CN113264777A - 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法 - Google Patents

一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法 Download PDF

Info

Publication number
CN113264777A
CN113264777A CN202110455086.7A CN202110455086A CN113264777A CN 113264777 A CN113264777 A CN 113264777A CN 202110455086 A CN202110455086 A CN 202110455086A CN 113264777 A CN113264777 A CN 113264777A
Authority
CN
China
Prior art keywords
aluminum nitride
complex phase
phase ceramic
yttrium aluminate
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110455086.7A
Other languages
English (en)
Other versions
CN113264777B (zh
Inventor
蔡舒
王重言
吕绪明
左佑
凌磊
田梦
刘鹏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110455086.7A priority Critical patent/CN113264777B/zh
Publication of CN113264777A publication Critical patent/CN113264777A/zh
Application granted granted Critical
Publication of CN113264777B publication Critical patent/CN113264777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种具有高温抗热震性的氮化铝‑铝酸钇复相陶瓷及制备方法;称取AlN为82~89%、YAlO3为3~10%和MO为3~8%,并使用乙醇作为溶剂球磨混料3~5h,然后将球磨后的浆料在60~90℃烘箱中烘干6~12h浆料烘干;研磨,过100目筛;将过筛后的粉料加入石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;将筛下物放入成型磨具进行干压成型;取干压成型后的坯体,放入等静压机中,进行等静压;将等静压后的坯体放入气氛烧结炉中烧结,制得氮化铝‑铝酸钇复相陶瓷。将制备的复相陶瓷制成坩埚材料,在1000~1600℃循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下要求。

Description

一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备 方法
技术领域
本发明涉及一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法,属无机非金属材料技术领域。该氮化铝-铝酸钇复相陶瓷具有高的力学性能和高温抗热震性等优异性能。
背景技术
具有特殊使用性和功能性的金属及高温合金成为了高端制造中的关键材料,被广泛地应用于航空航天、船舶工程、石油化工、电子电气和生物医疗等领域。熔炼用坩埚会直接影响熔炼金属及高温合金的纯度,进而影响金属和高温合金材料的性能,因此熔炼用坩埚的选材至关重要。在高温使用过程中,为了坩埚材料不与熔炼金属/合金发生反应,用于熔炼金属/合金的坩埚材料应具备优良的热化学稳定性和抗侵蚀性;与此同时,坩埚材料应兼顾优良的高温力学性能和抗热震性能,保证熔炼用坩埚在高温热循环、强辐射等苛刻条件下必要的服役寿命。
熔炼很多金属/合金并不需要特殊材料的坩埚,常用金属/合金的熔炼坩埚材料为石墨,而对于一些特殊的金属/合金,如金属铀及其合金,尤其是采用电子束熔炼金属铀及其合金,就需要坩埚材料具有良好的高温化学稳定性、耐高温和抗热震性能等。由于石墨坩埚具有耐高温、抗热震性能好,不易与熔融金属和熔渣发生浸润的特性而被广泛应用。中国专利CN103787694B公开了一种原位反应法制备石墨坩埚表面SiC涂层的方法,该发明将制备的带有SiC涂层的石墨坩埚与无涂层的石墨坩埚在管式炉中升温至700℃并保温2h,取出冷却,冷却后继续升温,共循环6次,结果表明带有SiC涂层的石墨坩埚抗循环热冲击性能有所提高。石墨坩埚虽然被广泛应用,但高温时石墨本身较高的蒸气压导致石墨活性较高,易与诸多元素反应形成稳定碳化物,如900℃时与B作用生成B4C,在1160℃与U反应生成UC,在1600℃时和Nb反应生成Nb2C,进而影响熔炼材料的纯度和性能。因此,需要开发可以取代石墨的坩埚材料。Y2O3由于其良好的热稳定性、耐腐蚀和耐高温等特性备受研究者的关注。中国专利CN 105110793A公开了一种具有高抗热震性的氧化钇陶瓷的制备方法。这种发明以质量百分比为Y2O385~90%,SiO27~12%,添加剂为CaO3~8%,在1700~1750℃烧成,制备的坩埚材料致密度提升约4.96%,抗弯强度为157.5MPa,在室温~1200±10℃下测试其抗热震性能,可平均循环5次。研究表明,由于Y2O3位错势垒高,材料的韧性较差,使其不能经受大的热冲击和机械冲击,用其制备的坩埚在经历反复热震和局部受热时极易引起破坏,因此难以在工业上广泛使用。由于无机材料拥有的高熔点,高温稳定性好等优异特性,所以在熔炼金属/合金坩埚领域得到了研究和发展。例如,Pirowski(Pirowski Z.Archives ofFoundry Engineering,2014,14(4):83-90.)等利用Al2O3坩埚熔炼H282镍基高温合金,结果表明Al2O3坩埚与合金界面反应层明显并存在大量元素的富集。中国专利CN 104860686A公开了一种利用注浆成型制备氧化镁稳定氧化锆坩埚的方法。该发明通过加入氧化镁稳定氧化锆,从而提高坩埚的热稳定性和耐侵蚀性,提高金属及合金的熔炼纯度。但由于ZrO2具有多晶型的相结构,在转变过程中的体积变化会导致开裂,降低其使用寿命。目前,大多数的热震试验是在水冷或风冷条件下,于1100℃冷却至室温,而未见有关高温阶段的热震性能的研究或报道,如1000~1600℃循环热震。现下所使用或研制的坩埚材料,不能满足特定高温条件的要求,因此开发新的坩埚材料成为研究热点。
发明内容
本发明目的在于提供一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法,这种复相陶瓷不仅具有较好的力学性能而且具有优异的高温抗热震性。
氮化铝(AlN)具有高导热系数、低热膨胀系数、低介电常数和高电阻等优良性能,在耐火材料、高温结构材料和电子工业中得到了广泛的应用。AlN陶瓷具有优异的高温稳定性和力学性能,在高温下不被Al、Ca等金属润湿。这些特性使它适合用作熔炼高纯度金属的坩埚材料。特别是,使用电子束熔炼金属,要求坩埚材料具有优良的抗热震性能。而且在高温下,氮化铝陶瓷对金属及合金有良好的化学稳定性,几乎不与其发生化学反应。但是,氮化铝属于共价化合物,自扩散系数很低,难以实现致密化烧结。通常,选择添加助烧剂(例如,Al2O3、Y2O3、CaF2、CaO和MgO)来降低烧结温度以制备致密的高导热氮化铝陶瓷。同时,六方相铝酸钇(YAlO3)具有高熔点,低膨胀系数和良好的耐高温性能。由于氮化铝与铝酸钇相近的热膨胀系数能减少热应力的产生,延长坩埚的服役寿命,通过氮化铝和铝酸钇的复合制备复相陶瓷可以有效提高材料的高温抗热震性能和具有较优异的力学性能。
本发明通过控制氮化铝-铝酸钇的配比以及助烧剂的添加量,控制氮化铝-铝酸钇陶瓷的相组成,提高材料的力学性能(抗弯强度和断裂韧性),降低热膨胀系数,使相变体积效应和热膨胀体积效应相匹配。最终使氮化铝-铝酸钇复相陶瓷能够在1000~1600℃多次循环热震中长期使用。
为实现上述目的可以通过以下技术方案来实现:
一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷,其组成为:AlN-YAlO3-MO;M为Y、Al的一种或多种复合;质量百分含量为:
AlN:82~89%;
YAlO3:3~10%;
MO:3~8%。
一种铝酸钇粉末的制备方法,包括如下步骤:
1)将Al(NO3)3·9H2O和Y(NO3)3·6H2O溶于水制备硝酸盐混合溶液;
2)将NH4HCO3溶于水,加入分散剂聚乙二醇,制得碳酸氢铵溶液;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀;将沉淀陈化,水洗、醇洗、干燥,于高温炉中烧结,合成YAlO3粉体。
所述的方法优选条件如下:
作为优选,所述步骤1)中Al(NO3)3·9H2O的浓度为0.1~0.2M,Y(NO3)3·6H2O的浓度为0.1~0.2M;
作为优选,所述步骤2)中NH4HCO3的浓度为1.0~2.0M,聚乙二醇(400:6000=3:1);
作为优选,所述步骤3)中的烧结温度为1100~1200℃保温2h。
本发明制备方法制备的铝酸钇粉末应用在氮化铝-铝酸钇复相陶瓷中。
本发明的具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法,步骤如下:
1)称取AlN为82~89%、YAlO3为3~10%和MO为3~8%,并使用乙醇作为溶剂球磨混料3~5h,然后将球磨后的浆料在60~90℃烘箱中烘干6~12h浆料烘干;研磨,过100目筛;将过筛后的粉料加入5~10%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具进行干压成型;
3)取干压成型后的坯体,放入等静压机中,进行等静压;
4)将等静压后的坯体放入气氛烧结炉中烧结,制得氮化铝-铝酸钇复相陶瓷。
所述的方法优选条件如下:
作为优选,所述步骤2)中的干压成型为50~80MPa;
作为优选,所述步骤3)中的等静压成型为180~200MPa;
作为优选,所述步骤4)中的烧结温度为1650~1700℃保温2~3h。
所述MO为Y2O3、Al2O3中的一种或多种复合。
所述Y2O3,A12O3均为分析纯氧化物原料。
本发明制备的氮化铝-铝酸钇复相陶瓷热膨胀系数(0~1350℃)为5.24~6.25×10-6K-1,相对密度达到90.52~99.26%,抗弯强度为289~389MPa,断裂韧性为3.21~3.84MPa·m1/2;在1000~1600℃下,经高温循环热震10~50次,随着热震次数的增加,复相陶瓷的力学性能有所提高,其抗弯强度为241~485MPa,断裂韧性为3.21~5.70MPa·m1/2。将制备的复相陶瓷制成坩埚材料,在高温区(1000~1600℃)循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下的要求。
与现有制备技术相比,本发明的优点在于:
(1)本发明制备的氮化铝-铝酸钇复相陶瓷,在高温(1000-1600℃)下具备优异的抗热震性,经过30次热循环后无开裂,其抗弯强度不低于485MPa,进而保证材料的长期可靠性。
(2)本发明制备的氮化铝-铝酸钇复相陶瓷经热震后具有良好的力学性能,抗弯强度和断裂韧性提升31%和48%。
附图说明
图1实施例2制备的铝酸钇粉体的XRD图;
图2实施例2制备的铝酸钇粉体的SEM图;
图3实施例2制备的氮化铝-铝酸钇复相陶瓷的SEM图;
图4实施例2制备的氮化铝-铝酸钇复相陶瓷热震前后的XRD图;
图5实施例2制备的氮化铝-铝酸钇复相陶瓷热震后横断面的SEM图;
图6实施例2制备的氮化铝-铝酸钇复相陶瓷在不同热震次数下的力学性能图。
具体实施方案
实施例1:AlN-3YAlO3-Y2O3复相陶瓷
铝酸钇粉末的制备:
1)将0.01mol Al(NO3)3·9H2O和0.01mol Y(NO3)3·6H2O溶于100ml水制备硝酸盐混合溶液,其中硝酸盐溶液浓度为0.1M;
2)将0.06mol NH4HCO3溶于60ml水,加入分散剂聚乙二醇(400:6000=3:1),制得碳酸氢铵溶液,其中碳酸氢铵溶液浓度为1.0M;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀。将沉淀陈化,水洗、醇洗、干燥,于高温炉中在1100℃保温2h,合成YAlO3粉体。
氮化铝-铝酸钇复相陶瓷的制备:
1)称取AlN为89wt%,YAlO3为3wt%,Y2O3为8wt%,使用乙醇作为溶剂球磨混料3h,然后将球磨后的浆料在60℃的烘箱中烘干12h,确保浆料烘干。研磨,过100目筛;将过筛后的粉料加入5%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具在50MPa下进行干压成型;
3)取干压成型后的坯体,放入等静压机中,在180MPa下进行等静压;
4)将等静压后的坯体放入气氛烧结炉中在1650℃下保温2h,制得氮化铝-铝酸钇复相陶瓷。
本发明制备的氮化铝-铝酸钇复相陶瓷,以多边形的氮化铝大晶粒为主,在晶界及晶粒表面分散有铝酸钇小晶粒,结构致密。复相陶瓷的热膨胀系数(0~1350℃)为5.8×10- 6K-1,相对密度达到98.78%,抗弯强度为341±7MPa,断裂韧性为3.62±0.1MPa·m1/2;氮化铝-铝酸钇复相陶瓷在1000~1600℃下经历不同热震次数(10~50次),随着热震次数的增加,复相陶瓷的力学性能先下降后上升的趋势。当热震次数为30次,力学性能达到最大值,其抗弯强度为456±17MPa,断裂韧性为5.33±0.2MPa·m1/2,其抗弯强度和断裂韧性分别提高34%和47%。将制备的复相陶瓷制成坩埚材料,高温区(1000~1600℃)循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下的要求。
实施例2:AlN-5YAlO3-Y2O3-Al2O3复相陶瓷
铝酸钇粉末的制备:
1)将0.02mol Al(NO3)3·9H2O和0.02mol Y(NO3)3·6H2O溶于100ml水制备硝酸盐混合溶液,其中硝酸盐溶液浓度为0.2M;
2)将0.12mol NH4HCO3溶于60ml水,加入分散剂聚乙二醇(400:6000=3:1),制得碳酸氢铵溶液,其中碳酸氢铵溶液浓度为2.0M;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀。将沉淀陈化,水洗、醇洗、干燥,于高温炉中在1200℃保温2h,合成YAlO3粉体。其物相组成如图1所示,其微观结构形貌如图2所示。
氮化铝-铝酸钇复相陶瓷的制备:
1)称取AlN为87wt%,YAlO3为5wt%,Y2O3为5wt%和Al2O3为3wt%,使用乙醇作为溶剂球磨混料4h,然后将球磨后的浆料在90℃的烘箱中烘干6h,确保浆料烘干。研磨,过100目筛;将过筛后的粉料加入5%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具在50MPa下进行干压成型;
3)取干压成型后的坯体,放入等静压机中,在200MPa下进行等静压;
4)将等静压后的坯体放入气氛烧结炉中1700℃保温2h,制得氮化铝-铝酸钇复相陶瓷。
本发明氮化铝-铝酸钇复相陶瓷SEM图如图3所示,由图可知,复相陶瓷以多边形的氮化铝大晶粒为主,在晶界处分散着铝酸钇小晶粒,结构致密。复相陶瓷的热膨胀系数(0~1350℃)为5.7×10-6K-1,相对密度达到98.87%,抗弯强度为369±31MPa,断裂韧性为3.84±0.2MPa·m1/2;对所制备的氮化铝-铝酸钇复相陶瓷在双温区热震试验炉中进行高温(1000~1600℃)抗热震性实验,循环热震10~50次,并在各温区保温5~10min,对试样热震前后进行XRD分析如图4所示,由图可知复相陶瓷材料的主晶相为AlN,次晶相为YAlO3,热震10次和30次后试样的XRD与未热震相似,YAlO3略有增加,且背底峰变宽,表明热震过程中可能有无定型相析出。热震后试样的横断面SEM图如图5所示,由图可知复相陶瓷材料结构致密,以多边形AlN大晶粒为主,在晶界及晶粒表面处存在YAlO3小晶粒,高温循环热震并未使复相陶瓷材料的晶相结构发生大的改变,出现少量气孔。同时横断面以沿晶断裂为主,穿晶断裂为辅,这也大大提高了裂纹扩展路径,在裂纹扩展过程中热应力得到了充分释放,有效的提高了陶瓷材料的力学性能及抗热震性能。氮化铝-铝酸钇复相陶瓷在1000~1600℃下经历不同热震次数的力学性能如图6所示,随着热震次数的增加,复相陶瓷的力学性能有所提高。当热震次数为30次,力学性能达到最大值,其抗弯强度为485±21MPa,断裂韧性为5.70±0.4MPa·m1/2,其抗弯强度和断裂韧性提高约为31%和48%。将制备的复相陶瓷制成坩埚材料,高温区(1000~1600℃)循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下的要求。
实施例3:AlN-7YAlO3-Y2O3-Al2O3复相陶瓷。
铝酸钇粉末的制备:
1)将0.015mol Al(NO3)3·9H2O和0.015mol Y(NO3)3·6H2O溶于100ml水制备硝酸盐混合溶液,其中硝酸盐溶液浓度为0.15M;
2)将0.09molNH4HCO3溶于60ml水,加入分散剂聚乙二醇(400:6000=3:1),制得碳酸氢铵溶液,其中碳酸氢铵溶液浓度为1.5M;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀。将沉淀陈化,水洗、醇洗、干燥,于高温炉中在1150℃保温2h,合成YAlO3粉体。
氮化铝-铝酸钇复相陶瓷的制备:
1)称取AlN为85wt%,YAlO3为7wt%,Y2O3为3wt%和Al2O3为5wt%,使用乙醇作为溶剂球磨混料5h,然后将球磨后的浆料在75℃的烘箱中烘干12h,确保浆料烘干。研磨,过100目筛;将过筛后的粉料加入7%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具在65MPa下进行干压成型;
3)取干压成型后的坯体,放入等静压机中,在190MPa下进行等静压;
4)将等静压后的坯体放入气氛烧结炉中在1675℃保温2.5h,制得氮化铝-铝酸钇复相陶瓷。
本发明制备的氮化铝-铝酸钇复相陶瓷的热膨胀系数(0~1350℃)5.9×10-6K-1,相对密度达到98.14%,抗弯强度为303±9MPa,断裂韧性为3.42±0.3MPa·m1/2;在1000~1600℃下经历不同热震次数的氮化铝-铝酸钇复相陶瓷,随着热震次数的增加,复相陶瓷的抗弯强度呈现持续上升的趋势,断裂韧性呈现先上升后下降的趋势。当热震次数为30次,其抗弯强度为395±19MPa,断裂韧性为5.62±0.2MPa·m1/2,抗弯强度和断裂韧性提高约为30%和64%。将制备的复相陶瓷制成坩埚材料,高温区(1000~1600℃)循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下的要求。
实施例4:AlN-10YAlO3-Al2O3复相陶瓷。
铝酸钇粉末的制备:
1)将0.02mol Al(NO3)3·9H2O和0.02mol Y(NO3)3·6H2O溶于100ml水制备硝酸盐混合溶液,其中硝酸盐溶液浓度为0.2M;
2)将0.12mol NH4HCO3溶于60ml水,加入分散剂聚乙二醇(400:6000=3:1),制得碳酸氢铵溶液,其中碳酸氢铵溶液浓度为2.0M;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀。将沉淀陈化,水洗、醇洗、干燥,于高温炉中在1200℃保温2h。
氮化铝-铝酸钇复相陶瓷的制备:
1)称取AlN为82wt%,YAlO3为10wt%,Al2O3为8wt%,使用乙醇作为混合介质放入球磨罐中混合5h,然后将球磨后的浆料在90℃的烘箱中烘干9h,确保浆料烘干。研磨,过100目筛;将过筛后的粉料加入10%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具在80MPa下进行干压成型;
3)取干压成型后的坯体,放入等静压机中,在200MPa下进行等静压;
4)将等静压后的坯体放入气氛烧结炉中在1700℃保温3h,制得氮化铝-铝酸钇复相陶瓷。
本发明制备的氮化铝-铝酸钇复相陶瓷的热膨胀系数(0~1350℃)为6.4×10-6K-1,相对密度达到96.95%,抗弯强度为289±13MPa,断裂韧性为3.38±0.2MPa·m1/2;在1000~1600℃下经历不同热震次数的氮化铝-铝酸钇复相陶瓷,随着热震次数的增加,复相陶瓷的抗弯强度呈现持续上升的趋势,断裂韧性呈现持续上升的趋势。当热震次数为30次,其抗弯强度为332±29MPa,断裂韧性为5.42±0.3MPa·m1/2,抗弯强度和断裂韧性提高约为15%和61%。将制备的复相陶瓷制成坩埚材料,高温区(1000~1600℃)循环30次的热震实验后不开裂,满足坩埚材料在高温热循环条件下的要求。
本发明公开和提出的技术方案,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (9)

1.一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷,其特征是,结构式为:AlN-YAlO3-MO,其中M为Y、Al的一种或多种复合;质量百分含量如下:
AlN:82~89%;
YAlO3:3~10%;
MO:3~8%。
2.如权利要求1所述的氮化铝-铝酸钇复相陶瓷,其特征是,铝酸钇制备方法包括如下步骤:
1)将Al(NO3)3·9H2O和Y(NO3)3·6H2O溶于水制备硝酸盐混合溶液;
2)将NH4HCO3溶于水,加入分散剂聚乙二醇,制得碳酸氢铵溶液;
3)将硝酸盐溶液滴入碳酸氢铵溶液中,获得沉淀;将沉淀陈化,水洗、醇洗、干燥,于高温炉中烧结,合成YAlO3粉体。
3.如权利要求2所述的氮化铝-铝酸钇复相陶瓷,其特征是,所述步骤1)中Al(NO3)3·9H2O的浓度为0.1~0.2M,Y(NO3)3·6H2O的浓度为0.1~0.2M。
4.如权利要求2所述的氮化铝-铝酸钇复相陶瓷,其特征是,所述步骤2)中NH4HCO3的浓度为1.0~2.0M,聚乙二醇(400:6000=3:1)。
5.如权利要求2所述的氮化铝-铝酸钇复相陶瓷,其特征是,所述步骤3)中的烧结温度为1100~1200℃保温2h。
6.权利要求1的具有高温抗热震性的氮化铝-铝酸钇复相陶瓷的制备方法,其特征是,包括步骤如下:
1)称取AlN为82~89%、YAlO3为3~10%和MO为3~8%,并使用乙醇作为溶剂球磨混料3~5h,然后将球磨后的浆料在60~90℃烘箱中烘干6~12h浆料烘干;研磨,过100目筛;将过筛后的粉料加入5~10%的石蜡作为粘结剂,待混合均匀后造粒晾干过40目筛,取筛下物;
2)将筛下物放入成型磨具进行干压成型;
3)取干压成型后的坯体,放入等静压机中,进行等静压;
4)将等静压后的坯体放入气氛烧结炉中烧结,制得氮化铝-铝酸钇复相陶瓷。
7.如权利要求6所述的方法,其特征是,所述步骤2)中的干压成型为50~80MPa。
8.如权利要求6所述的方法,其特征是,所述步骤3)中的等静压成型为180~200MPa。
9.如权利要求6所述的方法,其特征是,步骤4)中的烧结温度为1650~1700℃保温2~3h。
CN202110455086.7A 2021-04-26 2021-04-26 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法 Active CN113264777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110455086.7A CN113264777B (zh) 2021-04-26 2021-04-26 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110455086.7A CN113264777B (zh) 2021-04-26 2021-04-26 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法

Publications (2)

Publication Number Publication Date
CN113264777A true CN113264777A (zh) 2021-08-17
CN113264777B CN113264777B (zh) 2022-09-27

Family

ID=77229603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110455086.7A Active CN113264777B (zh) 2021-04-26 2021-04-26 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN113264777B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252584A (ja) * 1987-09-22 1989-10-09 Nippon Steel Corp 複合セラミックス焼結体およびその製造方法
JPH06191953A (ja) * 1992-12-28 1994-07-12 Kyocera Corp 窒化アルミニウム質焼結体
US5744411A (en) * 1993-07-12 1998-04-28 The Dow Chemical Company Aluminum nitride sintered body with high thermal conductivity and its preparation
CN101302019A (zh) * 2008-06-18 2008-11-12 山东大学 部分液相沉淀法制备稀土掺杂的钇铝石榴石纳米粉体的方法
CN104445341A (zh) * 2014-11-24 2015-03-25 广东工业大学 一种纯yag相的钇铝石榴石纳米粉体的制备方法
CN108249948A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 一种氮化铝陶瓷及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191953B2 (ja) * 2013-09-02 2017-09-06 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252584A (ja) * 1987-09-22 1989-10-09 Nippon Steel Corp 複合セラミックス焼結体およびその製造方法
JPH06191953A (ja) * 1992-12-28 1994-07-12 Kyocera Corp 窒化アルミニウム質焼結体
US5744411A (en) * 1993-07-12 1998-04-28 The Dow Chemical Company Aluminum nitride sintered body with high thermal conductivity and its preparation
CN101302019A (zh) * 2008-06-18 2008-11-12 山东大学 部分液相沉淀法制备稀土掺杂的钇铝石榴石纳米粉体的方法
CN104445341A (zh) * 2014-11-24 2015-03-25 广东工业大学 一种纯yag相的钇铝石榴石纳米粉体的制备方法
CN108249948A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 一种氮化铝陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN113264777B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
JP3600933B2 (ja) チタン酸アルミニウム系焼結体の製造方法
CN112939603B (zh) 一种低温烧结氧化钇陶瓷坩埚的方法
CN103626503A (zh) 一种热风炉用长寿莫来石砖及其制备方法
JP4357584B1 (ja) 耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体
Li et al. Microwave sintering of Ti 3 Si (Al) C 2 ceramic
Bayuseno et al. Resistance of alumina‐spodumene ceramics to thermal shock
CN113264777B (zh) 一种具有高温抗热震性的氮化铝-铝酸钇复相陶瓷及制备方法
CN105593192B (zh) 具有SiAlON基体的耐火产品
CN110615682A (zh) 一种含碳耐火浇注料用石墨表面改性方法及其应用
CN111018495A (zh) 一种钛酸铝增强方镁石复相陶瓷材料
Shi et al. Preparation and properties of Zr2WP2O12 with negative thermal expansion without sintering additives
Liu et al. Synthesis of molten-electrolyte corrosion resistant MgAl2O4MgAlON sidewall materials by pressureless sintering
Maıtre et al. Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics
JP2002128563A (ja) 耐熱衝撃抵抗性に優れたセラミック製熱処理用部材
Wu et al. Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage
Awaad et al. Densification, mechanical and microstructure properties of β-spodumene—alumina composites
JP6412646B2 (ja) 溶銑製造炉の炉床用れんが
JP5387486B2 (ja) カーボン被覆炭化アルミニウム及びその製造方法
Zayed et al. Liquid phase sintering of nano silicon carbide prepared from egyptian rice husk ash waste
JP4906228B2 (ja) 耐熱衝撃抵抗性及び耐食性に優れたアルミナ質焼結体及びそれを用いた熱処理用部材
Kanyo et al. Impact of alumina-based binder on formation of dense strontium zirconate ceramics
Liao et al. ULTRASOUND-ASSISTED CONVENTIONAL SINTERING OF SILICATE CERAMICS
Lv et al. Effect of Ultra-High Pressure Sintering and Spark Plasma Sintering and Subsequent Heat Treatment on the Properties of Si3N4 Ceramics. Materials 2022, 15, 7309
Liu Effect of Doped CeO with Si3N4 Powders on the Densification Mechanism During
SU1114660A1 (ru) Шихта дл получени металлокерамического материала

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant