CN104445341A - 一种纯yag相的钇铝石榴石纳米粉体的制备方法 - Google Patents

一种纯yag相的钇铝石榴石纳米粉体的制备方法 Download PDF

Info

Publication number
CN104445341A
CN104445341A CN201410678115.6A CN201410678115A CN104445341A CN 104445341 A CN104445341 A CN 104445341A CN 201410678115 A CN201410678115 A CN 201410678115A CN 104445341 A CN104445341 A CN 104445341A
Authority
CN
China
Prior art keywords
preparation
powder
aluminum garnet
yttrium aluminum
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410678115.6A
Other languages
English (en)
Other versions
CN104445341B (zh
Inventor
吴起白
张海燕
冯寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201410678115.6A priority Critical patent/CN104445341B/zh
Publication of CN104445341A publication Critical patent/CN104445341A/zh
Application granted granted Critical
Publication of CN104445341B publication Critical patent/CN104445341B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种纯YAG相的钇铝石榴石纳米粉体的制备方法,该方法通过略微增加反应溶液中铝离子的浓度,采用化学共沉淀法制备粉体,方法步骤依次为:配制硝酸铝和硝酸钇混合溶液;将上述混合溶液缓慢滴加到碳酸氢铵溶液中;搅拌、陈化及抽滤;干燥、研磨及煅烧;获得纯YAG相的钇铝石榴石纳米粉体,不含有其他中间相;所得粉体分散性较好,形状为棒状,平均颗粒尺寸约为150nm;本发明所得的粉体用于制备YAG透明激光陶瓷,还用于制备YAG荧光粉。

Description

一种纯YAG相的钇铝石榴石纳米粉体的制备方法
技术领域
本发明涉及一种纯YAG相的钇铝石榴石纳米粉体的制备方法。
背景技术
固体激光器在先进制造业、信息、能源、国防、医疗等领域均具有重大的应用价值,钇铝石榴石(YAG)单晶是目前运用最广泛,性能最优良的固体激光器工作基质,但具有生长周期较长,掺杂浓度较低,晶体尺寸小的局限。自从1995年日本科学家A.Ikesue成功制备出第一块有激光输出的Nd:YAG透明陶瓷,透明陶瓷研究受到了广泛重视。与单晶材料相比,透明激光陶瓷可实现大尺寸,大比例的掺杂,成本也相对较低。对制备低光学损耗的透明陶瓷而言,性能优良的纳米粉体是前提和基础。目前,制备YAG纳米粉体的方法主要有固相法、化学共沉淀法、均相沉淀法、溶胶-凝胶法等,其中化学共沉淀法是一种操作简单、成本低廉的粉体制备方法。
化学共沉淀法通常以硝酸铝和硝酸钇为原料,按摩尔比n(Y):n(Al)=3:5称取一定质量的硝酸铝和硝酸钇配制成混合溶液,作为反应溶液;碳酸氢铵为沉淀剂,利用化学沉淀反应制备YAG纳米粉体。但由于在多组分体系中溶度积,沉淀速率的差别,难以形成确定精确化学计量比和组分完全均一的前驱粉体,煅烧前驱体后常有YAP、YAM等中间相出现,而中间相会对后续的陶瓷烧结产生不利影响。本发明提出了一种采用化学共沉淀法制备纯YAG相的钇铝石榴石纳米粉体的方法,通过调整反应溶液中铝离子浓度使沉淀形成的前驱物经煅烧后能够形成不含杂相的纯立方相YAG纳米粉体。
发明内容
本发明的目的在于提供一种采用化学共沉淀法制备不含有其它杂相的纯YAG相的钇铝石榴石纳米粉体的方法,此方法的关键在于略微增加反应溶液中铝离子的浓度,避免因铝离子的流失而产生中间相。
实现本发明目的的具体技术步骤为:
本发明提供的一种纯YAG相的钇铝石榴石纳米粉体的制备方法,该方法通过略微增加反应溶液中铝离子的浓度,采用化学共沉淀法制备粉体,方法步骤依次为:
(1)配制硝酸铝和硝酸钇混合溶液;
(2)将上述混合溶液缓慢滴加到碳酸氢铵溶液中;
(3)搅拌、陈化及抽滤;
(4)干燥、研磨及煅烧;获得纯YAG相的钇铝石榴石纳米粉体。
所述步骤(1)中,以纯度为99.99%的Al(NO3)3·9H2O和纯度为99.99%的Y(NO3)3·6H2O为原料,以离子水和无水乙醇为溶剂,去离子水与无水乙醇的体积比为2:1, 配制硝酸铝和硝酸钇混合溶液,其中Y3+:Al3+摩尔比为9:16。
所述步骤(2)中,利用去离子水配置1.2mol/L的碳酸氢铵溶液, 将步骤(1)中配制的硝酸铝和硝酸钇混合溶液以2mL/min的速率滴加到碳酸氢铵溶液中,同时搅拌溶液。
所述步骤(3)中,滴定完毕后继续搅拌1~2h,使共沉淀反应进行完全;然后将反应液放置陈化48h;再采用抽滤的方法,用去离子水和无水乙醇反复洗涤浆料各3次,得到滤饼。
所述步骤(4)中,将滤饼放在60~120℃干燥箱内干燥3~6h;把干燥后的样品研磨成粉末状,放入高温炉中1200℃煅烧3~5h,获得纯YAG相的钇铝石榴石纳米粉体。
本发明的得益效果是:
通过略微增加反应溶液中铝离子的浓度,即Y3+:Al3+摩尔比为9:16,而非常规的3:5, 沉淀反应形成的前驱体经过煅烧后可形成不含杂相的纯立方相YAG纳米粉体,过多或过少都会产生杂相。所得粉体分散性较好,形状为棒状,平均颗粒尺寸约为150nm。本发明所得的粉体可用于制备YAG透明激光陶瓷,还可以用于制备YAG荧光粉。
附图说明    
图 1 本发明所制备的纯YAG相的钇铝石榴石纳米粉体的XRD图。在图1中,可见所得粉体的XRD结果为完全的YAG相,没有其他中间相存在。
图 2 本发明所制备的纯YAG相的钇铝石榴石纳米粉体的表面形貌图(SEM)。  可见粉体颗粒平均尺寸约在150nm左右。
具体实施方式
1. 配制硝酸铝和硝酸钇混合溶液,其中Y3+:Al3+摩尔比为9:16;
以Al(NO3)3·9H2O(纯度为99.99%)和Y(NO3)3·6H2O(纯度为99.99%)为原料,以去离子水和无水乙醇(其体积比2:1)为溶剂, 配制Al(NO3)3·9H2O和Y(NO3)3·6H2O的混合溶液100mL,其中Y3+浓度为0.09mol/L,Al3+ 浓度为0.16mol/L,即Y3+:Al3+摩尔比为9:16。
2. 将混合溶液缓慢滴加到碳酸氢铵溶液中;
利用去离子水配制1.2mol/L的NH4HCO3溶液100mL, 将上述步骤1中配制的硝酸铝和硝酸钇混合溶液以2mL/min的速率滴加到碳酸氢铵溶液中,同时搅拌溶液。
3. 搅拌、陈化及抽滤
滴定完毕后继续搅拌1~2h,使共沉淀反应进行完全。然后将反应液放置陈化48h。再采用抽滤的方法,用去离子水和无水乙醇反复洗涤浆料各3次,得到滤饼。
4. 干燥、研磨及煅烧
将滤饼放在120℃干燥箱内干燥6h。把干燥后的样品研磨成粉末状,放入高温炉中1200℃煅烧3h,获得YAG粉体,XRD图(图1)证实为纯YAG相的钇铝石榴石纳米粉体。

Claims (5)

1.一种纯YAG相的钇铝石榴石纳米粉体的制备方法,其特征在于:采用化学共沉淀法制备粉体,其制备方法步骤如下:
(1)配制硝酸铝和硝酸钇混合溶液;
(2)将上述混合溶液缓慢滴加到碳酸氢铵溶液中;
(3)搅拌、陈化及抽滤;
(4)干燥、研磨及煅烧;获得纯YAG相的钇铝石榴石纳米粉体。
2.如权利要求1中所述的制备方法,其特征在于:所述步骤(1)中,以纯度为99.99%的Al(NO3)3·9H2O和纯度为99.99%的Y(NO3)3·6H2O为原料,以离子水和无水乙醇为溶剂,去离子水与无水乙醇的体积比为2:1, 配制硝酸铝和硝酸钇混合溶液,其中Y3+:Al3+摩尔比为9:16。
3.如权利要求1中所述的制备方法,其特征在于:所述步骤(2)中,利用去离子水配置1.2mol/L的碳酸氢铵溶液, 将步骤(1)中配制的硝酸铝和硝酸钇混合溶液以2mL/min的速率滴加到碳酸氢铵溶液中,同时搅拌溶液。
4.如权利要求1中所述的制备方法,其特征在于:所述步骤(3)中,滴定完毕后继续搅拌1~2h,使共沉淀反应进行完全;然后将反应液放置陈化48h;再采用抽滤的方法,用去离子水和无水乙醇反复洗涤浆料各3次,得到滤饼。
5.如权利要求1中所述的制备方法,其特征在于:所述步骤(4)中,将滤饼放在60~120℃干燥箱内干燥3~6h;把干燥后的样品研磨成粉末状,放入高温炉中1200℃煅烧3~5h,获得纯YAG相的钇铝石榴石纳米粉体。
CN201410678115.6A 2014-11-24 2014-11-24 一种纯yag相的钇铝石榴石纳米粉体的制备方法 Expired - Fee Related CN104445341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410678115.6A CN104445341B (zh) 2014-11-24 2014-11-24 一种纯yag相的钇铝石榴石纳米粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410678115.6A CN104445341B (zh) 2014-11-24 2014-11-24 一种纯yag相的钇铝石榴石纳米粉体的制备方法

Publications (2)

Publication Number Publication Date
CN104445341A true CN104445341A (zh) 2015-03-25
CN104445341B CN104445341B (zh) 2016-09-14

Family

ID=52892203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410678115.6A Expired - Fee Related CN104445341B (zh) 2014-11-24 2014-11-24 一种纯yag相的钇铝石榴石纳米粉体的制备方法

Country Status (1)

Country Link
CN (1) CN104445341B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176532A (zh) * 2015-10-13 2015-12-23 南京工业大学 一种yag荧光粉的可控制备方法
CN110002863A (zh) * 2019-04-30 2019-07-12 江苏师范大学 一种钇铝石榴石多孔陶瓷的制备方法
CN113264777A (zh) * 2021-04-26 2021-08-17 天津大学 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741733C1 (ru) * 2020-07-29 2021-01-28 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения нанопорошка иттрий-алюминиевого граната

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1907860A (zh) * 2006-08-16 2007-02-07 四川大学 制备钇铝石榴石纳米粉体的醇-水复合溶剂共沉淀法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1907860A (zh) * 2006-08-16 2007-02-07 四川大学 制备钇铝石榴石纳米粉体的醇-水复合溶剂共沉淀法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176532A (zh) * 2015-10-13 2015-12-23 南京工业大学 一种yag荧光粉的可控制备方法
CN110002863A (zh) * 2019-04-30 2019-07-12 江苏师范大学 一种钇铝石榴石多孔陶瓷的制备方法
CN110002863B (zh) * 2019-04-30 2021-10-15 江苏师范大学 一种钇铝石榴石多孔陶瓷的制备方法
CN113264777A (zh) * 2021-04-26 2021-08-17 天津大学 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法
CN113264777B (zh) * 2021-04-26 2022-09-27 天津大学 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法

Also Published As

Publication number Publication date
CN104445341B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
CN104557041B (zh) 一种氧化钇基透明陶瓷的制备方法
RU2503754C1 (ru) Способ получения алюмоиттриевого граната, легированного редкоземельными элементами
CN100562496C (zh) 高松装密度、低比表面积稀土氧化物粉体及其制备方法
CN104445341A (zh) 一种纯yag相的钇铝石榴石纳米粉体的制备方法
CN102580721A (zh) 微波水热制备TiO2/BiVO4复合光催化剂的方法
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
CN103539195A (zh) 一种纳米氧化钇粉体的制备方法
CN104150539B (zh) 一种纳米铁酸钇粉体的制备方法
CN104129810A (zh) 纯单斜晶相的刺球状碳酸氧镧(La2O2CO3)三维多级结构的制备
CN104528799A (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN103755345A (zh) 一种小颗粒钇铈氧化物固溶体的制备方法
CN108358635B (zh) 一种磁光氧化钬透明陶瓷的制备方法
CN101831710A (zh) 一种钙钛矿结构钛酸铅单晶纳米枝杈晶的制备方法
CN104893724A (zh) 一种新型石榴石基高效黄色荧光粉
CN107903072B (zh) 两步共沉淀法制备铌酸锶钡纳米粉体的方法
CN103614139B (zh) 采用反向共沉淀制备Gd2Ti2O7:Ce纳米发光粉体的方法
CN105669197A (zh) 改进溶胶-凝胶法制备铌酸锶钡纳米粉体的方法
CN104692431B (zh) 一种亚微米级晶体结构与粒径可控的球形α-Al2O3/t-ZrO2复相粉体的制备方法
CN102730740B (zh) 一种制备立方晶系氧化铈纳米晶的方法
Ji et al. Thermal decomposition and evolved gas analysis of neodymium-doped yttrium aluminum garnet precursor prepared by co-precipitation
CN104326501A (zh) 一种钇铝石榴石纳米粉体的合成方法
CN111253152B (zh) 一种快衰减高光效闪烁材料及其制备方法
CN103771482A (zh) 一种高纯钇铝石榴石纳米粉体的制备方法
CN101597164A (zh) 一种双掺杂的钇铝石榴石透明陶瓷粉体的制备方法
CN104710168A (zh) 一种镝掺杂六方铝酸钇陶瓷粉体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914