CN 104617160B
Authority
CN
China
Prior art keywords
layer
contact metal
schottky diode
schottky
epitaxial structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510044306.1A
Other languages
English (en)
Other versions
CN104617160A (zh
Inventor
贺致远
徐华伟
黄庆礼
黄林轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fifth Electronics Research Institute of Ministry of Industry and Information Technology
Original Assignee
Fifth Electronics Research Institute of Ministry of Industry and Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fifth Electronics Research Institute of Ministry of Industry and Information Technology filed Critical Fifth Electronics Research Institute of Ministry of Industry and Information Technology
Priority to CN201510044306.1A priority Critical patent/CN104617160B/zh
Publication of CN104617160A publication Critical patent/CN104617160A/zh
Application granted granted Critical
Publication of CN104617160B publication Critical patent/CN104617160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开一种肖特基二极管及其制造方法。所述肖特基二极管包括:衬底、缓冲层、外延结构、肖特基接触金属以及欧姆接触金属,衬底、缓冲层、外延结构依次层叠设置;所述外延结构包括依次层叠的超结层、GaN沟道层和势垒层,所述超结层是由复数个p型GaN层与n型GaN层互相交替层叠构成;所述肖特基接触金属与欧姆接触金属分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层。该肖特基二极管,具有较高的耐压特性,且保证了电流传输能力及稳定性,避免采用传统的场板结构和保护环结构,可以简化制作工艺,降低成本。

Description

肖特基二极管及其制造方法
技术领域
本发明涉及半导体器件,特别是涉及一种肖特基二极管及其制造方法。
背景技术
现代社会中,电力电子技术不断更新发展,稳压器、整流器、逆变器等电力电子器件在日常生活中应用越来越广泛,涉及高压供电、电能管理、工厂自动化、机动车能源分配管理等诸多领域。
二极管是电力电子应用领域中不可或缺的组成部分。近年来,具有高频、大电流、低功耗特性的肖特基二极管以其独特的性能优势越来越引人注目。
传统的功率型肖特基二极管主要是在硅(Si)基材料上制作。硅材料发展历史悠久,硅单晶制备成本低、硅器件加工工艺成熟,因此硅基肖特基二极管的发展也是最为成熟的。但是,由于禁带宽度、电子迁移率等材料特性的限制,硅基功率肖特基二极管的性能已经接近其理论极限,不能满足当今高频、高功率、高耐温的需求。硅基肖特基二极管耐压低、电流输运能力有限、在高温条件下对系统散热要求苛刻,这造成了器件体积重量大、能耗大,不利于电力电子系统向集成化、小型化、节能化发展。
为了突破硅材料的自身限制,人们开始寻找具有更优性能的材料。以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料进入了人们视野。它们具有优异的物理和化学性质,如禁带宽度大、击穿电场强度高、饱和电子漂移速度大、抗辐射能力强、化学稳定性好等,特别适合制作高耐压、高耐温、高频、大功率肖特基二极管器件。GaN材料另一突出的特点就是利用自身的极化效应,如图1所示,在非掺杂的AlGaN/GaN就可以形成电子面密度达到1013cm-2量级的高浓度二维电子气(2DEG:Two-dimensional electron gas)。2DEG面密度大、在沟道二维平面内迁移率高,利用这一特性制作的横向导通的GaN肖特基二极管是目前最常见的,也是最有潜力的外延结构形式。如图2所示,传统AlGaN/GaN肖特基二极管横向器件最大的优势利用了2DEG沟道导通输运电流,可以有效降低器件的导通电阻,实现大功率输出。
但是,在传统AlGaN/GaN肖特基二极管中,由于器件导通层在半导体外延结构的表面,反向阻挡工作时,器件的电场分布过于集中在外延层表面,限制了器件耐压特性。
在目前的现有技术中,为了改善肖特基二极管电极的电场集边效应,提高器件的击穿电压,通常在肖特基二极管结构中采用场板结构、保护环结构或超结结构。
场板结构和保护环结构通过调控电极和半导体接触处的电场分布,降低边缘处的电场峰值,在一定程度上可以改善由于电极边缘电场强度过大导致的击穿现象,提升器件的击穿电压。超结结构则采用离子注入的手段,形成n型GaN层和p型GaN交替的结构,通过电荷补偿原理将外延层中载流子浓度提高1个量级的同时,在反向耗尽状态下,实现电场在外延层中的分布接近处处相等的理想状态,使得外延层耐压能力的最优化。
然而,这些技术手段还存在如下缺陷:
首先,现有的场板结构、保护环结构或超结结构,由于十分靠近氮化镓异质结有源区,且通常采用场板工艺和离子注入工艺进行制作,对器件的电流传输能力影响较大,在提升耐压性能的同时,牺牲了器件较大的输出特性;
其次,这些技术手段没有充分利用整体外延层的耐压潜质,耐压性能进一步提升的空间十分有限;
再次,无论是场板工艺还是离子注入工艺,都增加了器件制作过程中稳定性保持的难度,也提高了器件的制作成本,不利于产业化推广。
因此,如何在保证肖特基二极管的电流传输能力及稳定性的同时提升其耐压特性,并且减少制作工艺对器件性能的影响,成为目前亟需解决的技术难点之一。
发明内容
基于此,本发明的目的在于克服现有技术的缺陷,提供一种肖特基二极管及其制造方法。
为实现上述目的,本发明采取以下技术方案:
一种肖特基二极管,包括:衬底、缓冲层、外延结构、肖特基接触金属以及欧姆接触金属,衬底、缓冲层、外延结构依次层叠设置;
所述外延结构包括依次层叠的超结层、GaN沟道层和势垒层,所述超结层是由复数个p型GaN层与n型GaN层互相交替层叠构成;
所述肖特基接触金属与欧姆接触金属分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层。
在其中一个实施例中,所述p型GaN层的掺杂浓度为1016~1019cm-3,厚度为1nm~1μm;所述n型GaN层的掺杂浓度为1016~1019cm-3,厚度为1nm~1μm。
在其中一个实施例中,所述p型GaN层的掺杂剂为Mg、Zn、C或Fe;所述n型GaN层的掺杂剂为Si或Ge。
在其中一个实施例中,所述势垒层为AlGaN层、AlN层、AlInN层中的一种或多种组合,厚度为1nm~50nm。
在其中一个实施例中,所述势垒层为Al(0.2-0.3)Ga(0.7-0.8)N,厚度为20-30nm。优选为厚度为25nm的Al0.25Ga0.75N。
在其中一个实施例中,所述超结层的厚度为200nm~10μm。
在其中一个实施例中,所述GaN沟道层的厚度为1nm~500nm。
在其中一个实施例中,所述肖特基接触金属为Ni/Au合金、Pt/Au合金或Pd/Au合金;所述欧姆接触金属为Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金。
本发明还提供所述的肖特基二极管的制造方法,包括如下步骤:
(1)通过外延生长技术,在衬底上依次生长缓冲层、超结层、GaN沟道层以及势垒层;
(2)通过湿法或干法刻蚀技术对所述外延结构,或外延结构和缓冲层进行刻蚀,形成用于容纳肖特基接触金属的第一容纳区域和用于容纳欧姆接触金属的第二容纳区域;
(3)通过光刻技术和电子束蒸发技术,于所述第一容纳区域和第二容纳区域分别形成肖特基接触金属和欧姆接触金属,即得所述肖特基二极管;
或,
(a)通过外延生长技术,在衬底上生长缓冲层;
(b)分别于所述第一容纳区域和第二容纳区域制作掩膜;
(c)再于缓冲层上依次生长超结层、GaN沟道层以及势垒层后,去除掩膜;
(d)进行步骤(3),即得所述肖特基二极管。
本发明的原理及优点如下:
本发明所述肖特基二极管,在衬底上依次形成缓冲层、p型GaN层与n型GaN层交替的超结层、GaN沟道层和势垒层,所述超结层、GaN沟道层以及势垒层形成外延结构,肖特基接触金属与欧姆接触金属分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层,完整连接异质结有源区(GaN沟道层和势垒层形成的区域)以及超结区(超结层区域)。
其中,势垒层和GaN沟道层接触界面处形成2DEG沟道,具有优良的电流导通能力;超结层中p型GaN层与n型GaN层接触形成p/n结,可进一步提升该区域的载流子浓度,促进电流的导通;超结层与异质结有源区采用互相平行的层叠结构,使二者电流传输性能的发挥相对独立,更有利于电流的导通。
当给所述肖特基二极管施加正向电压时,电流从肖特基接触金属(阳极)注入,通过势垒层和GaN沟道层接触界面处形成2DEG沟道以及超结区中的p/n结,导通到欧姆接触金属(阴极),可实现大功率输出;当施加反向电压时,2DEG沟道会对电压产生阻挡,且由于超结区的电场垂直于阳极和阴极之间的电场,使电场在该区域中的均匀分散,形成均匀的耗尽区域,降低了电场峰值,提高肖特基二极管的耐压特性。
特别地,当所述势垒层为Al(0.2-0.3)Ga(0.7-0.8)N,厚度为20-30nm时,可以在势垒层和GaN沟道层界面形成高浓度、高迁移率的2DEG;当所述p型GaN层与n型GaN层的掺杂浓度分别为1016~1019cm-3,厚度分别为1nm~1μm时,形成的p/n结既能够保证较好的电流导通能力,又能够承受较高的反向电压,提高耐压特性。
本发明所述肖特基二极管的制造方法,通过外延生长技术,交替生长n型GaN和p型GaN层,直接形成超结结构,在此基础上再生长形成的GaN沟道层和势垒层,并利用光刻技术和电子束蒸发技术制作阴极欧姆接触金属和阳极肖特基接触金属,避免采用传统的场板工艺和离子注入工艺,降低工艺对肖特基二极管性能的影响,增加导流和耐压的稳定性,且工艺简单,制作成本低,是保障肖特基二极管优良输出特性的同时提升耐压特性的有效方法。
本发明所述衬底的材料可以为硅材料、碳化硅、蓝宝石、氮化镓或氧化锌。
所述缓冲层可为AlN、AlGaN、GaN中的一种或多种组合的层结构或超晶格结构。
本发明所述肖特基二极管还可以包括钝化层,材料可为SiO2、SiN、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx、HfSiON中的一种或多种组合,厚度为1nm~100nm。
与现有技术相比,本发明具有以下有益效果:
本发明所述肖特基二极管,具有较高的耐压特性,且保证了良好的电流传输能力及稳定性,避免采用传统的场板结构和保护环结构,可以简化制作工艺,降低成本。
本发明所述肖特基二极管的制造方法,能够降低工艺对肖特基二极管性能的影响,增加导流和耐压的稳定性,且工艺简单,制作成本低,是保障肖特基二极管优良输出特性的同时提升耐压特性的有效方法。
附图说明
图1为AlGaN/GaN外延结构(左图)及能带、电子浓度分布图(右图);
图2为传统AlGaN/GaN肖特基二极管结构;
图3为本发明所述肖特基二极管;
图4为本发明所述肖特基二极管的制作方法1的步骤(1)示意图;
图5为本发明所述肖特基二极管的制作方法1的步骤(2)示意图;
图6为本发明所述肖特基二极管的制作方法1的步骤(3)示意图;
图7为本发明所述肖特基二极管的制作方法1的步骤(4)示意图;
图8为本发明所述肖特基二极管的制作方法2的步骤(b)示意图;
图9为本发明所述肖特基二极管的制作方法2的步骤(c)示意图之一;
图10为本发明所述肖特基二极管的制作方法2的步骤(c)示意图之二;
其中,
1-衬底;2-缓冲层;22-第二容纳区域;23-第一容纳区域;3-超结层;31-p型GaN层;32-n型GaN层;4-GaN沟道层;5-势垒层;6-二维电子气沟道;7-肖特基接触金属;8-欧姆接触金属;9-钝化层;10-掩膜。
具体实施方式
以下结合附图和具体实施例来详细说明本发明。
实施例
本实施例一种肖特基二极管,如图3所示,包括:衬底1、缓冲层2、外延结构、肖特基接触金属7以及欧姆接触金属8,衬底1、缓冲层2、外延结构依次层叠设置;
所述外延结构包括依次层叠的超结层3、GaN沟道层4和势垒层5,所述超结层3是由复数个p型GaN层31与n型GaN层32互相交替层叠构成;
所述肖特基接触金属7与欧姆接触金属8分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层2。
该肖特基二极管中,肖特基接触金属7与欧姆接触金属8分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层2,完整连接异质结有源区(GaN沟道层4和势垒层5形成的区域)以及超结区(超结层3区域)。
势垒层5和GaN沟道层4接触界面处形成2DEG沟道6,具有良好的电流导通能力;超结层3中p型GaN层31与n型GaN层32接触形成p/n结,可进一步提升该区域的载流子浓度,促进电流的导通;超结层3与异质结有源区采用互相平行的层叠结构,二者的电流传输性能的发挥相对独立,更有利于电流的导通。
基于此,当给所述肖特基二极管施加正向电压时,可实现大功率输出;而当施加反向电压时,2DEG沟道6会对电压产生阻挡,同时,由于超结区的电场垂直于阳极和阴极之间的电场,使电场在该区域中的分散均匀,形成均匀的耗尽区域,降低了电压峰值,实现肖特基二极管高耐压特性。
p型GaN层31与n型GaN层32的厚度范围分别控制在1nm~1μm之间,掺杂浓度分别为1016~1019cm-3。在所述掺杂浓度和厚度范围下,形成的p/n结既能够保证较好的电流导通能力,又能够承受较高的反向电压,提高耐压特性。
所述p型GaN层31的掺杂剂可为Mg、Zn、C或Fe,所述n型GaN层32的掺杂剂可为Si或Ge。整体形成的超结层3厚度依据所述肖特基二极管电流导通和抗压性能,以及节约制作成本之间的平衡,可设置为200nm~10μm。
所述GaN沟道层4为未掺杂生长的本征GaN层,厚度可以在1nm~500nm之间,形成高质量平坦的GaN沟道层4以利于2DEG导通;
所述势垒层5为非掺杂的AlGaN层、AlN层、AlInN层中的一种或多种组合,厚度可以为1nm~50nm之间,优选为Al(0.2-0.3)Ga(0.7-0.8)N层,厚度为20-30nm,最优选为厚度为25nm的Al0.25Ga0.75N,由此与GaN沟道层4接触形成高浓度、高迁移率的2DEG沟道6。
所述肖特基接触金属7优选为Ni/Au合金、Pt/Au合金或Pd/Au合金;所述欧姆接触金属8优选为Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金。
所述肖特基二极管还可以包括钝化层9,材料可为SiO2、SiN、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx、HfSiON中的一种或多种组合,厚度为1nm~100nm。
所述衬底1可以优选为硅材料、碳化硅、蓝宝石、氮化镓或氧化锌,但并不局限于上述材料,只要能完成GaN外延材料生长的衬底材料都可以使用在本发明结构中。
所述缓冲层2的存在是为了提高上层GaN外延层晶体质量,缓解衬底材料与GaN材料之间的晶格失配、热失配所产生的缺陷及龟裂现象,任何能达到调节晶格失配、热失配的功能材料都可适用于本发明,优选为AlN、AlGaN、GaN中的一种或多种组合的层结构或超晶格结构。
上述肖特基二极管可通过如下两种方法制造:
方法1:
(1)通过外延生长技术(具体可为金属有机化学气相沉积法(MOCVD)或分子束外延法(MBE)),在衬底1上依次生长缓冲层2、超结层3、GaN沟道层4以及势垒层5,见图4;
(2)通过湿法或干法刻蚀技术对外延结构和缓冲层2进行刻蚀,形成用于容纳肖特基接触金属7的第一容纳区域23和用于容纳欧姆接触金属8的第二容纳区域22,见图5,完成刻蚀工艺后,可以进行高温退火处理,修复刻蚀界面;
(3)利用光刻技术和电子束蒸发技术,于所述第一容纳区域23与第二容纳区域22分别形成肖特基接触金属7(阴极)和欧姆接触金属8(阳极),见图6;
(4)经表面钝化工艺后形成钝化层9,即得所述肖特基二极管,见图7。
方法2:
(a)通过外延生长技术,在衬底1上生长缓冲层2;
(b)分别于所述第一容纳区域23与第二容纳区域22制作掩膜10,见图8;
(c)再于缓冲层2上依次生长超结层3、GaN沟道层4以及势垒层5,见图9,去除掩膜10,见图10;
(d)进行步骤(3)和(4),即得所述肖特基二极管。
上述肖特基二极管的制造方法,能够降低工艺对肖特基二极管性能的影响,增加导流和耐压的稳定性,且工艺简单,制作成本低,是保障肖特基二极管优良输出特性的同时提升耐压特性的有效方法。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种肖特基二极管,其特征在于,包括:衬底、缓冲层、外延结构、肖特基接触金属以及欧姆接触金属,衬底、缓冲层、外延结构依次层叠设置;
所述外延结构包括依次层叠的超结层、GaN沟道层和势垒层,所述超结层是由复数个p型GaN层与n型GaN层互相交替层叠构成;
所述肖特基接触金属与欧姆接触金属分别对称设置于所述外延结构的相对的两侧面,且一端延伸至所述外延结构的上表面,另一端延伸至所述缓冲层。
2.根据权利要求1所述的肖特基二极管,其特征在于,所述p型GaN层的掺杂浓度为1016~1019cm-3,厚度为1nm~1μm;所述n型GaN层的掺杂浓度为1016~1019cm-3,厚度为1nm~1μm。
3.根据权利要求2所述的肖特基二极管,其特征在于,所述p型GaN层的掺杂剂为Mg、Zn、C或Fe;所述n型GaN层的掺杂剂为Si或Ge。
4.根据权利要求1所述的肖特基二极管,其特征在于,所述势垒层为AlGaN层、AlN层、AlInN层中的一种或多种组合,厚度为1nm~50nm。
5.根据权利要求4所述的肖特基二极管,其特征在于,所述势垒层为Al(0.2-0.3)Ga(0.7-0.8)N,厚度为20-30nm。
6.根据权利要求1所述的肖特基二极管,其特征在于,所述超结层的厚度为200nm~10μm。
7.根据权利要求1所述的肖特基二极管,其特征在于,所述GaN沟道层的厚度为1nm~500nm。
8.根据权利要求1-7任一项所述的肖特基二极管,其特征在于,所述肖特基接触金属为Ni/Au合金、Pt/Au合金或Pd/Au合金;所述欧姆接触金属为Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金。
9.权利要求1-8任一项所述的肖特基二极管的制造方法,其特征在于,包括如下步骤:
(1)通过外延生长技术,在衬底上依次生长缓冲层、超结层、GaN沟道层以及势垒层;
(2)通过湿法或干法刻蚀技术对所述外延结构,或外延结构和缓冲层进行刻蚀,形成用于容纳肖特基接触金属的第一容纳区域和用于容纳欧姆接触金属的第二容纳区域;
(3)通过光刻技术和电子束蒸发技术,于所述第一容纳区域和第二容纳区域分别形成肖特基接触金属和欧姆接触金属,即得所述肖特基二极管。
10.权利要求1-8任一项所述的肖特基二极管的制造方法,其特征在于,包括如下步骤:
(a)通过外延生长技术,在衬底上生长缓冲层;所述缓冲层的表面包括用于容纳肖特基接触金属的第一容纳区域和用于容纳欧姆接触金属的第二容纳区域;
(b)分别于所述第一容纳区域和第二容纳区域制作掩膜;
(c)再于所述缓冲层上依次生长超结层、GaN沟道层以及势垒层后,去除掩膜;
(d)通过光刻技术和电子束蒸发技术,于所述第一容纳区域和第二容纳区域分别形成肖特基接触金属和欧姆接触金属,即得所述肖特基二极管。
CN201510044306.1A 2015-01-28 2015-01-28 肖特基二极管及其制造方法 Active CN104617160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510044306.1A CN104617160B (zh) 2015-01-28 2015-01-28 肖特基二极管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510044306.1A CN104617160B (zh) 2015-01-28 2015-01-28 肖特基二极管及其制造方法

Publications (2)

Publication Number Publication Date
CN104617160A CN104617160A (zh) 2015-05-13
CN104617160B true CN104617160B (zh) 2017-07-11

Family

ID=53151517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510044306.1A Active CN104617160B (zh) 2015-01-28 2015-01-28 肖特基二极管及其制造方法

Country Status (1)

Country Link
CN (1) CN104617160B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966729B (zh) * 2015-05-25 2018-09-11 江苏物联网研究发展中心 一种超高深宽比的超结制造方法
WO2017111810A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Low schottky barrier contact structure for ge nmos
DE102018115222A1 (de) * 2018-06-25 2020-01-02 Otto-Von-Guericke-Universität Magdeburg Halbleiterschichtstapel und Verfahren zu dessen Herstellung
FR3100927B1 (fr) * 2019-09-12 2022-09-09 Commissariat Energie Atomique Dispositif electronique de puissance a super-jonction
CN112750896B (zh) * 2019-10-31 2022-08-16 株洲中车时代电气股份有限公司 碳化硅肖特基二极管及其制备方法
WO2022040836A1 (zh) * 2020-08-24 2022-03-03 苏州晶湛半导体有限公司 半导体结构及其制备方法
WO2022040865A1 (zh) * 2020-08-24 2022-03-03 苏州晶湛半导体有限公司 半导体结构的制作方法
CN116504816B (zh) * 2023-06-29 2023-09-15 西安电子科技大学 一种横向结构的超级结二极管及制备方法
CN118039706B (zh) * 2024-04-12 2024-08-23 中国科学院宁波材料技术与工程研究所 一种α-Ga2O3肖特基二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311292A (zh) * 2012-03-13 2013-09-18 国际商业机器公司 氮化镓超结器件
CN103493205A (zh) * 2011-05-20 2014-01-01 松下电器产业株式会社 肖特基二极管
CN103718297A (zh) * 2011-08-02 2014-04-09 罗伯特·博世有限公司 超结肖特基pin二极管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412344B2 (ja) * 2007-04-03 2010-02-10 株式会社デンソー 半導体装置およびその製造方法
JP4635067B2 (ja) * 2008-03-24 2011-02-16 株式会社東芝 半導体装置及びその製造方法
US9064722B2 (en) * 2012-03-13 2015-06-23 International Business Machines Corporation Breakdown voltage multiplying integration scheme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493205A (zh) * 2011-05-20 2014-01-01 松下电器产业株式会社 肖特基二极管
CN103718297A (zh) * 2011-08-02 2014-04-09 罗伯特·博世有限公司 超结肖特基pin二极管
CN103311292A (zh) * 2012-03-13 2013-09-18 国际商业机器公司 氮化镓超结器件

Also Published As

Publication number Publication date
CN104617160A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104617160B (zh) 肖特基二极管及其制造方法
CN107851663B (zh) 半导体器件和用于制造半导体器件的方法
JP6371986B2 (ja) 窒化物半導体構造物
US8896027B2 (en) Nitride semiconductor diode
KR101285598B1 (ko) 질화물계 이종접합 반도체 소자 및 그 제조 방법
US10256352B2 (en) Structures for nitride vertical transistors
JP5367429B2 (ja) GaN系電界効果トランジスタ
KR102021887B1 (ko) 반도체 소자
CN108054208B (zh) 横向型氮化镓基场效应晶体管及其制作方法
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
US9722029B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN105428412A (zh) AlGaN/GaN异质结场效应晶体管及其制备方法
US20120091508A1 (en) Compound semiconductor device
WO2015077916A1 (zh) GaN基肖特基二极管整流器
CN112018176A (zh) 一种半导体器件及其制造方法
KR20150091705A (ko) 질화물 반도체 소자 및 그 제조 방법
JP5406508B2 (ja) 横型sbd半導体装置
CN110970499B (zh) GaN基横向超结器件及其制作方法
KR100860070B1 (ko) 트랜지스터
TWI662700B (zh) 半導體單元
US9331169B2 (en) Nitride semiconductor Schottky diode and method for manufacturing same
CN215988772U (zh) 一种具有侧壁场板的凸型栅增强型GaN基HEMT器件结构
KR20140131167A (ko) 질화물 반도체 소자 및 그 제조 방법
TWI590452B (zh) 半導體功率元件
KR20150091704A (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant