CN110615682A - 一种含碳耐火浇注料用石墨表面改性方法及其应用 - Google Patents

一种含碳耐火浇注料用石墨表面改性方法及其应用 Download PDF

Info

Publication number
CN110615682A
CN110615682A CN201910898480.0A CN201910898480A CN110615682A CN 110615682 A CN110615682 A CN 110615682A CN 201910898480 A CN201910898480 A CN 201910898480A CN 110615682 A CN110615682 A CN 110615682A
Authority
CN
China
Prior art keywords
carbon
graphite
flake graphite
sample
containing refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910898480.0A
Other languages
English (en)
Inventor
肖国庆
张成林
丁冬海
任耘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201910898480.0A priority Critical patent/CN110615682A/zh
Publication of CN110615682A publication Critical patent/CN110615682A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种含碳耐火浇注料用石墨表面改性方法及其应用,该方法以鳞片石墨和钛粉为原料,采用自蔓延高温合成方法进行碳化钛包覆鳞片石墨的制备。按质量百分比计,鳞片石墨27.34%~38.55%,钛粉61.45%~72.66%,上述原料总含量为100%。包括:步骤一:将鳞片石墨、钛粉按照配比混合均匀装料于瓷坩埚得到试样;步骤二:对步骤一得到的试样进行轻压成型;步骤三:结束成型后,将成型后的试样放入自蔓延高温反应炉中,通过引燃剂引燃成型后的试样进行自蔓延高温合成反应;步骤四:反应后将试样粉碎研磨得到碳化钛包覆鳞片石墨。通过该方法得到的碳化钛包覆鳞片石墨,将其引入含碳耐火浇注料中,可显著地改善含碳耐火材料中石墨的润湿性差、分散性差和易氧化等问题。

Description

一种含碳耐火浇注料用石墨表面改性方法及其应用
技术领域
本发明属于无机非金属材料技术领域,特别涉及一种含碳耐火浇注料用石墨表面改性方法及其应用。
背景技术
耐火材料是高温冶炼及高温窑炉等热工设备的关键结构材料,能承受相应的物理化学变化及机械作用,是高温技术不可缺少的基础材料,广泛应用于钢铁、陶瓷、建材、电子、石化等领域中。其中钢铁行业耐火材料用量最大。传统的氧化物耐火材料在高温环境中使用,必须保证其具有足够的结构稳定性。传统的氧化物耐火材料与渣具有强润湿性,抗渣侵蚀性能较差,使炉衬寿命大大降低。
石墨与钢渣不润湿,热膨胀系数小,并且具有良好的导热性与韧性。因此在耐火材料的制备过程中,适当地加入碳材料形成含碳耐火材料,可降低耐火材料的热膨胀,并提高其抗渣性、抗热震稳定性、热传导率、耐冲击性,从而延长了炉衬的使用寿命。但是,石墨存在易氧化,亲水性差的致命缺点,限制了其优势的发挥。
发明内容
针对现有技术中的缺陷和不足,本发明提供了一种含碳耐火浇注料用石墨表面改性方法及其应用,通过该方法得到的碳化钛包覆鳞片石墨,将其引入含碳耐火浇注料中,可显著地改善含碳耐火材料中石墨的润湿性差、分散性差和易氧化等问题。
为达到上述目的,本发明采取如下的技术方案:
一种含碳耐火浇注料用石墨表面改性方法,该方法以鳞片石墨和钛粉为原料,采用自蔓延高温合成方法进行碳化钛包覆鳞片石墨的制备。
本发明还包括如下技术特征:
具体的,按照质量百分比计,鳞片石墨为27.34%~38.55%,钛粉为61.45%~72.66%,上述原料总含量为100%。
具体的,包括:
步骤一:将鳞片石墨、钛粉按照配比混合均匀装料于瓷坩埚得到试样;
步骤二:对步骤一得到的试样进行轻压成型;
步骤三:结束成型后,将成型后的试样放入自蔓延高温反应炉中,通过引燃剂引燃成型后的试样进行自蔓延高温合成反应;
步骤四:反应后将试样粉碎研磨得到碳化钛包覆鳞片石墨。
具体的,所述步骤三中,在成型后的试样上放置引燃剂,自蔓延高温合成反应由置在试样上端的引燃剂反应产生的热量引发;
所述引燃剂包括C-Ti引燃剂,所述C-Ti引燃剂是将钛粉和碳黑按质量比为4:1的用量混配制得;钛粉和碳黑反应通过一根钨丝引发。
具体的,步骤三中,在抽真空,充氩气到常压条件下,点火引燃试样发生自蔓延高温合成反应,而后待炉温降至室温后,关闭电源,开启炉门,将物料取出;抽真空的真空度为-0.092MP。
所述的含碳耐火浇注料用石墨表面改性方法制备得到的碳化钛包覆鳞片石墨用于制备含碳耐火浇注料的应用。
本发明与现有技术相比,有益的技术效果是:
本发明的自蔓延高温合成方法,根据原位合成理论,以鳞片石墨、钛粉为原料,只需一步即可简单快速高效的制备碳化钛包覆鳞片石墨。可显著改善石墨的润湿性差和分散不均匀,及高温下易氧化的问题。本发明碳化钛包覆鳞片石墨作为碳源引入含碳耐火浇注料,可以改善石墨在含碳耐火浇注料的抗氧化性能和抗渣侵蚀性能,
本发明的含碳耐火浇注料用石墨表面改性方法得到的碳化钛包覆鳞片石墨,不仅保留了石墨的不与钢渣润湿和热膨胀系数小等优势,更重要的是解决了石墨的润湿性差、分散性差、易氧化的问题,可以赋予含碳耐火浇注料更优越的抗氧化性能和抗渣侵蚀性能。若利用物理或化学方法对石墨进行表面包覆改性,使石墨表面产生包覆层,可极大地改善石墨的润湿性差和易氧化的问题。鳞片石墨的表面包覆层主要有氧化物和碳化物。相比于氧化物包覆层,碳化物包覆层连续、附着力强、高温下不会与石墨反应。而目前碳化物包覆技术主要是熔盐法。自蔓延高温合成方法快速高效、过程简单,能源消耗较少,产品纯度高,形貌可以保持碳颗粒的形状特征。
本发明含碳耐火浇注料用石墨表面改性方法,主要包括碳化钛包覆层和鳞片石墨基体。采用自蔓延高温合成方法制备分散性、水润湿性、抗氧化性较好的碳化钛包覆鳞片石墨,对于提高含碳耐火浇注料性能具有重要意义。相比于鳞片石墨,碳化钛具有更小的水润湿角;并且碳化钛对氧的亲和力大于碳,可以起到抑制碳被氧化的作用。因此,含碳耐火浇注料用石墨表面改性方法能有效地改善石墨的润湿性和提高碳的抗氧化性能,进而可以赋予含碳耐火浇注料更优越的抗氧化性能和抗渣侵蚀性能,为含碳耐火浇注料领域做出巨大贡献。
附图说明
图1为本发明的制备工艺流程图;
图2为原料中鳞片石墨的SEI图;
图3为本说明实施例1制备的碳化钛包覆鳞片石墨的XRD图;
图4为本说明实施例1制备的碳化钛包覆鳞片石墨的SEI图(图4a)、BEI图(图4b)及A、B两点的EDS图(分别为4c、4d);
图5为本说明实施例2制备的碳化钛包覆鳞片石墨的XRD图;
图6为本说明实施例2制备的碳化钛包覆鳞片石墨的SEI图(图6a)和BEI图(图6b);
图7为本说明实施例3制备的碳化钛包覆鳞片石墨的XRD图;
图8为本说明实施例3制备的碳化钛包覆鳞片石墨的SEI图(图8a)和BEI图(图8b);
图9为本说明实施例2制备的碳化钛包覆鳞片石墨的水润湿性图;
图10为本说明实施例2制备的碳化钛包覆鳞片石墨制备浇注料后的抗氧化性图;
图11为本说明实施例2制备的碳化钛包覆鳞片石墨制备浇注料后的抗渣侵蚀性图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
本具体实施方式中:
本发明的含碳耐火浇注料用石墨表面改性方法得到的碳化钛包覆鳞片石墨,不仅保留了石墨的不与钢渣润湿和热膨胀系数小等优势,更重要的是解决了石墨的润湿性差、分散性差、易氧化的问题,可以赋予含碳耐火浇注料更优越的抗氧化性能和抗渣侵蚀性能。若利用物理或化学方法对石墨进行表面包覆改性,使石墨表面产生包覆层,可极大地改善石墨的润湿性差和易氧化的问题。鳞片石墨的表面包覆层主要有氧化物和碳化物。相比于氧化物包覆层,碳化物包覆层连续、附着力强、高温下不会与石墨反应。而目前碳化物包覆技术主要是熔盐法。自蔓延高温合成方法快速高效、过程简单,能源消耗较少,产品纯度高,形貌可以保持碳颗粒的形状特征。
本发明含碳耐火浇注料用石墨表面改性方法,主要包括碳化钛包覆层和鳞片石墨基体。采用自蔓延高温合成方法制备分散性、水润湿性、抗氧化性较好的碳化钛包覆鳞片石墨,对于提高含碳耐火浇注料性能具有重要意义。相比于鳞片石墨,碳化钛具有更小的水润湿角;并且碳化钛对氧的亲和力大于碳,可以起到抑制碳被氧化的作用。因此,含碳耐火浇注料用石墨表面改性方法能有效地改善石墨的润湿性和提高碳的抗氧化性能,进而可以赋予含碳耐火浇注料更优越的抗氧化性能和抗渣侵蚀性能,为含碳耐火浇注料领域做出巨大贡献。
下面结合附图和具体实施方式对本发明进行详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。在本发明给出的鳞片石墨和钛粉按质量百分比进行配料,通过自蔓延高温合成法均能制备新型含碳耐火浇注料用石墨。
实施例1:
如图1所示,为本实施例的制备工艺流程图,本实施例采用鳞片石墨(纯度≥99.0%)、钛粉(纯度≥99.0%)为原料,按质量百分比计,鳞片石墨为27.34%,钛粉为72.66%。将混合均匀装料于瓷坩埚再对其进行轻压成型,结束成型后,将试样放入自蔓延高温反应炉中,在试样上放置炭黑和钛粉混合得到的C-Ti引燃剂,自蔓延高温合成反应由置在试样上端的C-Ti反应产生的热量引发,而C和Ti反应则通过一根钨丝引发。
在抽真空(真空度为-0.092MP),充氩气到常压条件下,点火引燃试样发生自蔓延高温合成反应,而后待炉温降至室温后,关闭电源,开启炉门,将物料取出。对烧成的物料进行粉碎、研磨,最终得到碳化钛包覆鳞片石墨。
实施例2:
本实施例与实施例1不同的是:按照质量百分比计,原料中鳞片石墨为33.41%,原料中钛粉为66.59%,其他试验参数和制备步骤均与实施例1相同,最终得到碳化钛包覆鳞片石墨。
实施例3:
本实施例与实施例1不同的是:按照质量百分比计,原料中鳞片石墨为38.55%,原料中钛粉为61.45%,其他试验参数和制备步骤均与实施例1相同,最终得到碳化钛包覆鳞片石墨。
(一)结果表征:
(1.1)X衍射分析:
对实施例1制备的碳化钛包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图3,由图3可知,该碳化钛包覆鳞片石墨主要成分包括碳化钛和鳞片石墨。对实施例2制备的碳化钛包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图5,由图5可知,该碳化钛包覆鳞片石墨主要成分包括碳化钛和鳞片石墨。对实施例3制备的碳化钛包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图7,由图7可知,该碳化钛包覆鳞片石墨主要成分包括碳化钛和鳞片石墨。
(1.2)扫描电镜分析:
对实施例1制备的新型含碳耐火浇注料用石墨进行了扫描电镜分析,得到扫描电镜图参见图4。通过与鳞片石墨的微观形貌(图2,SEI是扫描电镜的二次电子像)对比,由图4(a)的二次电子像可知,反应产物保留了鳞片石墨的基本片状形态。结合扫描电镜的背散射图4(b)和能谱分析图4(c)(d)可知,A点为碳,B点为碳化钛,说明深色鳞片石墨基体被明亮的碳化钛包覆,证明自蔓延高温合成法可用于在鳞片石墨表面上形成连续的碳化钛包覆层,并且包覆层厚度估计为1.31μm。对实施例2制备的碳化钛包覆鳞片石墨进行了扫描电镜分析,得到扫描电镜图参见图6,由图6可知,鳞片石墨表面上形成连续的碳化钛包覆层,且包覆层厚度估计为763nm。对实施例3制备的碳化钛包覆鳞片石墨进行了扫描电镜分析,得到扫描电镜图参见图8,由图8可知,鳞片石墨表面上形成连续的碳化钛包覆层,且包覆层厚度估计为700nm。
(1.3)Zeta电位分析
对实施例1制备的碳化钛包覆鳞片石墨在pH=7的去离子水中进行Zeta电位分析,测得碳化钛包覆鳞片石墨的Zeta电位为-38.18mV,相比于鳞片石墨的Zeta电位为-13.53mV,具有更好的分散性。对实施例2制备的碳化钛包覆鳞片石墨在pH=7的去离子水中进行Zeta电位分析,测得碳化钛包覆鳞片石墨的Zeta电位为-33.66mV,具有良好的分散性。对实施例3制备的碳化钛包覆鳞片石墨在pH=7的去离子水中进行Zeta电位分析,测得碳化钛包覆鳞片石墨的Zeta电位为-31.17mV,具有良好的分散性。
(二)水中的分散性对比:
对实施例2制备的碳化钛包覆鳞片石墨(命名为CT-2),将鳞片石墨(命名为C)、机械混合碳化钛和鳞片石墨(命名为C/T-2)作为对照组,采用沉降实验,对比石墨水中的分散性。由图9看出,经搅拌1min和静止30min,样品C和C/T-2在水中存在明显的分层现象,一部分漂浮于水表面呈团聚状态,大部分沉淀聚集在底部;而样品CT-2均匀的分散在水中,未出现明显的分层现象。说明样品CT-2具有良好的水润湿性和分散性。
(三)抗氧化实验和静态坩埚法抗渣实验:
对实施例2制备的碳化钛包覆鳞片石墨作为碳源按照表1的组成配料。分别以未加入鳞片石墨制备的浇注料命名为0;以鳞片石墨(FG)作为碳源制备的浇注料命名为C;以机械混合碳化钛/鳞片石墨(C/T-2)作为碳源制备的浇注料命名为C/T;以碳化钛包覆鳞片石墨(CT-2)作为碳源制备的浇注料命名为CT。制备出72×72×72mm立方块的抗氧化性试样,在1200℃空气条件下保温3h,进行抗氧化实验,其结果如图10所示,其中,图10(a)为耐火浇注料试样氧化后的断面照片,图10(b)为对应的脱碳深度及氧化面积率。可以看出,相比于样品C和C/T浇注料,样品CT浇注料氧化深度降低14.48%、7.91%,氧化面积百分率降低17.21%、16.02%,样品CT浇注料表现出优异的抗氧化性。并制备出70mm×70mm×70mm的立方块,内部坩埚尺寸为φ=40mm,h=40mm的抗渣试样,在1600℃下空气条件下保温3h,进行静态坩埚法抗渣实验。其结果如图11所示,其中,图11(a)为耐火浇注料试样经钢渣侵蚀后的断面照片,图11(b)为对应的侵蚀面积率。可以看出,相比于样品0、C和C/T浇注料,熔渣侵蚀面积百分率降低17.16%、5.31%、4.14%,样品CT浇注料表现出优异的抗渣侵蚀性。说明碳化钛包覆鳞片石墨在一定程度上提高了铝镁质耐火浇注料的抗氧化性能和抗渣侵蚀性能。
表1铝镁质耐火浇注料配料组成

Claims (6)

1.一种含碳耐火浇注料用石墨表面改性方法,其特征在于,该方法以鳞片石墨和钛粉为原料,采用自蔓延高温合成方法进行碳化钛包覆鳞片石墨的制备。
2.如权利要求1所述的含碳耐火浇注料用石墨表面改性方法,其特征在于,按照质量百分比计,鳞片石墨为27.34%~38.55%,钛粉为61.45%~72.66%,上述原料总含量为100%。
3.如权利要求2所述的含碳耐火浇注料用石墨表面改性方法,其特征在于,包括:
步骤一:将鳞片石墨、钛粉按照配比混合均匀装料于瓷坩埚得到试样;
步骤二:对步骤一得到的试样进行轻压成型;
步骤三:结束成型后,将成型后的试样放入自蔓延高温反应炉中,通过引燃剂引燃成型后的试样进行自蔓延高温合成反应;
步骤四:反应后将试样粉碎研磨得到碳化钛包覆鳞片石墨。
4.如权利要求3所述的含碳耐火浇注料用石墨表面改性方法,其特征在于,所述步骤三中,在成型后的试样上放置引燃剂,自蔓延高温合成反应由置在试样上端的引燃剂反应产生的热量引发;
所述引燃剂包括C-Ti引燃剂,所述C-Ti引燃剂是将钛粉和碳黑按质量比为4:1的用量混配制得;钛粉和碳黑反应通过一根钨丝引发。
5.如权利要求3所述的含碳耐火浇注料用石墨表面改性方法,其特征在于,步骤三中,在抽真空,充氩气到常压条件下,点火引燃试样发生自蔓延高温合成反应,而后待炉温降至室温后,关闭电源,开启炉门,将物料取出;抽真空的真空度为-0.092MP。
6.权利要求1至5任一权利要求所述的含碳耐火浇注料用石墨表面改性方法制备得到的碳化钛包覆鳞片石墨用于制备含碳耐火浇注料的应用。
CN201910898480.0A 2019-09-23 2019-09-23 一种含碳耐火浇注料用石墨表面改性方法及其应用 Pending CN110615682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910898480.0A CN110615682A (zh) 2019-09-23 2019-09-23 一种含碳耐火浇注料用石墨表面改性方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910898480.0A CN110615682A (zh) 2019-09-23 2019-09-23 一种含碳耐火浇注料用石墨表面改性方法及其应用

Publications (1)

Publication Number Publication Date
CN110615682A true CN110615682A (zh) 2019-12-27

Family

ID=68924002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910898480.0A Pending CN110615682A (zh) 2019-09-23 2019-09-23 一种含碳耐火浇注料用石墨表面改性方法及其应用

Country Status (1)

Country Link
CN (1) CN110615682A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807358A (zh) * 2020-06-18 2020-10-23 西安建筑科技大学 一种含碳耐火材料的制备方法
CN112125686A (zh) * 2020-09-30 2020-12-25 郑州大学 一种熔盐隔离制备碳化硅包覆石墨的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186456A (zh) * 2007-12-06 2008-05-28 上海大学 亲水性石墨/氧化物复合粉体的制备方法
CN101298389A (zh) * 2008-06-23 2008-11-05 东北大学 碳质耐火材料用含硼添加剂及其制备方法
UA85619U (ru) * 2013-05-31 2013-11-25 Государственное Учреждение Научно-Технологический Центр "Реактивэлектрон" Нан Украины Способ получения карбида титана с использованием свс-процесса

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186456A (zh) * 2007-12-06 2008-05-28 上海大学 亲水性石墨/氧化物复合粉体的制备方法
CN101298389A (zh) * 2008-06-23 2008-11-05 东北大学 碳质耐火材料用含硼添加剂及其制备方法
UA85619U (ru) * 2013-05-31 2013-11-25 Государственное Учреждение Научно-Технологический Центр "Реактивэлектрон" Нан Украины Способ получения карбида титана с использованием свс-процесса

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIAMING PAN ET. AL: "The microstructure and properties of bronze matrix composites with surface-modified graphite by titanium carbide adhesion", 《TRIBOLOGY INTERNATIONAL》 *
XIAOGUANG LIU ET. AL: "Molten Salt Synthesis and Characterization of Titanium Carbide-Coated Graphite Flakes for Refractory Castable Applications", 《INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY》 *
何旭初等: "《钢结硬质合金的制备原理与技术》", 31 January 2017, 湖南科学技术出版社 *
宁桂玲等: "《高等无机合成》", 30 September 2007, 华东理工大学出版社 *
薛丽梅等: "石墨材料抗氧化性研究进展", 《炭素》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807358A (zh) * 2020-06-18 2020-10-23 西安建筑科技大学 一种含碳耐火材料的制备方法
CN112125686A (zh) * 2020-09-30 2020-12-25 郑州大学 一种熔盐隔离制备碳化硅包覆石墨的方法

Similar Documents

Publication Publication Date Title
Masoudifar et al. Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables
CN108191439B (zh) 一种高炉渣高温碳化电炉用耐火砖及其制备方法
CN110615682A (zh) 一种含碳耐火浇注料用石墨表面改性方法及其应用
Pan et al. Effect of different corundum sources on microstructure and properties of Al2O3–Cr2O3 refractories
Suri et al. Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume
Wang et al. Mechanical properties and microstructure of Cr2O3 reinforced 3Al2O3· 2SiO2 composite refractories
CN106365654A (zh) 一种添加ZrN‑SiAlON的抗锂电材料侵蚀耐火坩埚
Mukhopadhyay et al. Spinel‐coated graphite for carbon containing refractory castables
Wang et al. Damage mechanism and corrosion resistance improvement of corundum-mullite kiln furniture during calcining of Li-ion cathode materials
CN111807358A (zh) 一种含碳耐火材料的制备方法
Mukherjee et al. A comprehensive review of recent advances in magnesia carbon refractories
JP4496090B2 (ja) 水系炭素含有不定形耐火物の製造方法
CN110272267A (zh) 长寿命铁沟快干浇注料及其制备方法
CN110282960A (zh) 一种碳复合耐火材料的制备方法
JP2011016667A (ja) 窒化珪素鉄粉末及び耐火物
Zhao et al. Large‐scale fabrication of TiC@ C powders and its effect on the properties of Al2O3‐MgO‐C castables
Singh Specially treated graphite fortified alumina-silicon carbide-carbon refractories: fabrication and properties
CN109081617B (zh) 一种炭黑/铝酸钙水泥、制备方法及其应用
CN113247922A (zh) 一种碳/氧化镁纳米复合粉、制备方法及应用
CN112159230A (zh) 大尺寸碳硅化铝的制法及基于大尺寸碳硅化铝添加提升镁碳砖高温性能的方法
Xu et al. Preparation of MgO-SnO 2-TiO 2 Materials and Their Corrosion in Na 3 AlF 6-AlF 3-K 3 AlF 6 Bath
CN112094124A (zh) 一种用于耐火材料的碳源及其制备方法
Ren et al. Fabrication, sintering behavior and mechanical properties of calcium oxide doped yttrium oxide refractory via aqueous gel casting method
CN112341214B (zh) 一种轻量矾土基浇注料及其制备方法
JP5387486B2 (ja) カーボン被覆炭化アルミニウム及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191227

RJ01 Rejection of invention patent application after publication