CN104607183A - 一种低温燃料电池Pd-Pt多面体纳米晶电催化剂及制备方法 - Google Patents

一种低温燃料电池Pd-Pt多面体纳米晶电催化剂及制备方法 Download PDF

Info

Publication number
CN104607183A
CN104607183A CN201510034022.4A CN201510034022A CN104607183A CN 104607183 A CN104607183 A CN 104607183A CN 201510034022 A CN201510034022 A CN 201510034022A CN 104607183 A CN104607183 A CN 104607183A
Authority
CN
China
Prior art keywords
solution
electrocatalyst
catalyst
nanocrystalline
polyhedron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510034022.4A
Other languages
English (en)
Other versions
CN104607183B (zh
Inventor
唐永福
陈腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Haitong Asset Management Co., Ltd
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201510034022.4A priority Critical patent/CN104607183B/zh
Publication of CN104607183A publication Critical patent/CN104607183A/zh
Application granted granted Critical
Publication of CN104607183B publication Critical patent/CN104607183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种低温燃料电池Pd-Pt多面体纳米晶电催化剂及制备方法。Pd-Pt多面体纳米晶电催化剂其纳米晶均匀分散在石墨烯表面,且纳米晶形貌为四面体、八面体及十二面体,尺寸为5~30nm,且在电催化剂Pt含量低于Pt/C时,表现出接近于Pt/C的催化活性和显著优于Pt/C的抗甲醇毒化性能。其制备方法是将钯前驱体溶解与还原性溶剂混合后加入氨水搅拌得到络合溶液A;将铂前驱体溶于还原性溶剂与溶液A混合,加入氨水得到溶液B;将处理的氧化石墨烯与溶液B混合后移入水热反应釜中,将水热反应釜放入烘箱中反应,自然冷却后在剧烈搅拌下加入还原剂收集固体物质干燥得到产品。整个过程无模板剂、无需去除模板后处理,而且工艺简便、易于操控。

Description

一种低温燃料电池Pd-Pt多面体纳米晶电催化剂及制备方法
技术领域 本发明涉及一种低温燃料电池电催化剂及制备方法。
背景技术 低温燃料电池(包括质子交换膜燃料电池和直接甲醇燃料电池)是一种将存在于燃料和氧化剂中的化学能直接转化成电能的能量转换装置。低温燃料电池的核心部件主要由三部分组成:阳极、质子交换膜、阴极。催化阴极氧还原反应的催化剂种类繁多:Pt基催化剂包括Pt/C催化剂、Pt-M/C合金催化剂、Pt-MOx/C催化剂;非Pt催化剂包括:贵金属Pd基催化剂、过渡金属大环化合物催化剂、过渡金属硫族化合物催化剂、过渡金属碳化物和氮化物等。
目前,广泛采用的Pd-Pt多面体纳米晶的制备方法中需采用表面活性剂或有机高分子为模板剂控制纳米晶的形貌和尺寸,这些模板剂具有很强的吸附作用,在催化剂中残留不易除去,占据电催化剂的活性位而使电催化剂的催化活性降低,在电催化应用中受到极大的限制。去除这些表面吸附的模板剂需要一系列复杂的后处理过程,使催化剂的制备成本显著提高,有些热处理过程还会造成催化剂结构破坏及颗粒增大而使其活性降低。
发明内容 本发明的目的在于提供一种工艺简便、易于操控且无模板剂、无需去除模板后处理过程的低温燃料电池Pd-Pt多面体纳米晶电催化剂及制备方法。本发明主要是将铂前驱体、钯前驱体与还原剂混合并添加氨水,使其与Hummers法制取的氧化石墨烯悬浊液混合后搅拌、超声分散,再移入水热反应釜中置于烘箱中反应后自然冷却,向反应物中加入还原剂搅拌后过滤洗涤得到Pd-Pt多面体纳米晶。
本发明的低温燃料电池Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为5~30nm,暴露的均是高活性的(111)晶面,规整的结构可极大提高电催化剂的稳定性。
本发明的低温燃料电池用石墨烯负载的Pd-Pt多面体纳米晶电催化剂的制备步骤如下:
一、原料
1、钯前驱体:包括H2PdCl4、K2PdCl4、Na2PdCl4中的一种或几种;
2、铂前驱体:包括H2PtCl6,K2PtCl6、Na2PtCl6、PtCl4、H2PtCl4、K2PtCl4、Na2PtCl4中的一种或几种;
3、还原性溶剂:包括乙二醇、丙三醇、1mol/L葡萄糖水溶液、1mol/L抗坏血酸水溶液的一种或几种;
4、还原剂:包括硼氢化钠、水合肼、亚硫酸钠、氢化铝锂中的一种或几种;
5、制备氧化石墨烯原料:高锰酸钾固体、NaNO3、浓盐酸、浓硫酸、双氧水、石墨粉。
二、制备步骤
(1)取含钯元素质量10g/L的钯前驱体水溶液2~100mL及适量还原用溶剂,按照钯前驱体溶液与还原性溶剂体积比为1:10的比例均匀混合,在磁力搅拌器中速搅拌条件(100~300转/分钟)加入25wt.%的浓氨水,使溶液由浅黄色变为无色,得到溶液A;
(2)将铂前驱体溶解在与步骤一相同的还原性溶剂得到浓度为含铂元素质量10g/L的铂前驱体溶液,按照Pd:Pt摩尔比为9:1~1:1,在磁力搅拌器中速搅拌条件(100~300转/分钟)下将铂前驱体溶液加入A溶液并搅拌均匀,并且补加25wt.%的浓氨水,使溶液pH大于10后停止搅拌,得到溶液B;
(3)通过Hummers法制取氧化石墨烯(GO),制备过程是:将100g石墨粉和50g硝酸钠在0℃冰水混合物中与2.3L浓硫酸混合,在剧烈搅拌下加入300g高锰酸钾,将上述混合物保持在35℃左右30min,随着反应的进行反应液会变稠,然后将4.6L去离子水缓慢加入反应体系,在98℃下保持15min,用3%的H2O2进一步稀释以除去未反应的高锰酸钾,在超声水浴中分散2h,过滤、洗涤、冻干得到GO。再对得到的GO进行数次(重复1~4次)氧化处理,氧化步骤是:将1g GO分散到1L水中,在磁力搅拌器中速搅拌条件(100~300转/分钟)下,加入5g高锰酸钾固体,反应2h后加入1ml的浓盐酸和1ml的H2O2,反应3h,过滤、洗涤、冻干即可。将氧化后的GO后分散在还原性溶剂中,GO浓度为1g/L,超声搅拌使其分散均匀,得到GO悬浊液,向B溶液中加入一定量的GO悬浊液后,搅拌24~72h,超声分散2~12h;得到混合液C,其中钯元素铂元素质量和与干态GO质量比为1:4~1:1。
(4)根据混合液C的体积,将混合液C移入体积为100ml~5L水热反应釜中,将水热反应釜置于80~180℃的鼓风烘箱或真空烘箱中反应2~8h,反应后自然冷却得到混合物D;
(5)在剧烈搅拌条件(300~600转/分钟)下向混合物D中加入还原剂,其中还原剂与前述干态GO的质量比为1:1~3:1,搅拌0.5~5h,过滤或离心分离混合物,将得到的固体用乙醇和水交替洗涤4~6次,在真空烘箱中干燥即可。
本发明以具有丰富表面官能团的氧化石墨烯作为载体,通过NH3的络合作用和氧化石墨烯的支撑及“锚固”作用来阻止粒子的团聚,负载后经还原剂还原得到导电性好的石墨烯载体,最终得到石墨担载的形貌规整、尺寸均一、分布均匀的Pd-Pt多面体纳米晶电催化剂。
本发明与现有技术相比具有如下优点:
1、本发明涉及的Pd-Pt多面体纳米晶电催化剂的制备方法工艺流程简便、易于操控,且无需模板剂、无需复杂的去除模板的后处理过程。
2、本发明涉及的制备方法制得的石墨烯担载型Pd-Pt多面体纳米晶电催化剂作为低温燃料电池电催化剂时,在Pt含量远低于商业化Pt/C的条件下,表现出接近于Pt/C的氧还原反应催化活性和显著优于Pt/C的抗甲醇毒化性能。
附图说明
图1是本发明实施例1获得的电催化剂的X射线衍射谱图。
图2是本发明实施例1获得的电催化剂的透射电子显微镜图。
图3是本发明实施例2获得的电催化剂的透射电子显微镜图。
图4是本发明实施例5获得的电催化剂的透射电子显微镜图。
图5是本发明实施例2获得的电催化剂的高分辨透射电子显微镜图及FFT衍射斑点图。
图6是本发明实施例6获得的电催化剂的高分辨透射电子显微镜图及FFT衍射斑点图。
图7是本发明实施例1获得的电催化剂的高分辨透射电子显微镜图及FFT衍射斑点图。
图8是本发明实施例3获得的电催化剂在0.5M H2SO4和0.5M H2SO4+0.5MCH3OH混合溶液中的氧还原反应极化曲线图。
图9是本发明商品化Pt/C在0.5M H2SO4和0.5M H2SO4+0.5M CH3OH混合溶液中的氧还原反应极化曲线图。
具体实施方式 下面通过具体实施例对本发明做详细说明,但并不局限于此。实施例1:先将一定量氯化钯溶于浓盐酸后用去离子水定容,得到含钯元素10g/L的H2PdCl4溶液,取这种H2PdCl4溶液2.4mL,加入到盛有24mL乙二醇的烧杯中,在剧烈搅拌(300~600转/分钟)下加入2mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;再将H2PtCl6溶于乙二醇中,得到含铂元素10g/L的H2PtCl6溶液,取0.4mL的H2PtCl6溶液在中速搅拌(100~300转/分钟)下加入到溶液A中,并补加1mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行1次氧化处理后分散在乙二醇溶剂中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,再将含100mg氧化石墨烯的乙二醇悬浊液100mL加入到溶液B中剧烈搅拌24h,超声2h;再转入到200mL的溶剂热反应釜中,将反应釜放入150℃的鼓风烘箱中反应5小时;待反应后自然冷却,在剧烈搅拌下逐滴加入0.1M的NaBH4溶液20滴,搅拌半小时后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤4次以除去杂离子,最后干燥固体得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为15nm左右。从图7的Pd-Pt多面体纳米晶电催化剂的高分辨透射电子显微镜图可以看出,制得的Pd-Pt多面体无论形貌是四面体、八面体和十二面体均暴露的是高活性的(111)晶面,规整的结构可极大提高电催化剂的稳定性。从图1获得的电催化剂X射线衍射谱图可以看出,第一个峰对应于石墨烯的衍射峰,其余各个峰对应着Pd-Pt多面体纳米晶的各个晶面。
实施例2:先将一定量Na2PdCl4溶于去离子水定容,得到含钯元素10g/L的Na2PdCl4溶液,取该溶液5mL,加入到盛有50mL乙二醇的烧杯中,在剧烈搅拌下加入4mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;再将K2PtCl6溶于乙二醇中,得到含铂元素10g/L的K2PtCl6溶液,在中速搅拌下将2.5mL的K2PtCl6溶液加入到溶液A中,并补加1mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行3次氧化处理后分散在乙二醇溶剂中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,再将含氧化石墨烯的乙二醇悬浊液125mL加入到溶液B中剧烈搅拌48h,超声12h;再转入到500mL的溶剂热反应釜中,将反应釜放入150℃的鼓风烘箱中反应4小时;反应后自然冷却,在剧烈搅拌下逐滴加入0.4M的NaBH4溶液20滴,搅拌0.5h后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤5次除去杂离子,最终干燥固体得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为20nm左右。从图5的Pd-Pt多面体纳米晶电催化剂的高分辨透射电子显微镜图可以看出,制得的Pd-Pt多面体无论形貌是四面体、八面体和十二面体均暴露的是高活性的(111)晶面,规整的结构可极大提高电催化剂的稳定性。
实施例3:将K2PdCl4溶于去离子水定容,得到含钯元素10g/L的K2PdCl4溶液,取K2PdCl4溶液20mL,加入到盛有200mL丙三醇的烧杯中,在剧烈搅拌下加入8mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;将Na2PtCl6溶于丙三醇中,得到含铂元素10g/L的Na2PtCl6溶液,在中速搅拌下将20mL的Na2PtCl6溶液加入到溶液A中,补加5mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行2次氧化处理后分散在丙三醇溶剂中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,再将含氧化石墨烯的丙三醇悬浊液400mL加入到溶液B中剧烈搅拌48h,超声6h。转入到500mL的溶剂热反应釜中,将反应釜放入180℃的鼓风烘箱中反应2小时;反应后自然冷却,在剧烈搅拌下逐滴加入1.0M的NaBH4溶液2mL,搅拌0.5h后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤6次并除去杂离子,干燥固体最终得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为20nm左右。从图5的Pd-Pt多面体纳米晶电催化剂的高分辨透射电子显微镜Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,颗粒尺寸为25nm左右。
实施例4:将K2PdCl4溶于去离子水定容,得到含钯元素10g/L的K2PdCl4溶液,取K2PdCl4溶液100mL,加入到盛有1L乙二醇的烧杯中,在剧烈搅拌下加入20mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;再将K2PtCl4溶于乙二醇中,得到含铂元素10g/L的K2PtCl4溶液,在中速搅拌下将20mL的K2PtCl4溶液加入到溶液A中,补加10mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行4次氧化处理后分散在丙三醇溶剂中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,将含氧化石墨烯的丙三醇悬浊液2.4L加入到溶液B中剧烈搅拌48h,超声6h。转入到5L的溶剂热反应釜中,将反应釜放入150℃的鼓风烘箱中反应3小时。反应后自然冷却,在剧烈搅拌下逐滴加入1.0M的NaBH4溶液20mL,搅拌0.5h后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤6次除去杂离子,干燥固体最终得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为30nm左右。
实施例5:将Na2PdCl4溶于去离子水,得到每升溶液含10g钯的Na2PdCl4溶液,取这种Na2PdCl4溶液9mL,加入到盛有90mL1mol/L葡萄糖水溶液的烧杯中,在剧烈搅拌下加入4mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;将Na2PtCl4溶于1mol/L葡萄糖水溶液中,得到每升含10g铂的Na2PtCl4溶液,在中速搅拌条件下,将1mL的Na2PtCl4溶液加入到溶液A中,补加2mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行3次氧化处理后分散在1mol/L葡萄糖水溶液中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,然后将含氧化石墨烯的悬浊液400mL加入到溶液B中剧烈搅拌48h,超声6h;再转入到1L的溶剂热反应釜中,将反应釜放入80℃的鼓风烘箱中反应8小时;反应后自然冷却,在剧烈搅拌下逐滴加入0.5M的NaBH4溶液2mL,搅拌0.5h后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤6次除去杂离子,干燥固体最终得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为5nm左右。
实施例6:将Na2PdCl4溶于去离子水定容,得到含钯元素10g/L的Na2PdCl4溶液,取Na2PdCl4溶液4mL,加入到盛有40mL浓度1mol/L抗坏血酸水溶液的烧杯中,在剧烈搅拌下加入4mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;将PtCl4溶于1mol/L抗坏血酸水溶液中,得到含铂元素10g/L的PtCl4溶液,在中速搅拌下将1mL的PtCl4溶液加入到溶液A中,补加2mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行2次氧化处理后分散在1mol/L抗坏血酸水溶液中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,然后将含氧化石墨烯的悬浊液200mL加入到溶液B中剧烈搅拌48h,超声6h;再转入到1L的溶剂热反应釜中,将反应釜放入100℃的鼓风烘箱中反应4小时;反应后自然冷却,在剧烈搅拌下逐滴加入0.5M的NaBH4溶液2mL,搅拌0.5h后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤6次除去杂离子,干燥固体最终得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为10nm左右。从图6获得的电催化剂X射线衍射谱图可以看出,第一个峰对应于石墨烯的衍射峰,其余各个峰对应着Pd-Pt多面体纳米晶的各个晶面。
实施例7:将Na2PdCl4溶于去离子水定容,得到含钯元素10g/L的Na2PdCl4溶液,取Na2PdCl4溶液4mL,加入到盛有40mL乙二醇的烧杯中,在剧烈搅拌下加入4mL 25wt.%的浓氨水,溶液由淡黄色变为无色,说明生成了[Pd(NH3)2]2+络合物,得到溶液A;将H2PtCl4溶于乙二醇中,得到含铂元素10g/L的H2PtCl4溶液,在中速搅拌条件下,将1mL的H2PtCl4溶液加入到溶液A中,补加2mL 25wt.%的浓氨水,使pH大于10,得到溶液B;对Hummers法制备得到的氧化石墨烯进行2次氧化处理后分散在乙二醇溶液中,浓度为1g/L,超声搅拌使其分散均匀,得到其悬浊液,然后将含氧化石墨烯的乙二醇悬浊液150mL加入到溶液B中剧烈搅拌48h,超声6h;再转入到1L的溶剂热反应釜中,将反应釜放入100℃的鼓风烘箱中反应4小时;待反应后自然冷却,在剧烈搅拌下逐滴加入0.5M的NaBH4溶液2mL,搅拌半小时后离心分离收集固体物质,将得到的固体用乙醇和水交替洗涤6次除去杂离子,干燥固体最终得到Pd-Pt多面体纳米晶电催化剂。Pd-Pt多面体纳米晶颗粒均匀分散在石墨烯表面,形貌为四面体、八面体和十二面体,且形状规整、基本无团聚现象,颗粒尺寸为10nm左右。
实施例8:以实施例3获得的Pd-Pt多面体纳米晶电催化剂和市购得商业化Pt/C催化剂,其中同等质量下的Pd-Pt多面体纳米晶电催化剂与Pt/C催化剂中前者Pt含量为后者的1/4,测试两者在0.5M H2SO4和0.5M H2SO4+0.5M CH3OH混合溶液中的氧还原反应极化曲线。测试方法如下:取5mg催化剂和50μL 5wt.%的Nafion溶液(购于美国杜邦公司)在2mL异丙醇中,利用超声水浴震荡分散均匀制得混合液,取20μL制得的混合液滴在玻璃碳电极表面,干燥后的玻璃碳电极作为工作电极,利用三电极体系测试两种催化剂的氧还原反应极化曲线,其中对电极为1x 1cm2的铂片,参比电极为饱和甘汞电极,电解液分别为0.5M H2SO4溶液和0.5M H2SO4+0.5M CH3OH混合溶液。(说明:三电极体系测试方法为领域内公知技术)从图8、图9对应图中对比制得的Pd-Pt多面体纳米晶电催化剂和商业化Pt/C在0.5M H2SO4溶液中、0.5M H2SO4+0.5M CH3OH混合溶液中的氧还原极化曲线可以看出,本发明涉及的Pd-Pt多面体纳米晶电催化剂在Pt含量远低于商业化Pt/C的条件下,表现出接近Pt/C的氧还原反应催化活性和显著优于Pt/C的抗甲醇毒化性能。

Claims (5)

1.一种低温燃料电池Pd-Pt多面体纳米晶电催化剂,其特征是:氧化石墨烯为Pd-Pt多面体纳米晶的载体,Pd-Pt多面体纳米晶均匀分散在石墨烯表面;Pd-Pt纳米晶的形貌为四面体、八面体及十二面体,尺寸为5~30nm。
2.一种低温燃料电池Pd-Pt多面体纳米晶电催化剂的制备方法,其特征是:
(1)取含钯元素10g/L的钯前驱体水溶液2~100mL,与还原性溶剂均匀混合,钯盐溶液与还原性溶剂的体积比为1:10,在磁力搅拌器中速100~300转/分钟的搅拌条件下加入25wt.%的浓氨水使溶液由浅黄色变为无色,得到溶液A;
(2)将铂前驱体溶解在与步骤(1)相同的还原性溶剂中,得到浓度为含铂元素质量10g/L的铂前驱体溶液,按照Pd:Pt摩尔比为9:1~1:1,在磁力搅拌器中速100~300转/分钟的搅拌下将得到的铂前驱体溶液加入A溶液中并搅拌均匀,补加25wt.%的浓氨水,使溶液pH大于10,得到溶液B;
(3)通过Hummers法制取氧化石墨烯即GO,再对得到的GO进行1-4次的氧化处理,将氧化后的GO分散在一定量溶剂中,GO浓度为1g/L,超声搅拌使其分散均匀,得到GO悬浊液,向B溶液中加入GO悬浊液后,搅拌24~72h,超声分散2~12h;得到混合液C,其中铂、钯元素质量和与干态GO质量的比为1:4~1:1。
(4)根据混合液C的体积,将混合液C移入体积为0.1~5L水热反应釜中,将水热反应釜放入80~180℃的鼓风烘箱或真空烘箱中反应2~8h,反应后自然冷却得到混合物D;
(5)在磁力搅拌器剧烈搅拌300~600转/分钟的条件下向混合物D中加入还原剂,其中还原剂与前述干态GO质量的比为1:1~3:1,搅拌0.5~5h,过滤或离心分离固体混合物,将得到的固体用乙醇和水交替洗涤4~6次,在真空烘箱中干燥即可。
3.根据权利要求1所述的低温燃料电池Pd-Pt多面体纳米晶电催化剂的制备方法,其特征在于:所述的钯前驱体为H2PdCl4、K2PdCl4、Na2PdCl4中的一种或几种;所述的铂前驱体为H2PtCl6,K2PtCl6、Na2PtCl6、PtCl4、H2PtCl4、K2PtCl4、Na2PtCl4中的一种或几种。
4.根据权利要求1所述的低温燃料电池Pd-Pt多面体纳米晶电催化剂的制备方法,其特征在于:所述的还原用溶剂为乙二醇、丙三醇、1mol/L葡萄糖水溶液、1mol/L抗坏血酸水溶液的一种或几种。
5.根据权利要求1所述的低温燃料电池Pd-Pt多面体纳米晶电催化剂的制备方法,其特征在于:步骤(5)中所述的还原剂为:硼氢化钠、硼氢化钾、水合肼、氢化铝锂中的一种或几种。
CN201510034022.4A 2015-01-22 2015-01-22 一种低温燃料电池Pd‑Pt多面体纳米晶电催化剂及制备方法 Active CN104607183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510034022.4A CN104607183B (zh) 2015-01-22 2015-01-22 一种低温燃料电池Pd‑Pt多面体纳米晶电催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510034022.4A CN104607183B (zh) 2015-01-22 2015-01-22 一种低温燃料电池Pd‑Pt多面体纳米晶电催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN104607183A true CN104607183A (zh) 2015-05-13
CN104607183B CN104607183B (zh) 2017-08-25

Family

ID=53141987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510034022.4A Active CN104607183B (zh) 2015-01-22 2015-01-22 一种低温燃料电池Pd‑Pt多面体纳米晶电催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN104607183B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848340A (zh) * 2017-02-28 2017-06-13 中国科学院大学 一种低极化锂‑空气电池正极催化材料的制备方法
CN107887619A (zh) * 2017-10-27 2018-04-06 北京航天动力研究所 一种形貌可控的Pt‑Pd合金催化剂及其制备方法与应用
CN109604631A (zh) * 2018-12-18 2019-04-12 温州大学 一种制备Pd-Pt异质结构纳米晶的方法
CN109935847A (zh) * 2017-12-15 2019-06-25 中国科学院大连化学物理研究所 一种低温燃料电池用担载型铂基合金催化剂的制备方法
CN110449149A (zh) * 2019-06-27 2019-11-15 天津大学 一种碳网络固载贵金属纳米颗粒材料的制备方法
CN113948729A (zh) * 2021-10-20 2022-01-18 江苏大学 二元金属铂钯棱柱状催化剂的制备方法及其应用于直接甲醇燃料电池
CN117174922A (zh) * 2023-11-02 2023-12-05 武汉理工大学 Pd@Pt宽棱核-壳纳米正四面体催化剂、其制备方法及应用
CN117219796A (zh) * 2023-11-07 2023-12-12 武汉理工大学 一种Pt-Pd枝晶中空纳米线催化剂、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299346A (zh) * 2010-06-25 2011-12-28 中国科学院大连化学物理研究所 一种电催化剂在质子交换膜燃料电池阳极中的应用
JP4958133B2 (ja) * 2004-09-15 2012-06-20 独立行政法人産業技術総合研究所 低温型燃料電池の水素極用電極触媒
CN103908963A (zh) * 2013-01-04 2014-07-09 吉林师范大学 高催化活性化学还原的石墨烯-金铂钯复合物的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958133B2 (ja) * 2004-09-15 2012-06-20 独立行政法人産業技術総合研究所 低温型燃料電池の水素極用電極触媒
CN102299346A (zh) * 2010-06-25 2011-12-28 中国科学院大连化学物理研究所 一种电催化剂在质子交换膜燃料电池阳极中的应用
CN103908963A (zh) * 2013-01-04 2014-07-09 吉林师范大学 高催化活性化学还原的石墨烯-金铂钯复合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONGFU TANG ET AL.: "Highly Oxidized Graphene Anchored Ni(OH)2 Nanoflakes as Pseudocapacitor Materials for Ultrahigh Loading Electrode With High Areal Specific Capacitance", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *
唐永福: "低温燃料电池Pd-Pt催化剂的制备及构效关系研究", 《中国科学院硕士论文》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848340A (zh) * 2017-02-28 2017-06-13 中国科学院大学 一种低极化锂‑空气电池正极催化材料的制备方法
CN107887619A (zh) * 2017-10-27 2018-04-06 北京航天动力研究所 一种形貌可控的Pt‑Pd合金催化剂及其制备方法与应用
CN107887619B (zh) * 2017-10-27 2020-05-08 北京航天动力研究所 一种形貌可控的Pt-Pd合金催化剂及其制备方法与应用
CN109935847A (zh) * 2017-12-15 2019-06-25 中国科学院大连化学物理研究所 一种低温燃料电池用担载型铂基合金催化剂的制备方法
CN109604631A (zh) * 2018-12-18 2019-04-12 温州大学 一种制备Pd-Pt异质结构纳米晶的方法
CN109604631B (zh) * 2018-12-18 2021-10-15 温州大学 一种制备Pd-Pt异质结构纳米晶的方法
CN110449149A (zh) * 2019-06-27 2019-11-15 天津大学 一种碳网络固载贵金属纳米颗粒材料的制备方法
CN113948729A (zh) * 2021-10-20 2022-01-18 江苏大学 二元金属铂钯棱柱状催化剂的制备方法及其应用于直接甲醇燃料电池
CN117174922A (zh) * 2023-11-02 2023-12-05 武汉理工大学 Pd@Pt宽棱核-壳纳米正四面体催化剂、其制备方法及应用
CN117174922B (zh) * 2023-11-02 2024-02-13 武汉理工大学 Pd@Pt宽棱核-壳纳米正四面体催化剂、其制备方法及应用
CN117219796A (zh) * 2023-11-07 2023-12-12 武汉理工大学 一种Pt-Pd枝晶中空纳米线催化剂、其制备方法及应用
CN117219796B (zh) * 2023-11-07 2024-02-13 武汉理工大学 一种Pt-Pd枝晶中空纳米线催化剂、其制备方法及应用

Also Published As

Publication number Publication date
CN104607183B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN104607183B (zh) 一种低温燃料电池Pd‑Pt多面体纳米晶电催化剂及制备方法
Hossen et al. Synthesis and characterization of high performing Fe-NC catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells
CN109841854B (zh) 一种氮掺杂碳载单原子氧还原催化剂及其制备方法
CN111697239B (zh) 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN101656313B (zh) 直接甲醇燃料电池阴极用催化剂的制备方法
CN108486605A (zh) 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN100472858C (zh) 一种质子交换膜燃料电池电催化剂制备方法
CN102489314B (zh) 用于甲醇、乙醇燃料电池的石墨烯负载双金属纳米粒子及制备方法
CN102500365A (zh) 一种用于低温燃料电池的核壳结构催化剂的制备方法
CN104289242B (zh) 用于燃料电池阴极的高石墨化度炭基催化剂的制备方法
CN113437310B (zh) 介孔二氧化硅壳层包覆的金属-n共掺杂/多孔碳复合材料、其制备方法及其应用
CN109065903A (zh) 一种高活性负载型八面体三元合金催化剂的制备方法
CN113889632B (zh) 氮掺杂中空介孔碳壳载PtNi合金八面体催化剂的制备方法
Yu et al. One-step production of Pt–CeO2/N-CNTs electrocatalysts with high catalytic performance toward methanol oxidation
CN101185900A (zh) 直接醇类燃料电池阳极催化剂的制备方法
CN109873174A (zh) 一种低温燃料电池用三维载体担载铂钯钴合金结构催化剂的制备方法
CN108232212B (zh) 一种中空纳米碳球负载纳米Ag颗粒燃料电池氧还原催化剂及其制备方法与应用
CN111450848A (zh) CuS纳米点材料的制备方法及其在电催化二氧化碳还原中的应用
CN109167091A (zh) 一种以碳管膜为载体制备膜电极的方法
CN115072698A (zh) 杂原子掺杂孔径可控的二维碳材料及其制备方法
CN110224148B (zh) Pt或Au修饰的多孔PdFe金属间化合物及其制备方法与应用
CN103887530A (zh) 一种Pt/(C-Pb)催化剂及其制备
CN114050280A (zh) 一种高载量负载稀贵金属碳基材料的制备方法
CN115133044B (zh) 一种基于水系zif衍生的中空球型碳基催化剂及其制备方法和应用
CN1330424A (zh) 质子交换膜燃料电池用纳米铂催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201228

Address after: Building 2, No. 3, Fuqian Road, Hailing District, Taizhou City, Jiangsu Province

Patentee after: Taizhou Haitong Asset Management Co., Ltd

Address before: 066004 No. 438 west section of Hebei Avenue, seaport District, Hebei, Qinhuangdao

Patentee before: Yanshan University