CN104471726B - 氮化镓到硅的直接晶片粘结 - Google Patents

氮化镓到硅的直接晶片粘结 Download PDF

Info

Publication number
CN104471726B
CN104471726B CN201380029045.5A CN201380029045A CN104471726B CN 104471726 B CN104471726 B CN 104471726B CN 201380029045 A CN201380029045 A CN 201380029045A CN 104471726 B CN104471726 B CN 104471726B
Authority
CN
China
Prior art keywords
ammonia
silicon
gan
bonded
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380029045.5A
Other languages
English (en)
Other versions
CN104471726A (zh
Inventor
A·尤森科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN104471726A publication Critical patent/CN104471726A/zh
Application granted granted Critical
Publication of CN104471726B publication Critical patent/CN104471726B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种用于结合GaN和硅基片的直接晶片粘结方法,其涉及在氨等离子体中预处理各晶片,从而将各接触表面变成亲氨性的。GaN基片和硅基片可各自包括单晶晶片。所得混合半导体结构可用于形成高质量低成本LED。

Description

氮化镓到硅的直接晶片粘结
相关申请交叉参考
本申请根据35U.S.C.§120,要求2012年5月31日提交的美国申请系列号13/484,542的优先权,本文以该申请为基础并将其全文通过引用结合于此。
背景
本发明总体涉及晶片粘结,具体来说,涉及形成基片封装的方法,该基片封装包括粘结到硅支架的氮化镓层。该基片封装可用于制造发光二极管。
预期在不久的将来,发光二极管(LED)将取代白炽灯和荧光灯泡,因为前者效率低下,而后者寿命较短。用于这种LED的工业标准起始材料是单晶氮化镓。为了制造常规LED,在单晶GaN层上外延生长薄膜半导体例如GaInN。
可将自立式GaN基片用于GaN层,但用于GaN生长的现有技术对于使产品LED在成本上具有竞争力而言是相当昂贵的。因此,对于使用GaN的大多数LED,在下面的支架上外延生长GaN层。支架的性能特征包括热导率、电导率和热膨胀系数等。但是,支架的最重要的性能特征可能是它的晶格常数。
为了使得能进行外延生长,支架必须具有和GaN的晶格常数接近匹配的晶格常数。备选的支架材料包括蓝宝石、碳化硅和硅。虽然这些材料各自具有足够接近GaN以使得能外延生长的晶格常数,但晶格不匹配的程度导致在GaN膜中形成限制性能的缺陷。
在上述备选支架材料中,硅是最经济的。但是,硅也具有与GaN最大的晶格常数不匹配。因此,由在Si上生长的GaN膜制造的LED通常质量较低。另一方面,虽然碳化硅使得能形成最高质量的GaN,但SiC是最贵的选择。认为蓝宝石提供了外延GaN成本和质量之间的合理折衷。
提供外延GaN的一种替代方法是和基片分离地形成GaN,并使用层转移工艺来从源基片收获GaN材料的薄膜。这种层转移工艺不要求GaN膜和支架基片之间的晶格常数匹配。实际上,支撑基片无需是晶体。因此,可选择用于支架的材料来满足其它参数例如热导率、电导率和热膨胀系数,而不是集中于接近匹配的晶格常数的要求。
层转移工艺通常涉及沿着由进入源晶片的离子注入限定的割开平面来割开源晶片。通常,将氢用作离子注入物质。层转移工艺的优势之一在于氢注入诱导的脱层可重复很多次,从而可从初始自立式GaN晶片收获很多薄膜。可由这样转移的GaN膜来制造LED。
涉及GaN的常规的层转移工艺在GaN表面包括二氧化硅(SiO2)层,从而所得复合基片在GaN和硅之间包括二氧化硅层。二氧化硅层在GaN的表面上形成,并形成亲水性表面,其可与另一亲水性表面粘结。不限于理论,据信在氮化物化合物(包括氮化镓)中形成亲水性表面是非常困难的。因此,可将硅氧化物沉积在GaN上,并用作中间层以提供适于将GaN连接到硅的表面。
但是,对于LED制造而言,在GaN和支架基片之间的绝缘SiO2层是不利的。中间介电层阻止将支架晶片用作LED的电气连接件。因此,为了将常规的层转移工艺用于提供LED制造所用的GaN,需要使GaN和SiO2去粘结,并必须沉积另一电气导电层。不幸的是,额外的剥离和沉积步骤增加了工艺和所得产品的成本。
鉴于上述,非常需要将GaN或其它氮化物表面直接粘结到硅支架基片的经济的方法。这种直接粘结方法将使得能低成本地制造具有单晶GaN层的复合基片,其适于形成用于普通照明的高效率和低成本LED。
在以下的详细描述中给出了本发明的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所述的本发明而被认识。
应理解,前面的一般性描述和以下的详细描述都提出了本发明的实施方式,目的是提供理解要求保护的本发明的性质和特性的总体评述或框架。包括的附图提供了对本发明的进一步的理解,附图被结合在本说明书中并构成说明书的一部分。附图举例说明了本发明的各种实施方式,并与描述一起用来解释本发明的原理和操作。
概述
一种直接粘结GaN和硅晶片的方法涉及在接触之前使待结合的表面变成亲氨的(ammophilic)。在结合之前,用氨等离子体处理待结合的表面。
用于形成混合半导体结构的方法包括提供待粘结的硅表面和待粘结的氮化物表面,将所述硅表面和氮化物表面暴露于含氨的等离子体,来分别形成氨处理的表面,结合所述氨处理的硅表面和氨处理的氮化物表面以形成中间粘结结构,和对所述中间粘结结构进行退火以形成具有在所述硅表面和氮化物表面之间的粘结界面的粘结的混合半导体结构。所述方法可用来提供用于形成发光二极管的基片。
对待粘结的各表面的等离子体处理可包括将各表面暴露于含氨等离子体以在所述表面上形成氨自由基,以及随后将自由基封端的表面暴露于分子氨以形成包括氨自由基和分子氨的复合氨层。
附图简要说明
图1是氮化镓晶片和硅晶片之间的中间粘结结构的示意图;
图2是层转移工艺的一部分的示意图;
图3显示了根据本发明的一个实施方式的GaN-Si混合结构;以及
图4显示了使用常规层转移工艺制造的GaN-SiO2-Si结构。
详细描述
使用对待粘结的表面进行氨等离子体处理,可直接粘结氮化镓和硅晶片。氨处理通过使表面变得亲氨的,改变了各表面的封端化学。
用于形成混合半导体结构的方法包括将硅表面和氮化物表面各自暴露于含氨等离子体以形成各氨处理的表面,和结合所述氨处理的硅表面和氨处理的氮化物表面以形成中间粘结结构。然后对该中间粘结结构进行退火以形成具有在所述硅表面和氮化物表面之间的粘结界面的粘结的混合半导体结构。在实施方式中,所述粘结的混合半导体结构可包括硅-叠-绝缘体结构。
在实施方式,在两相继的步骤中实施氨处理。在第一步中,将待粘结的表面暴露于活性的含氨等离子体。等离子体暴露在各晶片表面引入酰氨基自由基(例如NH2 -阴离子)。在第二步中,将之前用等离子体处理的表面暴露于分子氨(例如NH3),在该步骤中一或更多单层氨分子吸附到自由基化的表面上。然后,可使处理的晶片表面接触以形成中间粘结结构,其在硅和氮化物之间包括氨自由基和分子的桥。图1示意性地显示了实施中间粘结结构的自由基和分子中间层。
所批露的晶片粘结方法可与层转移工艺联用,例如待粘结的氮化镓表面是从GaN源晶片上割开的。图2示意性地显示的部分的这种层转移工艺。用氢将GaN的单晶晶片120离子注入到所需的深度,以限定要转移的GaN的薄膜122。将注入的晶片120预粘结至支架基片140,例如硅基片。加热预粘结的组件,导致形成富氢平面124,并从GaN晶片120割开限定的GaN薄膜122。然后,可加热具有转移的膜122的支架基片140以结束所述基片和所述转移的膜之间的粘结。GaN薄膜可进行表面抛光,并去除过量的支架基片以形成所需的结构162。可将GaN源晶片120和过量的支架基片140各自回收到工艺中。
在实施方式中,通过加热来完成将氮化镓预粘结到硅支架基片。可将预粘结加热步骤和用来从源晶片割开GaN薄膜的加热一起实施。如本领域普通技术人员所理解,理想地GaN晶片和支架基片之间的预粘结的粘结强度在割开GaN基片之前形成,且这种初始粘结足够牢固,从而能形成自始自终且在割开事件之后仍然粘附到基片的GaN膜。
在退火步骤中,加热中间粘结结构驱散了表面封端物质(NH2 -阴离子和NH3分子),并得到完全粘结的硅-氮化物界面。可使用例如烘箱,在400℃-1200℃的温度下实施中间粘结结构的退火,加热时间可为5-60分钟。
在热处理后的混合结构中,粘结的界面不含酰胺基自由基和氨,且不包括氧和含氧物质。使用所批露的方法制造的氮化镓-硅混合结构的示意图见图3。根据常规层转移工艺制造的比较性氮化镓-硅结构见图4。虽然比较性结构(图4)在氮化镓和硅之间包括氧化物层,但使用本发明的方法形成的氮化镓-硅混合结构不含这种界面氧化物层。
在形成氨处理的表面之前,可分别预清洁待粘结的晶片,以去除污染物,包括表面吸附的物质例如水、羟基,和天然的氧化物薄膜(在硅的情况下)。例如,在水性氟化氢中蚀刻,可用来从硅晶片去除SiO2天然氧化物。
氮化物晶片可包括氮化镓晶片。在下面的实施例中,显示了本发明的各种实施方式,将氮化镓晶片直接粘结到硅晶片。
实施例1
氮化镓(GaN)晶片是自立式的半透明基片,厚度为180微米且直径为2英寸。通过氢化物气相外延法(HVPE)来形成GaN晶片,且将待粘结的GaN表面预抛光到0.2纳米RMS的表面粗糙度。硅晶片是4英寸直径的最佳等级晶片(SEMI标准规格)。
首先,使用常规的RCA清洁来加工两晶片。为了除去天然氧化物,还在稀释的HF浴中淋洗硅晶片。
将清洁的晶片装载进入具有13.56MHz功率来源的反应性离子蚀刻车床(Technics800Micro-RIE)。向蚀刻车床提供氨作为加工气体,且提供氮气作为吹扫气体。
在基础压力为1毫托(mTorr)和等离子体功率为100W时,进行等离子体加工。等离子体加工时氨气体流量为10sccm(标准厘米3/分钟)。等离子体加工时间是1分钟。
晶片台安装了加热/冷却工位(station),用于评估亲氨性。在进行等离子体加工之前,将晶片台上的晶片冷却到-80℃,以防止液体无水氨在晶片表面上沸腾。在氮气流动下实施晶片冷却,以最小化在晶片表面上的水冷凝。
为了评估亲氨性,使各晶片的粘结表面和一滴液体无水氨接触。在等离子体加工之前,硅粘结表面是高度疏氨性的:氨液滴在硅上的润湿角约为120°。在等离子体加工之前,GaN粘结表面是氨中性的(即,既非疏氨性也非亲氨性)氨液滴在GaN表面上的润湿角约为90°。
作为等离子体加工的结果,氨液滴在硅粘结表面和氮化镓粘结表面上的润湿角都约为30°,这表明取得了一定程度的亲氨性。
在等离子体加工结束后,开启腔室,立刻结合经过氨处理的、等离子体活化的两晶片的粘结表面。晶片结合后,观察到粘结波通过半透明的GaN晶片扩展。粘结波的速度小于1厘米/秒钟,这足以形成无空穴的中间粘结结构,且在对中间结构进行退火之后形成无空穴的混合半导体结构。
将中间粘结结构在1000℃下退火30分钟。退火步骤从Si-GaN界面除去氨物质,且形成完全粘结的结构。通过试图在晶片之前插入剃须刀,来测试粘结强度。GaN晶片在可测量到任何程度的脱层之前发生破裂,证明形成了成功的、永久的粘结。
实施例2
还在其它示例实施方式中,以类似于实施例1所用的方式制备了第二硅晶片-氮化镓晶片对,但在等离子体加工进行1分钟之后且在开启腔室和结合晶片之前,向腔室鼓入氨气。
作为等离子体加工和额外的暴露于分子氨的结果,氨液滴在硅粘结表面和氮化镓粘结表面上的润湿角都小于10°,这表明比实施例1的仅用等离子体加工的方法取得了更强程度的亲氨性。
在等离子体加工和氨气加工结束后,开启腔室,立刻结合经过等离子体活化和氨处理的两晶片的粘结表面。粘结波的速度是几厘米/秒,这导致在2秒内形成完全粘结的Si-GaN结构。在对中间结构进行退火之后,晶片之间的强力吸引力可用来形成无空穴的混合半导体结构。更强的吸引力可用来高产率地粘结基本上平坦和弯曲的晶片。将中间粘结结构在1000℃下退火30分钟。
能一致地连接弯曲的晶片和平坦的晶片是重要的,例如在层转移衍生的GaN晶片的情况下,其中高剂量的氢离子注入(例如,在1-3x1017/cm2的量级)可诱导显著的应力和相伴地包覆GaN晶片。
各粘结表面之间足够强的吸引力可克服应力,得到具有无空穴粘结界面的高质量复合结构。这种粘结的混合半导体结构可用于例如制造低成本的高效LED。
如本文中所用,单数形式的“一个”、“一种”和“该”包括复数指代形式,除非文中另有明确说明。因此,例如,提到的一种“金属”包括具有两种或更多种这样的“金属”的例子,除非文中有另外的明确表示。
在本文中,范围可以表述为自“约”某一具体值始和/或至“约”另一具体值止。表述这样的范围时,其例子包括自一个具体值始和/或至另一个具体值止。类似地,当使用先行词“约”表示数值为近似值时,应理解,具体数值构成另一个方面。应当进一步理解,各范围的端点与另一端点相关和无关时,都是有意义的。
除非另有明确说明,否则,不应将本文所述的任何方法解释为必须按照特定的顺序进行其步骤。因此,当方法权利要求实际上没有陈述其步骤应遵循的顺序的时候,或者当权利要求或说明书中没有另外具体说明所述步骤应限于特定顺序的时候,不应推断出任何特定顺序。
还要注意本文关于将本发明的组分“构造成”或“使其适于”是以特定的方式起作用的描述。关于这方面,将这样一个组分“构造成”或“使其适于”体现特定的性质,或者以特定的方式起作用,这样的描述是结构性的描述,而不是对预定应用的描述。更具体来说,本文所述的将部件“构造成”或“使其适于”的方式表示该部件现有的物理条件,因此可以将其看作该部件的结构特征的限定性描述。
对本领域技术人员显而易见的是,可以在不偏离本发明的精神和范围的情况下对本发明作出各种修改和变化。因为本领域技术人员可以结合本发明的精神和实质,对所述的实施方式进行各种改良组合、子项组合和变化,应认为本发明包括所附权利要求书范围内的全部内容及其等同内容。

Claims (12)

1.一种用于形成混合半导体结构的方法,所述方法包括:
提供待粘结的硅表面和待粘结的氮化物表面;
将所述硅表面和氮化物表面暴露于含氨的等离子体,来分别形成氨处理的表面;
结合所述氨处理的硅表面和氨处理的氮化物表面以形成中间粘结结构;和
对所述中间粘结结构进行退火以形成具有在所述硅表面和氮化物表面之间的粘结界面的粘结的混合半导体结构;
其中,所述方法还包括在将所述硅表面和氮化物表面暴露于含氨等离子体之后,使所述硅表面和氮化物表面暴露于分子氨。
2.如权利要求1所述的方法,其特征在于,所述氮化物表面包含氮化镓。
3.如权利要求1所述的方法,其特征在于,所述氨处理的表面包括氨自由基。
4.如权利要求1所述的方法,其特征在于,所述氨处理的表面包括分子氨。
5.如权利要求1所述的方法,其特征在于,所述氨处理的表面包括氨自由基和分子氨。
6.如权利要求1所述的方法,其特征在于,所述氨处理的表面包括与待粘结的表面接触的氨自由基和与所述氨自由基接触的分子氨。
7.如权利要求1所述的方法,其特征在于,实施所述退火来从氨处理的硅表面和氨处理的氮化物表面去除氨自由基和分子氨。
8.如权利要求1所述的方法,其特征在于,所述粘结界面不含氧。
9.如权利要求1所述的方法,其特征在于,所述粘结的混合半导体结构是硅-叠-绝缘体结构。
10.一种中间粘结结构,其包括待粘结的硅表面、待粘结的氮化物表面、与各待粘结的表面接触的氨自由基以及和所述氨自由基接触的分子氨。
11.一种按照权利要求1-9任一项所述方法制得的粘结的混合半导体结构,其包括硅表面和氮化物表面之间的粘结界面,其特征在于,所述粘结界面不含氧。
12.一种包括如权利要求11所述的粘结的混合半导体结构的LED。
CN201380029045.5A 2012-05-31 2013-05-23 氮化镓到硅的直接晶片粘结 Expired - Fee Related CN104471726B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/484,542 2012-05-31
US13/484,542 US8796054B2 (en) 2012-05-31 2012-05-31 Gallium nitride to silicon direct wafer bonding
PCT/US2013/042380 WO2013181053A1 (en) 2012-05-31 2013-05-23 Gallium nitride to silicon direct wafer bonding

Publications (2)

Publication Number Publication Date
CN104471726A CN104471726A (zh) 2015-03-25
CN104471726B true CN104471726B (zh) 2018-01-09

Family

ID=49669153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380029045.5A Expired - Fee Related CN104471726B (zh) 2012-05-31 2013-05-23 氮化镓到硅的直接晶片粘结

Country Status (6)

Country Link
US (1) US8796054B2 (zh)
EP (1) EP2859592B1 (zh)
CN (1) CN104471726B (zh)
IN (1) IN2014DN10143A (zh)
TW (1) TWI597800B (zh)
WO (1) WO2013181053A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9690042B2 (en) 2013-05-23 2017-06-27 Electronics And Telecommunications Research Institute Optical input/output device, optical electronic system including the same, and method of manufacturing the same
JP6176069B2 (ja) * 2013-11-13 2017-08-09 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
CN103887379B (zh) * 2014-03-28 2017-04-19 西安神光皓瑞光电科技有限公司 用湿法腐蚀减少GaN外延缺陷的方法
FR3029352B1 (fr) * 2014-11-27 2017-01-06 Soitec Silicon On Insulator Procede d'assemblage de deux substrats
DE102015103323A1 (de) * 2015-03-06 2016-09-08 Infineon Technologies Austria Ag Verfahren zum Herstellen von Halbleitervorrichtungen durch Bonden einer Halbleiterscheibe auf ein Basissubstrat, zusammengesetzter Wafer und Halbleitervorrichtung
TWI645479B (zh) * 2015-05-13 2018-12-21 財團法人工業技術研究院 貼合結構、其製造方法及晶粒結構

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988109B (zh) * 2005-12-21 2012-03-21 弗赖贝格化合物原料有限公司 生产自支撑iii-n层和自支撑iii-n基底的方法
JP4756418B2 (ja) 2006-02-28 2011-08-24 公立大学法人大阪府立大学 単結晶窒化ガリウム基板の製造方法
JP2008004821A (ja) * 2006-06-23 2008-01-10 Sumco Corp 貼り合わせウェーハの製造方法
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
EP2269226A1 (en) 2008-03-13 2011-01-05 S.O.I.Tec Silicon on Insulator Technologies Substrate having a charged zone in an insulating buried layer
TWI492275B (zh) 2008-04-10 2015-07-11 Shinetsu Chemical Co The method of manufacturing the bonded substrate
US8692260B2 (en) 2008-09-26 2014-04-08 Soitec Method of forming a composite laser substrate
US8551862B2 (en) 2009-01-15 2013-10-08 Shin-Etsu Chemical Co., Ltd. Method of manufacturing laminated wafer by high temperature laminating method
JP2010192872A (ja) * 2009-01-23 2010-09-02 Sumitomo Electric Ind Ltd 半導体基板の製造方法、半導体デバイスの製造方法、半導体基板および半導体デバイス
US8367519B2 (en) * 2009-12-30 2013-02-05 Memc Electronic Materials, Inc. Method for the preparation of a multi-layered crystalline structure
US8330245B2 (en) * 2010-02-25 2012-12-11 Memc Electronic Materials, Inc. Semiconductor wafers with reduced roll-off and bonded and unbonded SOI structures produced from same

Also Published As

Publication number Publication date
US20130320404A1 (en) 2013-12-05
EP2859592A4 (en) 2016-03-02
CN104471726A (zh) 2015-03-25
EP2859592B1 (en) 2018-09-26
IN2014DN10143A (zh) 2015-08-21
US8796054B2 (en) 2014-08-05
WO2013181053A1 (en) 2013-12-05
TW201405702A (zh) 2014-02-01
TWI597800B (zh) 2017-09-01
EP2859592A1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
CN104471726B (zh) 氮化镓到硅的直接晶片粘结
US6908828B2 (en) Support-integrated donor wafers for repeated thin donor layer separation
JP6650463B2 (ja) 電荷トラップ層を備えた高抵抗率の半導体・オン・インシュレーターウェハーの製造方法
CN1076862C (zh) 绝缘体上的硅(soi)衬底的制造工艺
US6312797B1 (en) Method for manufacturing bonded wafer and bonded wafer
US7790565B2 (en) Semiconductor on glass insulator made using improved thinning process
US20240022229A1 (en) Composite substrate
US11373863B2 (en) Method of manufacturing a silicon carbide device and wafer composite including laser modified zones in a handle substrate
CN1473361A (zh) 制造含有粘接于-目标基片上的-薄层的-叠置结构的方法
JP2008303137A (ja) エピタキシー用の複合構造の製造方法及び複合構造を含む多層構造
CN108140540A (zh) SiC复合基板的制造方法和半导体基板的制造方法
US9355852B2 (en) Method for manufacturing semiconductor device
KR20160041840A (ko) 단결정 재료 사용의 개선된 효율을 갖는 유사 기판
US20080057678A1 (en) Semiconductor on glass insulator made using improved hydrogen reduction process
CN103828021A (zh) 制造复合晶片的方法
KR20220159960A (ko) SiC로 이루어진 캐리어 기판 상에 단결정 SiC로 이루어진 박층을 포함하는 복합 구조체를 제조하기 위한 방법
US10910258B2 (en) Engineered substrate structure and method of manufacture
US8853054B2 (en) Method of manufacturing silicon-on-insulator wafers
US6794227B2 (en) Method of producing an SOI wafer
JP2021518324A (ja) AlN材料の単結晶膜を生成するための方法、及びAlN材料の単結晶膜をエピタキシャル成長させるための基板
JP2015126052A (ja) 複合基板の製造方法
JP4690734B2 (ja) 単結晶SiC基板の製造方法
BONDING 120 _+..... _ _ _ _
JP2608443B2 (ja) 半導体ウエハの製造方法
KR20140069633A (ko) 반도체 소자용 박막 접합 기판 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180109

CF01 Termination of patent right due to non-payment of annual fee