CN104507892B - 多晶体硫族化物陶瓷材料 - Google Patents

多晶体硫族化物陶瓷材料 Download PDF

Info

Publication number
CN104507892B
CN104507892B CN201380020020.9A CN201380020020A CN104507892B CN 104507892 B CN104507892 B CN 104507892B CN 201380020020 A CN201380020020 A CN 201380020020A CN 104507892 B CN104507892 B CN 104507892B
Authority
CN
China
Prior art keywords
sintering
powder
chalkogenide
polycrystalline ceramics
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380020020.9A
Other languages
English (en)
Other versions
CN104507892A (zh
Inventor
凯斯·格雷戈里·罗曾堡
埃里克·赫克托·尤如蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott Diamondview Armor Products LLC
Original Assignee
Schott Diamondview Armor Products LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Diamondview Armor Products LLC filed Critical Schott Diamondview Armor Products LLC
Publication of CN104507892A publication Critical patent/CN104507892A/zh
Application granted granted Critical
Publication of CN104507892B publication Critical patent/CN104507892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种通过使用单轴热压然后热均压来烧结硫族化物粉末、例如ZnS粉末而制备的多晶IR透明材料。本发明所描述的材料的微晶结构比使用现有技术所制备的材料的微结构更精细。通过使用颗粒大小足够精细以提高烧结性能但足够粗糙以防止纤锌矿‑闪锌矿转变温度降低的粉末,在不降低光学性能的情况下生成强度提高的高透明材料。在部件已经达到期望温度后,通过施压在热压过程中获得高度的透明性。这允许某些程度的塑性变形并且防止可能包埋空隙的快速晶粒生长。在此处理过程中产生的晶体孪生进一步抑制热均压过程中的晶体生长。

Description

多晶体硫族化物陶瓷材料
技术领域
本发明涉及一种多晶体材料,其透射红外线光谱内的光线、例如0.7-14μm波长范围内的光线,诸如0.7-1.0μm近红外范围、3-5μm的中波红外(MWIR)范围或者8-14μm的长波红外(LWIR)范围的光线。这样的材料用于红外窗口、拱顶和透镜应用中。本发明还涉及一种制备多晶体ZnS陶瓷材料的独特方法。
背景技术
红外传感器用于民用和军事应用。例如,红外传感器可以用于热追踪导弹的导航技术或可以用于检测发射红外辐射的任何物体。为了保护这些易碎和敏感装置,IR传感器一般定位在称作红外窗口或拱顶的结构后面。例如,外部的IR窗口或拱顶用于卫星、导弹、航空器和其他类似装置。这些IR窗口提供两个基本功能。首先,IR窗口当然必须能够将红外光线透射到IR传感器。另外,IR窗口必须能够保护传感器不受外部环境伤害。
如Propst et al.(US 5,425,983)所述,对于飞行器、诸如导弹和航空器中,IR传感器一般安装在导弹或航空器的鼻部或腹部并且因此沿飞行路径的方向面向前方,以在向前的方向上具有自由视野。因此,尤其在当导弹或航空器高速行驶和/或飞越沙漠区域时,保护IR传感器的IR窗口或拱顶由于诸如雨水和灰尘等颗粒而承受损伤、恶化或腐蚀。这可能导致窗口材料强度的降低、窗口透射红外光线能力的降低或者甚至于窗口材料自身的失效。
红外窗口由例如在2-12μm或8-14μm波长范围中透明的材料制成。即,它们透射例如至少50%的相当大比例的入射红外光线。为了获得此水平的透射,用于红外窗口或拱顶的一般材料是蓝宝石、锗、硅、氟化镁、磷化镓、以及诸如硫化锌、硒化锌、碲化锌以及碲化镉的硫族化物材料(II-VI材料)。
虽然这些材料在至少一部分红外光谱内呈现足够的透射率,但是它们的强度对于某些应用而言不是始终足够的。作为红外窗口材料,蓝宝石的强度是很大的。但是,蓝宝石透射中波长范围的红外光线的能力在5μm波长处降低并且对6μm及以上波长的红外光线不具有透过性。另外,蓝宝石难以机加工并且因此可能不适于需要特殊弯曲度的应用,诸如用于在制导导弹的鼻部中保护传感器的IR拱顶。
诸如硫化锌、硒化锌、锗、砷化镓等其他材料在红外光谱中、甚至在更大厚度下保持良好的透射水平。但是,这些材料的强度在许多情况下不足以抵抗某些应用中IR窗口暴露的腐蚀以及恶化、诸如在高速导弹和航空器中暴露到雨水和灰尘。
多年前,在红外窗口的生产中已经知道使用硫化锌。起初,硫化锌IR窗口通过热压处理制成。例如,见Carnall et al.(US 3,131,025和US 3,131,238),其公开了一种通过将硫化锌粉末放置在模具中然后将模具抽成真空来制备由多晶体制成的光学元件的方法。将硫化锌加热到1420℉-1770℉(例如,1550℉)的高温并且然后在保持高温同时通过液压机使硫化锌承受20000-40000psi的压力5-35分钟。Carnall et al.(US 3,131,026)、Roy etal.(US 3,454,685)、以及Martin et al.(US 4,366,141)也公开了用于热压硫化锌粉末的材料和方法。
但是,还需要提供具有更好光学性能的更大尺寸的ZnS材料。因此,开发出了用于制造ZnS窗口的化学气相沉积(CVD)方法。在CVD方法中,气化的锌固体与硫化氢在高温下(high-temperat)反应。例如Teverovsky et al.(US 5,383,969)公开了用于CVD生产ZnS的方法和设备。但是,仍需要提供一种红外光学材料,其不但在红外光谱内呈现足够的光学性能,并且具有改善的机械性能、诸如高硬度,以承受IR窗口和拱顶所暴露的恶劣环境。
发明内容
因此,本发明的一方面在于提供一种多晶体陶瓷成分,其在0.7-14μm波长范围内、例如1-10μm或8-12μm波长范围内呈现良好的光学透射性能。本发明的另一方面在于这样材料在红外窗口、拱顶和透镜应用中的用途。本发明的又一方面在于用于制备本发明多晶体陶瓷材料的独特方法。
在说明书和随附的权利要求的进一步地研究的基础上,本领域一般技术人员能够清楚了解本发明的其他方面和优点。
因此,根据本发明,提供一种烧结多晶体陶瓷体,其包括具有立方结构的多晶性型的硫族化物材料、例如硫化锌闪锌矿,并且所述硫族化物材料在1100nm波长处具有小于等于2.75cm-1的消光系数以及大于180kg/mm2的维氏硬度。
根据本发明,多晶体陶瓷材料可以选自呈现具有立方结构的多晶性型的任何硫族化物材料,诸如硫化锌、硒化锌、碲化锌或碲化镉。优选地,如果不是全部或基本全部,多晶体陶瓷材料主要由闪锌矿(立方)多晶体结构的硫化锌组成。
本发明的多晶体陶瓷材料(优选ZnS)透射红外光谱中的光线。例如,6mm厚的多晶体ZnS陶瓷材料优选例如在0.7-3μm波长范围、3.0-8.0μm波长范围和/或8.0-12.0波长范围内透射至少40%的入射红外光线、优选至少60%的入射红外光线、更优选至少70%的入射红外光线。
根据本发明的一方面,多晶体ZnS陶瓷材料在1100nm波长下的消光系数优选小于等于2.75cm-1、更优选小于等于1.5cm-1、最优选小于等于0.5cm-1,例如0.2cm-1、0.1cm-1或甚至于0.05cm-1
本发明的多晶体ZnS陶瓷材料还呈现有益的物理性能。对于硬度而言,本发明的多晶体ZnS材料呈现高维氏硬度和努氏硬度值。例如,本发明的多晶体ZnS材料的维氏硬度优选大于等于180kg/mm2(例如180-265kg/mm2)、更优选大于等于200kg/mm2、非常优选大于等于210kg/mm2、特别优选大于等于230kg/mm2以及最优选大于等于250kg/mm2
相似地,本发明的多晶体ZnS材料在0.1N的力下测量的努氏压痕硬度优选至少大于等于180kg/mm2(例如180-265kg/mm2)、更优选大于等于200kg/mm2、非常优选大于等于225kg/mm2、特别优选大于等于250kg/mm2以及最优选大于等于260kg/mm2
在最常用的应用中,ZnS材料用于其中材料在0.7-14μm波长范围的较宽部分内透射光线的多普段应用以及其中材料在8-12μm波长范围内透射光线的FLIR(前视红外线)应用。
对于多普段应用,市场上可买到的ZnS材料通常呈现约0.05cm-1(在1100nm下)的消光系数以及约147kg/mm2的维氏硬度。对于FLIR应用,市场上可买到的ZnS材料通常呈现约3.6cm-1(在1100nm下)的消光系数以及约230kg/mm2的维氏硬度。
根据本发明的另一方面,本发明的多晶体ZnS材料适于多普段应用,并且呈现优选小于等于1.5cm-1(在1100nm下)的消光系数以及至少200kg/mm2的维氏硬度,优选地具有小于等于1.0cm-1(在1100nm下)的消光系数以及至少200kg/mm2的维氏硬度,更优选地具有小于等于0.5cm-1(在1100nm下)的消光系数以及至少200kg/mm2的维氏硬度,以及最优选地具有小于等于0.2cm-1(在1100nm下)的消光系数以及至少220kg/mm2的维氏硬度。
根据本发明的另一方面,本发明的多晶体ZnS材料适于FLIR应用,并且呈现的消光系数优选小于等于2.5cm-1(在1100nm下)、更优选小于等于2.0cm-1(在1100nm下)、非常优选小于等于1.5cm-1(在1100nm下)、以及最优选小于1.0cm-1(在1100nm下)。另外,该材料呈现的维氏硬度优选至少210kg/mm2、更优选至少220kg/mm2、非常优选至少240kg/mm2以及最优选至少250kg/mm2
至于其他物理性能,本发明的ZnS材料对于多普段应用的热膨胀系数优选至少6.0×10-6/K、优选至少6.5×10-6/K,并且对于FLIR应用的热膨胀系数至少6.0×10-6/K、优选至少6.8×10-6/K。另外,本发明的ZnS材料对于多普段应用的热导性优选为至多0.3W/cm℃、优选至多约0.27W/cm℃,并且对于FLIR应用的热导性至多0.2W/cm℃、优选至多约0.167W/cm℃。
对于物理结构,本发明的ZnS材料优选主要由其立方闪锌矿多晶体性型的ZnS构成。具体而言,期望限制例如六角纤锌矿晶体性型的其他主要多晶性型的ZnS的形成。纤锌矿晶体负面影响ZnS材料的光学和机械性能。纤锌矿的存在由于其两相之间的折射率错配而在短波处引起散射。优选地,纤锌矿晶体的存在小于1vol.%、优选小于0.1vol.%、更优选小于0.05vol.%。
对于物理结构,本发明的ZnS材料还优选主要由其立方闪锌矿多晶体性型的ZnS构成,并且其平均晶粒尺寸优选小于8μm、更优选小于6μm、特别优选小于5μm、以及最优选小于3μm。
小晶粒尺寸适于提高材料的强度。颗粒尺寸基于公知的霍尔-佩奇关系:σy=σ0+kd-1/2与强度相关联,其中σy是屈服应力,σ0是内在屈服应力,k是给定材料的常量,并且d是晶粒尺寸。因此,随着晶粒尺寸的减小(到约10nm的颗粒尺寸),屈服应力方面的强度提高。
另外,优选地,本发明的ZnS材料具有低孔隙度以及小平均孔径。随着孔隙度增大,透射质量倾向于降低。类似地,随着平均孔径增大,透射质量倾向于降低。因此,本发明的ZnS材料的平均孔半径优选小于约0.1μm、更优选小于0.07μm、特优选小于0.05μm。
为了获得期望的光学和机械性能,本发明的多晶体ZnS陶瓷材料通过将烧结和单轴向压制与热均压结合的独特方法来制备。因此,根据本发明的方法方面,ZnS粉末首先经过烧结和单轴向压制,其中,粉末优选(例如以优选约12k/分钟的速率)加热到约900-1000℃的温度。然后,材料在优选约40-60MPa的压力下经过单轴向压制优选约0.6-6小时的时间周期。接着在优选约200-210MPa的惰性气体压力下,在例如800-1000℃下、优选约900-1000℃下、更优选约925-975℃下,将得到的压制材料经过热均压优选约10-100小时的时间周期。
因此,根据本发明的另一方面,提供一种制备多晶体硫族化物陶瓷材料、优选多晶体ZnS陶瓷材料的方法,其包括:
将硫族化物粉末加热到900-1000℃的温度;
在40-60MPa的压力以及900-1000℃的温度下单轴向压制加热的粉末0.16-6小时;以及
在180-250MPa的惰性气体压力下和800-1000℃、优选900-1000℃的温度下,将所得到的压制的硫族化物材料热均压10-100小时。
起始材料(例如ZnS粉末)的颗粒尺寸优选在400nm-10μm的范围内。通过使用颗粒大小足够精细以提高烧结性能但足够粗糙以防止纤锌矿-闪锌矿转变温度降低的粉末,在不降低光学性能的情况下生成强度提高的高透明材料。优选地,ZnS粉末由这样的颗粒组成,其中小于10wt%的颗粒的直径为500nm或更小、小于50wt%的颗粒的直径为5μm或更小、以及小于90%的颗粒的直径为10μm或更小。
烧结温度保持低于ZnS的升华点(~1185℃)并优选低于闪锌矿性型转变成纤锌矿性型的转变温度(~1020℃)。Xue和Raj描述了硫化锌中可见的热诱导塑性(Xue,L.A.,&Raj,R.(1989).Superplastic Deformation of Zinc Sulfide NearIts TransformationTemperature.J.Am.Ceram.Soc,72[10],1792-1796)。烧结锻造方法(即结合烧结和单轴向压制)使得晶体通过孪生机制变形。在此方法中生成的该高孪生微结构在后续处理过程中、例如在热均压过程中抑制晶体生长。
在烧结和单轴向压制之后,ZnS材料经过热均压(HIP)。在热均压中,材料经过高温和高气体均压(即从所有方向施加气体压力)。根据本发明,单轴向压制材料的热均压在优选200-210MPa的惰性气体(通常为氩气)压力下和优选在925-975℃的温度下进行。在部件已经达到期望温度后,通过施压在热压过程中获得高度的透明性。这允许某些程度的塑性变形并且防止可能包埋(entrap)孔隙的快速晶粒生长。因此,热均压的一个功能是通过降低孔的数量和平均半径来减少残余孔隙。热均压进行优选10-100小时、例如12-20小时的时间周期。
根据本发明的另一方面,在放置于热压机组合的模具中,ZnS粉末试样最初经过真空状态,以从试样中移除积存气体和污染物。真空优选在10-4-10-2托耳的范围内。
另外,在烧结前,ZnS粉末试样经过一个或多个低温燃烧(burnout)步骤,以消除可能吸附到表面的捕获的碳氢化合物。这些碳氢化合物的存在可能在IR光谱的重要区域内引起吸收,由此降低了得到材料的透射效率。这些燃烧步骤优选在真空状态下(例如10-3-10-2托耳)和50-300℃的温度下进行。例如,ZnS粉末试样可以加热到50℃、150℃、以及然后200℃,并且保持在这些温度的每个温度下直到达到期望的真空水平(例如10×10-3托耳)。
在完成热均压后,材料冷却到室温,并且然后可以根据惯例进行抛光。
得到的材料可以用于红外窗口、拱顶和透镜应用的一般应用中。
因此,根据本发明的另一方面,提供一种用于保护红外传感器的红外窗口或拱顶,其中红外窗口或拱顶包括本发明的多晶体ZnS陶瓷材料、优选消光系数在1100nm的波长下小于等于2.75cm-1并且维氏硬度大于等于180Kg/mm2的多晶体ZnS陶瓷材料(例如消光系数在1100nm下为0.25-2.75cm-1以及维氏硬度为180-265kg/mm2)。
根据本发明的另一方面,提供一种包括至少一个红外传感器以及用于保护该至少一个红外传感器不受外部环境损伤的红外窗口或拱顶,其中红外窗口或拱顶包括本发明优选的消光系数在1100nm的波长下小于等于2.75cm1并且维氏硬度大于等于180Kg/mm2的多晶体ZnS陶瓷材料(例如消光系数在1100nm下为0.05-0.2cm-1以及维氏硬度为180-265kg/mm2)。
根据本发明的另一方面,提供一种用于聚焦0.7-14μm波长范围内的光线的红外透镜,其中,红外透镜包括本发明优选的消光系数在1100nm的波长下小于等于2.75cm-1并且维氏硬度大于等于180Kg/mm2的多晶体ZnS陶瓷材料(例如消光系数在1100nm下为0.05-0.2cm-1以及维氏硬度为180-265kg/mm2)。
附图说明
当结合附图时,将更容易理解和领会本发明的各种其他特征和伴随的优点,在整个附图中,相似标号表示相同或相似部件,并且其中:
图1示出本发明在多晶体ZnS陶瓷组分的生产中所使用的热压模具;
图2示出本发明所获得的精细微结构与标准热压处理所获得的微结构的比较;
图3以在1100nm下的消光系数为函数示出本发明的示例的维氏硬度的图表;以及
图4通过图表示出本发明示例7的透射光谱与商业上可获得的FLIR(前视红外仪)材料的透射光谱的比较。
具体实施方式
图1示出例如用于制造精细结晶的均压石墨的热压模具。该模具包括实心圆柱形式的模具构件1、空心圆柱形式的模具构件2和4、具有沿长轴下切的缝的空心圆柱形式的模具构件3、以及圆柱形式的模具构件5。另外,提供由第二精细结晶的均压石墨制成的第一中间盘8和第二中间盘11。
平均颗粒尺寸为5μm的生坯10形式的粉末ZnS定位于第一中间盘8和第二中间盘11之间。中间盘8和11面向生坯10的表面与空心圆柱3的内壁形成模具空腔的表面。这些表面用厚度约为0.010英寸的石墨箔6、7、9覆盖。
模具完全放入到热压组合中。组合起初被抽空到50×10-3托耳压力,然后进行燃烧循环,以从陶瓷粉末中去除吸附的气体。粉末试样加热到50、150、200℃并且保持在每个温度下直到达到期望的真空水平(例如分别为200℃和50×10-3托耳)。然后在不施压情况下将组合加热到900℃和1000℃之间、优选950℃的温度。在达到期望温度之后,以7吨每分钟的速率将压力施加到模具构件1上,直到获得40-60MPa、优选约55MPa的压力。然后将压力保持在此水平一段时间,例如0.16-6小时,如2-4小时。压制的物件接着可以通过移出模具构件5并将所装的东西压出到深度等于中间盘8和11的厚度和的空腔中而从模具中无损移出。
部件然后放入到石墨坩埚中并在180-230MPa的压力下和900℃-1000℃、例如950℃的温度下以及氩气中热均压6-100小时、例如12小时的时间周期。
图2A示出使用由化学气相沉积所生产的ZnS作为初始材料通过标准热压处理所生产的ZnS陶瓷体的微结构。如图所示,微结构非常粗糙(例如,平均晶粒尺寸为25μm),并且材料的维氏硬度为150kg/mm2。图2B示出根据本发明生产的ZnS陶瓷体的微结构。微结构非常精细(例如,平均晶粒尺寸为3μm),并且材料的维氏硬度为200kg/mm2
示例
在没有进一步细化的情况下,相信本领域一般技术人员根据在先描述可以最大范围地利用本发明。因此,下面优选的具体实施例应仅仅解释为示例性,而无论如何并非限制本发明的剩余部分。
表1和表2示出本发明的ZnS成分的制备示例以及所得材料的性能。
表1:本发明的ZnS陶瓷成分的制备
示例1-6使用半径为25cm的压模,而示例7-8使用半径为127cm的压模。
表2本发明的ZnS陶瓷组分的性能
是II-VI红外的ZnS材料,其由化学气相沉积制成并且由热均压(HIP)处理改性。材料在0.4-12μm范围中呈现透射性。
是DOW生产的ZnS材料,其通过化学气相沉积制成并且由热均压处理改性。材料在0.35-14μm范围中呈现透射性。
1II-VI红外的ZnS通过化学气相沉积(CVD)生产。该材料在8-12μm区域中使用。
图3是示出本发明示例1-7以及FLIR应用所使用的市场上可买到的ZnS陶瓷和多普段应用所使用的市场上可买到的ZnS陶瓷作为1100nm下的消光系数函数的维氏硬度的表格。
图4示出使用Perkin-Elmer Lambda 900光谱仪所测量的示例7在1-14μm的波长范围中的线性(in-line)红外透射率(线B)。使用的试样厚度为6.3mm。图4中线A示出传统市场上可买到的FLIR级ZnS材料的在线红外透射率。这里,在线透射率表示入射光的透射部分的强度与入射光的强度之间的比例。
通过替换一般或具体描述的反应物以及/或者在上面示例中使用的本发明操作环境,上面示例可以重复相似的成就。
基于上述说明书,本领域一般技术人员可以容易确定本发明的必要技术特征,并且在不偏离本发明的精神和范围的情况下,可以对本发明作出不同变化和改变,以适用不同用途和环境。
这里所引用的所有专利申请、专利和出版物的整个公开通过引用而包含于此。

Claims (29)

1.一种烧结的多晶体陶瓷体,包括具有立方结构的多晶性型的硫族化物材料,并且所述硫族化物材料在1100nm的波长下具有小于等于2.75cm-1的消光系数以及大于等于180kg/mm2的维氏硬度。
2.根据权利要求1所述的烧结的多晶体陶瓷体,其中,所述具有立方结构的多晶性型的硫族化物是硫化锌闪锌矿。
3.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在1100nm的波长下具有0.05-2.75cm-1的消光系数。
4.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有小于等于2.5cm-1的消光系数。
5.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有180-265kg/mm2的维氏硬度。
6.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有大于等于200kg/mm2的维氏硬度。
7.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在0.1N下测量的努氏压痕硬度为至少260kg/mm2
8.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在1100nm的波长下具有小于等于2.0cm-1的消光系数以及至少200kg/mm2的维氏硬度。
9.根据权利要求8所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在1100nm的波长下具有小于等于1.0cm-1的消光系数以及至少220kg/mm2的维氏硬度。
10.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在1100nm的波长下具有小于等于1.0cm-1的消光系数以及至少240kg/mm2的维氏硬度。
11.根据权利要求10所述的烧结的多晶体陶瓷体,其中,所述陶瓷体在1100nm的波长下具有0.75cm-1的消光系数以及至少250kg/mm2的维氏硬度。
12.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有小于0.10μm的平均孔半径。
13.根据权利要求12所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有小于0.05μm的平均孔半径。
14.根据权利要求1或2所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有小于8μm的平均晶粒尺寸。
15.根据权利要求14所述的烧结的多晶体陶瓷体,其中,所述陶瓷体具有小于5μm的平均晶粒尺寸。
16.一种用于制备多晶体硫族化物陶瓷材料的方法,包括:
将硫族化物粉末加热到900-1000℃的温度;
在40-60MPa的压力以及900-1000℃的温度下单轴向压制加热的粉末0.16-6小时;以及
在180-250MPa的惰性气体压力和880-1000℃的温度下热均压所得到的压制的硫族化物材料10-100小时。
17.根据权利要求16所述的方法,其中,所述硫族化物粉末是ZnS粉末。
18.根据权利要求16或17所述的方法,其中,以1.5-12K/分钟的速率将所述硫族化物粉末加热到900-1000℃的烧结温度。
19.根据权利要求18所述的方法,其中,所述硫族化物粉末的颗粒尺寸在400nm-10μm的范围内。
20.根据权利要求16或17所述的方法,其中,在烧结之前,使所述硫族化物粉末处于真空状态,以移除捕获气体和/或污染物。
21.根据权利要求20所述的方法,其中,所述真空在10-4-10-2托耳的范围内。
22.根据权利要求16或17所述的方法,其中,在烧结之前,所述硫族化物粉末经过一个或多个温度的燃烧步骤,以消除可能吸附到所述硫族化物颗粒表面的捕获碳氢化合物。
23.根据权利要求22所述的方法,其中,所述一个或多个燃烧步骤在10-4-10-2托耳的真空和50-300℃下进行。
24.一种用于保护红外传感器的红外窗口或拱顶,包括根据权利要求1-15中任一项所述的烧结的多晶体陶瓷体。
25.一种红外成像系统,包括至少一个红外传感器和用于保护所述至少一个红外传感器不受外部环境损伤的红外窗口或拱顶,其中,所述红外窗口或拱顶为根据权利要求24所述的红外窗口或拱顶。
26.一种用于聚焦0.4-14μm波长范围内的光线的红外透镜,包括根据权利要求1-15中任一项所述的烧结的多晶体陶瓷体。
27.一种烧结的多晶陶瓷体,主要由硫化锌闪锌矿构成,其中所述陶瓷体对于从1μm到14μm的波长范围中的所有波长具有的每6.3mm厚度的线性透射率不小于如图4中线B所示的透射率。
28.一种用于制备多晶体硫族化物陶瓷材料的方法,包括:
将硫族化物粉末加热到900-1000℃的温度;
在40-60MPa的压力以及900-1000℃的温度下单轴向压制加热的粉末0.16-6小时;以及
在180-250MPa的惰性气体压力和880-1000℃的温度下热均压所得到的压制的硫族化物材料10-100小时,
由此,所述硫族化物材料为立方结构的多晶性型并且在1100nm处具有小于等于2.75cm-1的消光系数以及大于等于180kg/mm2的维氏硬度。
29.一种用于制备根据权利要求1所述的烧结的多晶体陶瓷体的方法,所述方法包括:
将硫族化物粉末加热到900-1000℃的温度;
在40-60MPa的压力以及900-1000℃的温度下单轴向压制加热的粉末0.16-6小时;以及
在180-250MPa的惰性气体压力和880-1000℃的温度下热均压所得到的压制的硫族化物材料10-100小时。
CN201380020020.9A 2012-04-16 2013-04-15 多晶体硫族化物陶瓷材料 Active CN104507892B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/447,921 US20130271610A1 (en) 2012-04-16 2012-04-16 Polycrystalline chalcogenide ceramic material
US13/447,921 2012-04-16
PCT/US2013/036618 WO2014011295A2 (en) 2012-04-16 2013-04-15 Polycrystalline chalcogenide ceramic material

Publications (2)

Publication Number Publication Date
CN104507892A CN104507892A (zh) 2015-04-08
CN104507892B true CN104507892B (zh) 2017-06-09

Family

ID=49324723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380020020.9A Active CN104507892B (zh) 2012-04-16 2013-04-15 多晶体硫族化物陶瓷材料

Country Status (8)

Country Link
US (3) US20130271610A1 (zh)
EP (1) EP2838866B1 (zh)
JP (1) JP6355622B2 (zh)
KR (1) KR20140148467A (zh)
CN (1) CN104507892B (zh)
CA (1) CA2868294C (zh)
IL (1) IL234895B (zh)
WO (1) WO2014011295A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591736B (zh) * 2015-01-09 2016-09-21 中国科学院上海光学精密机械研究所 透红外ZnS整流罩陶瓷的制造方法
US9825214B1 (en) * 2016-06-22 2017-11-21 Mainstream Engineering Corporation Films and the like produced from particles by processing with electron beams, and a method for production thereof
JP6989102B2 (ja) * 2017-04-05 2022-01-05 日本電気株式会社 硫化亜鉛焼結体および硫化亜鉛焼結体の製造方法
US11014854B2 (en) * 2017-08-07 2021-05-25 Consolidated Nuclear Security, LLC Ceramic radiation detector device and method
WO2021092361A1 (en) 2019-11-08 2021-05-14 Mosaic Microsystems Llc Facilitating formation of a via in a substrate
CN111592227B (zh) * 2020-04-28 2022-05-17 宁波大学 Cs3Sb2Br9钙钛矿纳米晶复合硫系玻璃陶瓷材料及其制备方法
CN112064799A (zh) * 2020-08-20 2020-12-11 上海二十冶建设有限公司 烧结工程配料室快速施工方法
CN114956554B (zh) * 2022-04-21 2024-06-14 宁波大学 一种掺杂晶体来提高硫系玻璃机械强度的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131025A (en) 1959-10-29 1964-04-28 Eastman Kodak Co Zinc sulfide optical element
US3131238A (en) 1959-10-29 1964-04-28 Eastman Kodak Co Process for molding zinc sulfide
US3454685A (en) 1961-08-21 1969-07-08 Eastman Kodak Co Method of forming zinc selenide infrared transmitting optical elements
US3131026A (en) 1961-09-14 1964-04-28 Eastman Kodak Co Purification of zinc sulfide powder
US4944900A (en) * 1983-03-16 1990-07-31 Raytheon Company Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
CA1181557A (en) * 1980-12-29 1985-01-29 Charles B. Willingham Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
US5126081A (en) * 1980-12-29 1992-06-30 Raytheon Company Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
US4366141A (en) 1981-03-27 1982-12-28 Gte Products Corporation Treatment of coarse particle size zinc sulfide to improve visual and infrared transmission on hot-pressed articles
EP0157040A3 (en) * 1983-04-05 1987-11-25 Sumitomo Electric Industries Limited Method of producing transparent polycrystalline zns body
JPS61205659A (ja) * 1985-03-11 1986-09-11 防衛庁技術研究本部長 多結晶硫化亜鉛の製造方法
US5001093A (en) 1987-05-06 1991-03-19 Coors Porcelain Company Transparent polycrystalline body with high ultraviolet transmittance
JPH05310467A (ja) * 1992-05-11 1993-11-22 Dowa Mining Co Ltd ZnS系焼結体の製造方法
US5425983A (en) 1992-08-10 1995-06-20 Santa Barbara Research Center Infrared window protected by multilayer antireflective coating
US5383969A (en) 1993-04-05 1995-01-24 Cvd, Inc. Process and apparatus for supplying zinc vapor continuously to a chemical vapor deposition process from a continuous supply of solid zinc
US5575959A (en) * 1994-04-22 1996-11-19 Hughes Aircraft Company Process for making low cost infrared windows
JP3704739B2 (ja) * 1995-04-03 2005-10-12 住友電気工業株式会社 ZnSを基板とする耐環境性赤外線透過構造体
DE19715806A1 (de) * 1997-04-16 1998-10-22 Leybold Materials Gmbh Verfahren zur Herstellung eines Sputtertargets auf der Basis von Zinksulfid sowie das Sputtertarget selbst
JP4304733B2 (ja) 1998-04-14 2009-07-29 住友電気工業株式会社 多結晶硫化亜鉛光学部品及びその製造方法
JP5257642B2 (ja) 2000-12-04 2013-08-07 住友電気工業株式会社 セラミックス光学部品及びその製造方法
JPWO2005062394A1 (ja) * 2003-12-24 2007-07-19 日本電気株式会社 ボロメータ
US7790137B2 (en) * 2006-08-14 2010-09-07 Toyota Motor Engineering & Manufacturing North America, Inc. Metal telluride nanocrystals and synthesis thereof
JP2008127236A (ja) * 2006-11-20 2008-06-05 Sumitomo Electric Ind Ltd 多結晶ZnS焼結体およびその製造方法
JP2008195593A (ja) * 2007-02-15 2008-08-28 Sumitomo Electric Ind Ltd 硫化亜鉛の焼結体および硫化亜鉛の焼結体の製造方法
US7790072B2 (en) 2007-12-18 2010-09-07 Raytheon Company Treatment method for optically transmissive bodies
US8490299B2 (en) 2008-12-18 2013-07-23 Nike, Inc. Article of footwear having an upper incorporating a knitted component
JP5601442B2 (ja) * 2009-03-31 2014-10-08 セイコーNpc株式会社 赤外線光学系の評価装置
US20110315808A1 (en) 2010-06-23 2011-12-29 Zelinski Brian J Solid solution-based nanocomposite optical ceramic materials
US8803088B1 (en) * 2011-03-02 2014-08-12 Texas Biochemicals, Inc. Polycrystalline sintered nano-gran zinc sulfide ceramics for optical windows

Also Published As

Publication number Publication date
EP2838866B1 (en) 2021-02-17
WO2014011295A2 (en) 2014-01-16
JP6355622B2 (ja) 2018-07-11
WO2014011295A3 (en) 2014-03-20
KR20140148467A (ko) 2014-12-31
WO2014011295A9 (en) 2014-11-20
US20130271610A1 (en) 2013-10-17
US10246377B2 (en) 2019-04-02
US20160083302A1 (en) 2016-03-24
EP2838866A2 (en) 2015-02-25
IL234895B (en) 2018-08-30
CA2868294A1 (en) 2014-01-16
CN104507892A (zh) 2015-04-08
US20190185383A1 (en) 2019-06-20
JP2015520719A (ja) 2015-07-23
US11667579B2 (en) 2023-06-06
CA2868294C (en) 2020-03-24

Similar Documents

Publication Publication Date Title
CN104507892B (zh) 多晶体硫族化物陶瓷材料
Morita et al. Spark‐plasma‐sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal
Rubat du Merac et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl 2 O 4) spinel
Kim et al. Effects of preheating of powder before spark plasma sintering of transparent MgAl2O4 spinel
Ahmadi et al. Mechanical and optical properties of spark plasma sintered transparent Y2O3 ceramics
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
JP4304733B2 (ja) 多結晶硫化亜鉛光学部品及びその製造方法
Razavi et al. Effect of sintering temperature on microstructural and optical properties of transparent yttria ceramics fabricated by spark plasma sintering
US8803088B1 (en) Polycrystalline sintered nano-gran zinc sulfide ceramics for optical windows
US5004712A (en) Method of producing optically transparent yttrium oxide
US20180290896A1 (en) Self-Propagating Low-Temperature Synthesis and pre-treatment of Chalcogenides for Spark Plasma Sintering
US6812441B2 (en) Method and apparatus for the preparation of transparent alumina ceramics by microwave sintering
KR102063778B1 (ko) 적외선 투과용 ZnS 소결체 및 그 제조 방법
KR102300502B1 (ko) 중적외선 윈도우용 다결정 세라믹 소결체 제조방법
JP5295421B1 (ja) 光学素子用無機材料
KR102244157B1 (ko) 열충격 특성이 우수한 투광성 이트리아 제조 방법 및 그에 의해 제조된 투광성 이트리아 소결 부품
JP4539780B2 (ja) 多結晶硫化亜鉛光学部品及びその製造方法
Deulina et al. The Effect of Thermal Annealing on Mechanical and Optical Properties of MgAl2O4 Ceramics Fabricated by Spark Plasma Sintering
Sepulveda et al. Defect free spinel ceramics of high strength and high transparency
US12076886B2 (en) Transparent alumina-based plate and method of making thereof
WO2024077033A1 (en) Transparent ceramic windows for hypersonic application
Brard et al. IR transparent Y2O3-MgO nanocomposite ceramic processed by sol-gel synthesis and two-step SPS sintering
LaReoche et al. An economic comparison of hot pressing vs. pressureless sintering for transparent spinel armor
JP5621828B2 (ja) 光学部品の製造方法
Sivakumar Development and Evaluation of Transparent, Aligned Polycrystalline Alumina as an Infrared Window Candidate for Hypersonic Flight

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant