CN104577094B - 一种锂离子电池正极材料及其制备方法 - Google Patents

一种锂离子电池正极材料及其制备方法 Download PDF

Info

Publication number
CN104577094B
CN104577094B CN201510016316.4A CN201510016316A CN104577094B CN 104577094 B CN104577094 B CN 104577094B CN 201510016316 A CN201510016316 A CN 201510016316A CN 104577094 B CN104577094 B CN 104577094B
Authority
CN
China
Prior art keywords
liv
lithium
graphene
nanometer sheet
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510016316.4A
Other languages
English (en)
Other versions
CN104577094A (zh
Inventor
王开学
王宗凯
陈接胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huayi New Energy Materials (Shanghai) Co.,Ltd.
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510016316.4A priority Critical patent/CN104577094B/zh
Publication of CN104577094A publication Critical patent/CN104577094A/zh
Application granted granted Critical
Publication of CN104577094B publication Critical patent/CN104577094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锂离子电池正极材料的制备方法,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%,制备时结合水热合成法、溶胶‑凝胶法、表面改性包覆的方法,合成得到具有优良电化学性能的电池材料。与现有技术相比,本发明既保留了LiV3O8片层本身的晶体结构稳定性,同时又以石墨烯作为载体,形成了比表面积更大、导电性更好、锂离子传输效率更高、化学稳定性更强的一种新型的锂离子电池正极材料。该方法工艺简单,可操作性强。

Description

一种锂离子电池正极材料及其制备方法
技术领域
本发明属于锂离子电池领域,尤其是涉及一种锂离子电池正极材料的制备方法。
背景技术
作为一种新型储能装置,锂离子电池和锂离子电池储能系统的开发必将推动可再生能源的有效利用和新能源汽车的发展,对于解决能源短缺和减少环境污染具有重要意义。在过去十几年的,对锂离子电池正极材料的研究主要集中在尖晶石结构的LiCoO2,LiMn2O4和橄榄石结构的LiFePO4以及他们的衍生物。LiCoO2是第一个商业化的正极材料,但是其可用容量低于150mAh/g,而且Li1-xCoO2结构不稳定,LiCoO2易与电解液发生氧化还原反应,造成不可逆容量损失和安全问题;另外,钴资源有限、价格昂贵。LiFePO4是现在研究最热的正极材料,其理论容量只有170mAh/g,也不能满足储能系统对锂电池的需要。所以,开发一种高容量、长寿命、高安全性、低成本的锂离子电极材料成为现在突破能源发展瓶颈的关键。
层状化合物LiV3O8具有比较好的晶体结构稳定性,因而具有优良的嵌锂能力,表现在电池比容量高和循环寿命长等优势,是极具研究价值的锂离子电池正极材料之一。LiV3O8是由八面体和三角双锥组成,位于八面体位置的Li+离子与邻近层紧紧相连,在LiV3O8层间有3个以上的锂离子可以进行可逆的嵌入/脱出。但是LiV3O8的倍率性能会受到Li+离子扩散和电子传输的制约。现阶段大多采用材料纳米化的方式来改进材料的电化学性能,溶胶-凝胶法、水热法、冷冻-干燥法等方法可以合成形貌、尺寸、结晶度和电化学性能各不相同的LiV3O8。但是材料纳米化的改性方式在提高材料的稳定性方面的效果并不显著。因此,寻求一种低成本和高效率的LiV3O8改性正极材料的制备方法是亟待解决的难题。
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能,因此石墨烯复合的正极材料被认为是解决锂离子电池材料电化学稳定性的有效途径。如何利用石墨烯获得具有特殊形貌和微观结构的电极材料,才是有效改善材料的电化学性能的关键。Runwei Mo(Chem.Commun,10.1039)发明了一种利用石墨烯原位水热复合的方法,合成出一种在石墨烯表面原位生长的LiV3O8纳米棒,该正极材料表现出较为优异的电化学性能。Xinliang Feng(Chem.Commun,10.1002)发明了一种利用石墨烯包覆金属氧化物做负极材料的方法,包覆后的负极材料在电化学性能的各项测试中都有了较明显的提高。但是目前为止,石墨烯与正极材料的复合仍然是研究的难点,电化学性能方面有待有质的提升。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种在大电流密度下,材料性能的提升更加明显的锂离子电池正极材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%。
锂离子电池正极材料的制备方法,采用以下步骤:
(1)利用表面活性剂将钒源和有机酸或者过氧化氢均匀分散在水溶液中,通过水热法合成前驱体,再利用溶胶-凝胶及高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,然后通过LiV3O8表面电荷修饰、氧化石墨烯包覆、氧化石墨烯还原以及冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。
步骤(1)中:
水热法是将有机酸和钒源均匀混合在水溶液中,然后在70-200℃温度下反应3-20h,合成得到前驱体。其中,钒源选自VO、VO2、V2O5、V2O3或NH4VO3中的一种或几种,有机酸选自柠檬酸、酒石酸、草酸、苹果酸或枸椽酸中的一种或几种。
溶胶-凝胶是将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10~10:1混合,加入表面活性剂作为分散剂,分散剂与前驱体的质量比为1:10~10:1,室温搅拌1~10h,之后在40~120℃温度下油浴加热并干燥,其中,表面活性剂选自聚乙二醇、聚乙烯吡咯烷酮、聚氧乙烯或聚氧乙烯-聚氧丙烯共聚物中的一种或几种。
高温焙烧是在300~1000℃环境下在氧气气氛或者空气气氛下焙烧。
步骤(2)中:
超声分散是将LiV3O8纳米片在甲苯溶液中,100~500w功率下超声10~100min。
表面电荷修饰是向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:50~1:1,在20~100℃环境下,氮气气氛或者氩气气氛下回流5~40h。
氧化石墨烯包覆是指将经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1~5h,LiV3O8与氧化石墨烯的质量比为2:1~30:1;
氧化石墨烯还原是滴加水合肼并在室温下搅拌2~20h,氧化石墨烯与水合肼的质量比为1:10~10:1。
冷冻干燥时在-80~-20℃条件下进行的真空干燥。
与负极材料包覆相比,包覆后的LiV3O8正极材料在电化学性能的提升的幅度更大,尤其是在大电流密度下,材料性能的提升更加明显。相对于未包覆LiV3O8,石墨烯包覆LiV3O8纳米片有很好的包覆效果,分散性好,同时石墨烯与LiV3O8形成了紧致的界面层,这些是电池的电阻变得更小,锂离子传输速率更快。这为解决锂离子电池存在的瓶颈问题提供了一个方案,而且这种方法没有副产物,反应条件也相对温和,有利于商业化。
附图说明
图1为为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的X-射线衍射谱图。
图2为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的扫描电镜谱图。
图3为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的透射电镜谱图。
图4为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的高分辨透射电镜谱图。
图5为本发明的正极活性物质石墨烯包覆LiV3O8纳米片层作为正极材料在5A/g电流密度下的电化学性能测试放电数据图。
图6为本发明的正极活性物质石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片的阻抗图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1:
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体((NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例2
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙烯吡咯烷酮作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进100mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例3
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进25mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例4
第一步、将2.28g柠檬酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例5
第一步、将2.28g草酸加入到70mL分散有2.55g五氧化二钒的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例6
第一步、将2.55g五氧化二钒加入到70mL 30%的过氧化氢水溶液中,搅拌,然后加入2.28g草酸,继续搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例7
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体((NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在550℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
图1-4分别为实施例7制备得到的石墨烯包覆LiV3O8纳米片的X-射线衍射谱图、扫描电镜谱图、透射电镜谱图以及高分辨透射电镜谱图。从X-射线衍射谱图可以看出,制备得到的石墨烯包覆LiV3O8纳米片的衍射峰与PDF#72-1193卡片一致;图4中的高分辨电镜图谱中显示的LiV3O8晶格间距d=0.310nm与LiV3O8的(-111)晶面符合;图2扫描电镜谱图、图3透射电镜谱图、图4高分辨透射电镜谱图可是看出LiV3O8纳米片被石墨烯均匀包覆,形貌均一,分散性好,同时石墨烯层非常紧密地与LiV3O8纳米片形成包覆界面,这有利于降低电阻,同时有利于锂离子的传输。
下面的实施例说明采用本发明提供的正极活性物质石墨烯包覆LiV3O8纳米片制备成电池后对电池进行性能测试。
实施例8
电化学性能测试:
(1)电池的制备
样品的电化学性能测试前需制成纽扣型锂电池,样品充当锂电池中电极的正极材料,锂片作为负极。制作流程分为预处理、浆料制作、电极制作、电池组装四个过程。将合成样品石墨烯包覆LiV3O8纳米片(80%)与导电剂super-p(10%)、粘合剂聚偏氟乙烯(10%)混合(质量比)充分搅拌,均匀涂布在铝箔上置于真空干燥箱中,90℃真空干燥12h,烘干后裁剪成扣式电池的正极片,压片,压力大约用4-6个大气压。称量涂有活性物质的电极片重量,根据涂片前空白铝箔的重量和活性物质的比例,计算得出每个电极片中所含活性物质的重量后放入手套箱。
采用金属锂片作负极,l mol/L的LiPF6-EC+DMC(体积比l:l)溶液作电解液。扣式电池的组装在充满氩气的无水无氧的手套箱内进行.电池组装过程1)将电极片放在电池壳正中间,滴加1滴电解液;2)将隔膜轻轻的平整地铺在电极片上;3)用滴管吸取少量电解液,从隔膜边缘的一个方向滴加1到2滴电解液直至隔膜全部润湿;4)将金属锂片放在隔膜的中央,不能直接接触电池壳;5)再将泡沫镍置于锂片的中央;6)盖上电池盖,用力按紧,用封口机密封电池即组装完毕,静置一段时间后待测。
(2)电化学性能测试
样品的恒电流充放电循环测试在LAND-201A电池测试系统上进行,测试电压范围为1.8-4.0V;电化学阻抗在C小时I600B型电化学工作站(上海辰华仪器公司)上进行。图5为电化学性能测试放电数据图,图6为石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片层的阻抗图。从图5电化学性能测试放电数据图可以看出,在5A/g的电流密度下,锂离子电池放电第1圈的电容量为230.9mAh/g,第100圈的电容量为225.5mAh/g,电池放电容量为第1圈的98%,200圈之后放电容量仍然保持214.2mAh/g,这样的电池性能是非常可观的。从图6石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片层的阻抗图可以看出,石墨烯包覆后的LiV3O8纳米片层相比于包覆之前的LiV3O8纳米片层,电阻变得更小,锂离子传输速率更快,这些可以进一步解释石墨烯包覆后的LiV3O8纳米片层拥有如此好的电化学性能的原因。在大电流密度下,材料的电池稳定性更加明显。
实施例9
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65wt%,石墨烯含量为35wt%。其制备方法采用以下步骤:
(1)利用表面活性剂将VO2和柠檬酸均匀分散在水溶液中,在70℃温度下反应20h,合成得到前驱体,再将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10混合,加入表面活性剂聚乙二醇作为分散剂,分散剂与前驱体的质量比为1:10,室温搅拌1h,之后在40℃温度下油浴加热并干燥,,最后在300℃的氧气气氛下高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,具体来说,是将LiV3O8纳米片在甲苯溶液中,100w功率下超声100min,然后向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:50,在20℃环境下,氮气气氛下回流40h,从而实现LiV3O8表面电荷修饰,经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1h,LiV3O8与氧化石墨烯的质量比为2:1,滴加水合肼并在室温下搅拌2h,氧化石墨烯与水合肼的质量比为1:10,最后在-80℃条件下进行的真空冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。
实施例10
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是90wt%,石墨烯含量为10wt%。其制备方法采用以下步骤:
(1)利用表面活性剂将V2O5和过氧化氢均匀分散在水溶液中,在200℃温度下反应3h,合成得到前驱体,再将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按10:1混合,加入表面活性剂聚氧乙烯-聚氧丙烯共聚物作为分散剂,分散剂与前驱体的质量比为10:1,室温搅拌10h,之后在120℃温度下油浴加热并干燥,最后在1000℃的氧气气氛下高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,具体来说,是将LiV3O8纳米片在甲苯溶液中,500w功率下超声10min,然后向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:1,在100℃环境下,氩气气氛下回流5h,从而实现LiV3O8表面电荷修饰,经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌5h,LiV3O8与氧化石墨烯的质量比为30:1,滴加水合肼并在室温下搅拌20h,氧化石墨烯与水合肼的质量比为10:1,最后在-20℃条件下进行的真空冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。

Claims (4)

1.锂离子电池正极材料的制备方法,其特征在于,该方法采用以下步骤:
(1)利用表面活性剂将钒源和有机酸或者过氧化氢均匀分散在水溶液中,通过水热法合成前驱体,再利用溶胶-凝胶及高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,然后通过LiV3O8表面电荷修饰、氧化石墨烯包覆、氧化石墨烯还原以及冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料,该材料由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%;
步骤(1)中的水热法是将有机酸和钒源均匀混合在水溶液中,然后在70~200℃温度下反应3~20h,合成得到前驱体;溶胶-凝胶是将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10~10:1混合,加入表面活性剂作为分散剂,分散剂与前驱体的质量比为1:10~10:1,室温搅拌1~10h,之后在40~120℃温度下油浴加热并干燥;高温焙烧是在300~1000℃环境下在氧气气氛或者空气气氛下焙烧;
步骤(2)中,超声分散是将LiV3O8纳米片在甲苯溶液中,100~500w功率下超声10~100min,表面电荷修饰是向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的体积比为1:50~1:1,在20~100℃环境下,氮气气氛或者氩气气氛下回流5~40h,氧化石墨烯包覆是指将经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1~5h,LiV3O8与氧化石墨烯的质量比为2:1~30:1;氧化石墨烯还原是滴加水合肼并在室温下搅拌2~20h,氧化石墨烯与水合肼的质量比为1:10~10:1。
2.根据权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,
所述的钒源选自VO、VO2、V2O5、V2O3或NH4VO3中的一种或几种,
所述的有机酸选自柠檬酸、酒石酸、草酸、苹果酸或枸椽酸中的一种或几种。
3.根据权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,表面活性剂选自聚乙二醇、聚乙烯吡咯烷酮、聚氧乙烯或聚氧乙烯-聚氧丙烯共聚物中的一种或几种。
4.根据权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,步骤(2)中,冷冻干燥是在-80~-20℃条件下进行的真空干燥。
CN201510016316.4A 2015-01-13 2015-01-13 一种锂离子电池正极材料及其制备方法 Active CN104577094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510016316.4A CN104577094B (zh) 2015-01-13 2015-01-13 一种锂离子电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510016316.4A CN104577094B (zh) 2015-01-13 2015-01-13 一种锂离子电池正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104577094A CN104577094A (zh) 2015-04-29
CN104577094B true CN104577094B (zh) 2018-02-02

Family

ID=53092671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510016316.4A Active CN104577094B (zh) 2015-01-13 2015-01-13 一种锂离子电池正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104577094B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006721B1 (ko) * 2015-06-22 2019-08-02 주식회사 엘지화학 리튬 이차 전지용 전극, 이의 제조 방법, 이를 포함하는 리튬 이차 전지용 전극 조립체, 및 이를 포함하는 리튬 이차 전지
KR20170003306A (ko) * 2015-06-30 2017-01-09 주식회사 엘지화학 마그네슘 전지용 전극 활물질, 이의 제조 방법, 이를 포함하는 전극, 및 상기 전극을 포함하는 마그네슘 전지
CN107017399A (zh) * 2017-06-02 2017-08-04 青岛乾运高科新材料股份有限公司 一种掺杂型钒酸锂正极材料及其合成方法
CN109004204A (zh) * 2018-08-06 2018-12-14 浙江美都墨烯科技有限公司 一种微纳结构高电压镍锰酸锂/石墨烯复合材料及应用
CN112374537A (zh) * 2020-11-02 2021-02-19 四川大学 一种金属钒酸盐纳米复合材料的制备方法
CN113488624A (zh) * 2021-07-08 2021-10-08 中国恩菲工程技术有限公司 硅碳复合材料及其制备方法和应用
CN114300675B (zh) * 2021-12-31 2023-08-15 欣旺达电动汽车电池有限公司 一种正极材料、其制备方法和水系锌离子电池
CN114684783B (zh) * 2022-04-11 2023-04-14 浙江大学 可改善锂镁氮氢化物储氢性能的添加剂及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579616A (zh) * 2013-10-31 2014-02-12 浙江工业大学 一种石墨烯包覆铅粉复合材料及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765302B2 (en) * 2011-06-17 2014-07-01 Nanotek Instruments, Inc. Graphene-enabled vanadium oxide cathode and lithium cells containing same
CN103515581A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 LiV3O8/石墨烯复合材料及其制备方法和应用
CN103560245B (zh) * 2013-11-15 2016-06-01 哈尔滨工业大学 石墨烯包覆的磷酸钒锂正极材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579616A (zh) * 2013-10-31 2014-02-12 浙江工业大学 一种石墨烯包覆铅粉复合材料及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable batteries;Haiyan Wang et al.;《Crystengcomm》;20120208;第14卷;实验部分 *

Also Published As

Publication number Publication date
CN104577094A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104577094B (zh) 一种锂离子电池正极材料及其制备方法
Li et al. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance
CN102738458B (zh) 一种富锂正极材料的表面改性方法
CN101800311B (zh) 超声共沉淀合成高放电倍率的磷酸铁锂的制备方法
Chen et al. Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands
CN101315981B (zh) 一种锂离子电池用磷酸亚铁锂正极材料及改性方法
EP2615671A1 (en) Lithium salt-graphene-containing composite material and preparation method thereof
CN105024067B (zh) 锂离子电池及其复合掺杂改性正极活性材料及制备方法
CN103474646B (zh) 一种网状多孔富锂锰基锂离子电池正极材料及其制备方法
Cao et al. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method
CN110875473A (zh) 正极活性材料、其制备方法及钠离子电池
CN102856553A (zh) 一种水热合成碳包覆磷酸铁锂的制备方法
CN102838102B (zh) 一种磷酸铁锂单晶纳米棒的制备方法
CN108899497A (zh) 正极材料和包含所述正极材料的电化学装置
CN103413918B (zh) 一种锂离子电池用正极材料磷酸钴锂的合成方法
CN108039486A (zh) 银耳状中空核壳结构五氧化二钒正极电极片及其扣式锂离子电池制备方法
CN103413940B (zh) 一种锂离子电池正极材料纳米磷酸锰锂的合成方法
CN110444741A (zh) 石墨烯修饰磷酸铁锂量子点复合材料及其制备方法和用途
CN114744186A (zh) 一种层状富锂锰基复合正极材料、制备方法及电池
CN107180944A (zh) 一种金属磷化物纳米粒子的制备方法及其应用
CN100483809C (zh) 一种锂离子电池正极材料超细LiFePO4/C的制备方法
ZHONG et al. Synthesis of LiMnPO4/C composite material for lithium ion batteries by sol-gel method
CN104600283A (zh) 一种富锂电极材料及其制备方法和应用
Chen et al. Facile preparation of high-performance spinel LiMn2-xCuxO4 cathodes by microwave-induced solution flameless combustion
CN105185969B (zh) 一种正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231113

Address after: 201109 Building 1, No. 600, Jianchuan Road, Minhang District, Shanghai

Patentee after: Huayi New Energy Materials (Shanghai) Co.,Ltd.

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

TR01 Transfer of patent right