CN111807358A - 一种含碳耐火材料的制备方法 - Google Patents

一种含碳耐火材料的制备方法 Download PDF

Info

Publication number
CN111807358A
CN111807358A CN202010559721.1A CN202010559721A CN111807358A CN 111807358 A CN111807358 A CN 111807358A CN 202010559721 A CN202010559721 A CN 202010559721A CN 111807358 A CN111807358 A CN 111807358A
Authority
CN
China
Prior art keywords
flake graphite
tic
powder
graphite
crystalline flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010559721.1A
Other languages
English (en)
Inventor
任耘
陈兴
肖国庆
丁冬海
白冰
李凯迪
臧云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202010559721.1A priority Critical patent/CN111807358A/zh
Publication of CN111807358A publication Critical patent/CN111807358A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • C04B35/62834Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)

Abstract

本发明公开了一种含碳耐火材料的制备方法,该方法以钛粉、硅粉和鳞片石墨为原料,采用燃烧合成法在抽真空并注入惰性气体的条件下进行TiC‑SiC包覆鳞片石墨的制备。所述原料按质量百分比计,钛粉51.43%~59.02%,硅粉10%~11.48%,鳞片石墨29.5%~38.57%,总含量为100%。本发明方法利用Ti粉和石墨反应放出的大量热量引发Si粉和石墨发生反应,从而在鳞片石墨表面形成TiC‑SiC复合涂层。硅粉在燃烧合成反应中可以起到防氧化剂和提高TiC‑SiC涂层完整性和均匀性的作用,从而解决了现有技术中鳞片石墨无法在耐火材料中得到充分利用的技术问题。

Description

一种含碳耐火材料的制备方法
技术领域
本发明属于无机非金属材料技术领域,特别涉及一种含碳耐火材料的制备方法。
背景技术
石墨具有不易被钢水和熔渣润湿、热膨胀系数小及热导率高的特点,将其引入到耐火材料中,能显著提高耐火材料的抗渣性能与热震稳定性。目前,含碳耐火材料已在高炉炉底、转炉、电炉和钢包衬体,水口、滑板及塞棒等钢铁工业的诸多部位得到广泛应用。
然而石墨的亲水性差,在耐火材料中易漂浮、团聚,难以分散均匀,从而造成了需水量的增加,在高温氧化气氛下,石墨易被氧化形成气孔,将其引入耐火材料中会导致耐火材料的气孔率增大、抗渣性和力学性能降低,这些问题阻碍了鳞片石墨在耐火材料中的应用。
发明内容
针对现有技术中的缺陷和不足,本发明提供了一种含碳耐火材料的制备方法,通过该方法得到的TiC-SiC包覆鳞片石墨的涂层完整、均匀且具有抗氧化性,从而解决了现有技术中鳞片石墨无法在耐火材料中得到充分利用的技术问题。
为达到上述目的,本发明采取如下的技术方案:
一种含碳耐火材料的制备方法,其特征在于,该方法以钛粉、硅粉和鳞片石墨为原料,采用燃烧合成法在抽真空并注入惰性气体的条件下进行TiC-SiC包覆鳞片石墨的制备。
本发明还包括如下技术特征:
具体的,所述原料按质量百分比计,钛粉51.43%~59.02%,硅粉10%~11.48%,鳞片石墨29.5%~38.57%,总含量为100%。
具体的,方法包括以下步骤:
步骤S1:将经过预处理的硅粉与钛粉、鳞片石墨按照配比混合均匀,装料于陶瓷坩埚中得到试样;
步骤S2:将步骤S1得到的试样放入燃烧反应炉中,在抽真空并注入惰性气体的条件下,试样被自身所释放的热量引发进行燃烧合成反应;
步骤S3:反应后的试样研磨即得TiC-SiC包覆鳞片石墨粉体。
具体的,步骤1中所述的预处理包括:将硅粉置于110℃~150℃的烘箱中烘干20h~24h。
具体的,所述的抽真空达到的真空度为-0.1MPa。
本发明与现有技术相比,有益的技术效果是:
(1)本发明的燃烧合成反应可简单快速高效制备TiC-SiC包覆鳞片石墨,不仅保留了石墨的不与钢渣润湿和热膨胀系数小等优势,更重要的是,由于添加了经过预处理的、在燃烧合成过程中可起到抗氧化剂的作用的硅粉,所以与现有技术中的单一涂层相比,本发明方法制备得到的复合涂层更加完整、更加均匀。
(2)TiC涂层能够有效地改善石墨的润湿性,但在2<PH<11 时,TiC涂层在水中的分散性较差;SiC涂层可以改善石墨在水中的分散性,但在5<PH<10时,SiC涂层水润湿性的提高却受到限制。本发明制备的TiC-SiC复合涂层使石墨同时具有水润湿性和分散性,彻底解决了上述问题。
(3)将本发明制备的TiC-SiC包覆鳞片石墨作为碳源引入耐火材料中,可显著改善石墨在耐火材料中的抗氧化性和物理机械性能。
附图说明
图1为本发明的制备工艺流程图;
图2为本说明实施例1制备的TiC-SiC包覆鳞片石墨的XRD图;
图3为本说明实施例2制备的TiC-SiC包覆鳞片石墨的XRD图;
图4为本说明实施例3制备的TiC-SiC包覆鳞片石墨的XRD图;
图5为本说明实施例4制备的TiC-SiC包覆鳞片石墨的XRD图;
图6为本说明对比例1制备的TiC-Al4C3包覆鳞片石墨的XRD 图;
图7为本说明实施例4制备的TiC-SiC包覆鳞片石墨的SEI图(图 7a)及1、2、3和4四点的EDS图(分别为7b、7c、7d和7e);
图8为本说明实施例4制备的TiC-SiC包覆鳞片石墨的横截面微观结构的SEM图像(a)、局部放大的SEM图像(b)(c);
图9为本说明实施例4制备的TiC-SiC包覆鳞片石墨的润湿角图;
图10为本说明实施例4制备的TiC-SiC包覆鳞片石墨及机械混合碳化钛、碳化硅和鳞片石墨的抗氧化性图;
图11为本说明实施例4制备的TiC-SiC包覆鳞片石墨制备耐火材料后的抗氧化性图;
图12为本说明实施例4制备的TiC-SiC包覆鳞片石墨制备耐火材料后的体积密度图和显气孔率图,其中图a为体积密度图,图b为显气孔率图;
图13为本说明实施例4制备的TiC-SiC包覆鳞片石墨制备耐火材料的常温抗折强度图和抗压强度图,其中,图a为耐火材料的常温抗折强度图,图b为耐火材料的抗压强度图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
以下对本发明涉及的定义或概念内涵做以说明:
燃烧合成法:是指利用物质反应热的自传导作用,使不同的物质之间发生化学反应,在瞬间形成化合物的一种高温合成法。
本发明方法制得的TiC-SiC包覆鳞片石墨可以应用于镁碳砖、铁沟料和连铸用功能材料。
将采用本发明方法制得的TiC-SiC包覆鳞片石墨引入镁碳砖中,将其作为抗氧化剂和碳源,在降低碳含量的同时,镁碳砖也会具有良好的抗热震性和抗渣侵蚀性;因为鳞片石墨的表面存在TiC-SiC复合包覆层,可以很好地保护石墨在高温下不被氧化,控制镁碳砖的脱碳速度,改善其抗氧化性能。
目前,高炉出铁钩大多使用Al2O3-SiC-C质耐火材料并取得了较好的使用效果。为了保证铁沟料的必要施工性能,现有技术中所用的碳源大多采用球沥青。然而,在使用时铁沟料中沥青的挥发会气化产生烟尘和难闻的致癌气体,会污染环境、威胁人们的身体健康,而且排气过程会增加材料的显气孔率,降低材料的强度和残碳率。
以本发明合成的TiC-SiC包覆鳞片石墨作为碳源代替沥青,且由于改性石墨亲水性得到提高,碳源均匀分散,加水量也会降低;改性石墨的抗氧化性也很高,可以保护石墨高温下被氧化,因此可以提高材料的抗侵蚀性、热导率、抗热震性,减轻材料的结构剥落和开裂。
铝碳质耐火材料因具有高强度,抗渣侵蚀和抗热震性,且寿命长等特点,被广泛应用于连铸功能材料。浸入式水口是铝碳质耐火材料在连铸生产中的关键功能材料之一,其使用效果直接影响着连铸工艺顺利和铸坯质量。但在高温氧化气氛中,碳容易被氧化而造成材料表面气孔率增加,结构疏松,严重影响其使用效率。
将本发明合成的TiC-SiC包覆鳞片石墨引入浸入式水口中,由于被TiC-SiC包覆的鳞片石墨具有较高的抗氧化性,将浸入式水口与空气隔离,防止铝碳质浸入式水口的氧化。在不牺牲含碳材料良好性能的同时,提高了碳的抗氧化性,延长了含碳耐火材料的使用寿命,并简化了制备工艺,缩短制备周期,降低成本。
在本具体实施方式中:
本发明含碳耐火材料用石墨表面涂覆方法,主要包括碳化钛、碳化硅包覆层和鳞片石墨基体。采用燃烧合成法制备分散性、水润湿性、抗氧化性较好的碳化钛包覆鳞片石墨,对于提高含碳耐火材料性能具有重要意义。相比于鳞片石墨,碳化钛、碳化硅具有更小的水润湿角;并且碳化钛和碳化硅对氧的亲和力大于碳,可以起到抑制碳被氧化的作用。因此,含碳耐火材料用石墨表面涂覆方法能有效地改善石墨的润湿性和提高碳的抗氧化性能,进而可以赋予含碳耐火材料更优越的抗氧化性能和抗渣侵蚀性能,为含碳耐火材料领域做出巨大贡献。
以本发明给出的钛粉、硅粉和鳞片石墨按质量百分比进行配料,通过燃烧合成法均能制备新型含碳耐火材料用石墨。
实施例1:
如图1所示,为本实施例的制备工艺流程图,本实施例以钛粉(纯度≥99.0%)、硅粉(纯度≥99.0%)和鳞片石墨(纯度≥99.0%)为原料,按质量百分比计,原料配比为:钛粉为59.02%,硅粉为11.48%,鳞片石墨为29.5%。
将300目的钛粉和325目的鳞片石墨在陶瓷坩埚中均匀混合 60min,将300目的硅粉在110℃的烘箱中烘24h,然后将硅粉和Ti 粉与石墨的混合粉在混碾机中混合15-20min,混合完成后,均匀装料于陶瓷坩埚中再对其进行轻压成型,结束成型后,将试样放入抽真空并注满氩气的燃烧反应炉中进行燃烧反应,该燃烧反应通过试样自身释放出的热量引发。
试样在真空(真空度为-0.1MPa)常压条件下发生燃烧合成反应,而后待炉温降至室温后,关闭电源,开启炉门,将物料取出。对烧成的物料进行粉碎、研磨,最终得到TiC-SiC包覆鳞片石墨。
实施例2:
本实施例与实施例1不同的是:按照质量百分比计,原料中钛粉为56.25%,硅粉为10.94%,鳞片石墨为32.81%,其他试验参数和制备步骤均与实施例1相同,最终得到TiC-SiC包覆鳞片石墨。
实施例3:
本实施例与实施例1不同的是:按照质量百分比计,原料中钛粉为53.73%,硅粉为10.45%,鳞片石墨为35.82%,其他试验参数和制备步骤均与实施例1相同,最终得到TiC-SiC包覆鳞片石墨。
实施例4:
本实施例与实施例1不同的是:按照质量百分比计,原料中钛粉为51.43%,硅粉为10%,鳞片石墨为38.57%,其他试验参数和制备步骤均与实施例1相同,最终得到TiC-SiC包覆鳞片石墨。
对比例1:
本实施例与实施例1不同的是:按照质量百分比计,原料中钛粉为60.3%,铝粉为17%,鳞片石墨为22.7%,其他试验参数和制备步骤均与实施例1相同,最终得到TiC-Al4C3包覆鳞片石墨,但是在完全反应的情况下,反应过程较为剧烈,得到的反应产物松散。
(一)结果表征:
(1.1)X衍射分析:
对实施例1制备的TiC-SiC包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图2,由图2可知,该TiC-SiC包覆鳞片石墨主要成分包括碳化钛、碳化硅和鳞片石墨。对实施例2制备的TiC-SiC包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图3,由图3可知,该TiC-SiC包覆鳞片石墨主要成分包括碳化钛、碳化硅和鳞片石墨。对实施例3制备的TiC-SiC包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图4,由图4可知,该TiC-SiC包覆鳞片石墨主要成分包括碳化钛、碳化硅和鳞片石墨。对实施例4制备的TiC-SiC包覆鳞片石墨进行了X衍射分析,得到XRD图谱参见图5,由图5可知,该TiC-SiC包覆鳞片石墨主要成分包括碳化钛、碳化硅和鳞片石墨。
对对比例1制备得到的产物进行X衍射分析得到的XRD图谱参见图6,由图6可知,该实验产物的主要成分包括TiC、Al4C3和C,由于包覆层含有Al4C3,从XRD图可以看出这种物质衍射峰很小,说明生成量很少,分析原因,可能因为Al粉在650℃左右会挥发,导致Al粉的加入量减少,从而导致Al4C3生成量下降,导致包覆层厚度下降,影响包覆层的完整性和均匀性,从而大大降低了粉体的抗氧化能力,说明添加Al粉不能得到理想的涂层。
(1.2)扫描电镜分析:
对实施例4制备的新型含碳耐火材料用石墨进行了扫描电镜分析,得到扫描电镜图参见图7。结合扫描的电镜的二次电子像图7(a) 和能谱分析图7(b)(c)(d)(e)可知,1点、3点为碳化钛和碳化硅,2点、 4点为碳,说明深色鳞片石墨基体被明亮的碳化钛、碳化硅包覆,证明燃烧合成法可用于在鳞片石墨表面形成连续的TiC-SiC包覆层。对实施例4制备的TiC-SiC包覆鳞片石墨进行面扫描分析,得到扫描电镜图参见图8,由图8可知碳化钛、碳化硅是相间分布在鳞片石墨周围,并且碳化钛多数分布于鳞片石墨的外侧,碳化硅则分布于鳞片石墨的内测,包覆连续且厚度估计为600nm。
(1.3)润湿角分析
将实施1制备的TiC-SiC包覆鳞片石墨试样压成Φ10×4mm的薄片,如图9所示,用接触角测定仪测量其润湿角为45.21°,图9(a) 显示的则是鳞片石墨的试样薄片,鳞片石墨润湿角为70.68°,由此说明,实施例1中制备得到的TiC-SiC包覆鳞片石墨具有更好的水润湿性。
如图图9(c)所示,将实施2制备的TiC-SiC包覆鳞片石墨试样压成Φ10×4mm的薄片,用接触角测定仪测量其润湿角为38.12°,具有良好的润湿性。
如图图9(d)所示,将实施3制备的TiC-SiC包覆鳞片石墨试样压成Φ10×4mm的薄片,用接触角测定仪测量其润湿角为41.23°,具有良好的润湿性。
如图图9(e)所示,将实施4制备的TiC-SiC包覆鳞片石墨试样压成Φ10×4mm的薄片,用接触角测定仪测量其润湿角为26.93°,具有良好的润湿性。
(1.4)抗氧化性分析
将机械混合碳化钛、碳化硅和鳞片石墨(命名为TS-1)作为对照组,称10g,装入陶瓷坩埚中,放入抗热震炉中,每隔10min取出来称重一次,直到重量不变为止,画出其氧化失重图,如图10所示。
将实施例4制备的TiC-SiC包覆鳞片石墨试样(命名为TS-5), 称10g,装入陶瓷坩埚中,放入抗热震炉中,每隔10min取出来称重一次,直到重量不变为止,画出其氧化失重图,如图10所示。
根据图10可知,机械混合(TS-1)为失重氧化,TS-2、TS-3、 TS-4、TS-5为增重氧化,可以看出,经TiC-SiC包覆的鳞片石墨抗氧化性增强,氧化的开始为TiC、SiC被氧化为TiO2、SiO2,所以表现为增重,随着氧化时间的推移,TiC和SiC完全变为TiO2和SiO2,此时鳞片石墨就会暴露出来,开始被氧化,所以会出现失重,由此可以看出,TiC-SiC包覆层的存在,使鳞片石墨的抗氧化性大大提高。
(三)耐火材料抗氧化实验
对实施例4制备的TiC-SiC包覆鳞片石墨作为碳源,按照表1的组成配料。以325目鳞片石墨作为碳源制备的耐火材料命名为C0;以TiC-SiC包覆鳞片石墨作为碳源制备的耐火材料命名为CT。制备出72×72×72mm立方块的抗氧化性试样,在1200℃空气条件下保温3h,进行抗氧化实验,其结果如图11所示,其中,图11(a)为耐火材料试样氧化后的断面照片,图11(b)为对应的脱碳深度及氧化面积率。
可以看出,样品C0耐火材料氧化深度为12.79mm,样品CT耐火材料氧化深度为7.91mm,样品C0耐火材料氧化面积百分率为 59.02%,样品CT耐火材料氧化面积百分率为59.02%;综上可以看出样品CT耐火材料表现出优异的抗氧化性。
表1铝镁质耐火材料配料组成
Figure RE-GDA0002653465430000101
Figure RE-GDA0002653465430000111
(四)耐火材料的体积密度(BD)和显气孔率(AP)
在含碳耐火浇注料中,CT浇注料经110℃烘干后的显气孔率最低为13.99%。这是由于加入的改性石墨水润湿性好,使加水量最低,显气孔率最低。经1000℃烧结后,少量石墨被氧化,造成C0浇注料的显气孔率增加,体积密度降低。经1500℃烧结后,由于C0浇注料中的鳞片石墨易氧化,导致显气孔率最低,体积密度最低。而CT浇注料中石墨被氧化为CO2所产生的空隙和TiC氧化为TiO2、SiC氧化为SiO2产生的空隙填充可以少部分抵消。
(五)耐火材料的抗折强度(a)和耐压强度(b)
在含碳耐火浇注料中,110℃烘干后,CT浇注料的CMOR和CCS 值相对较高,分别为2.91MPa和12.14MPa,这主要是由于改性石墨有较好的润湿性,造成CT浇注料显气孔率低,导致其常温强度高于 C0浇注料。
经1000℃烧结后,CT浇注料的CSS值和CMOR值高于C0浇注料,这是由于因为随着烧结温度的增加,提高了试样中各物相的烧结程度,尤其是基质中形成的镁铝尖晶石(MgAl2O4)、六铝酸钙(CaO·6Al2O3) 等陶瓷相,形成互锁结构。其次,样品CT中氧化生成的TiO2作为矿化剂,可以促进MgAl2O4相的生成,使得试样的烧结程度及强度最大。同时改性石墨具有良好的分散性和抗氧化性,使得CT的气孔率最低,所以CT浇注料的CCS和CMOR均高于C0浇注料。

Claims (5)

1.一种含碳耐火材料的制备方法,其特征在于,该方法以钛粉、硅粉和鳞片石墨为原料,采用燃烧合成法在抽真空并注入惰性气体的条件下进行TiC-SiC包覆鳞片石墨的制备。
2.如权利要求1所述的含碳耐火材料的制备方法,其特征为,所述原料按质量百分比计,钛粉51.43%~59.02%,硅粉10%~11.48%,鳞片石墨29.5%~38.57%,总含量为100%。
3.如权利要求2所述的含碳耐火材料的制备方法,其特征在于,方法包括以下步骤:
步骤S1:将经过预处理的硅粉与钛粉、鳞片石墨按照配比混合均匀,装料于陶瓷坩埚中得到试样;
步骤S2:将步骤S1得到的试样放入燃烧反应炉中,在抽真空并注入惰性气体的条件下,试样被自身所释放的热量引发进行燃烧合成反应;
步骤S3:反应后的试样研磨即得TiC-SiC包覆鳞片石墨粉体。
4.如权利要求3所述的鳞片石墨石墨表面涂覆方法,其特征在于,步骤1中所述的预处理包括:将硅粉置于110℃~150℃的烘箱中烘干20h~24h。
5.如权利要求1所述的鳞片石墨石墨表面涂覆方法,其特征在于,所述的抽真空达到的真空度为-0.1MPa。
CN202010559721.1A 2020-06-18 2020-06-18 一种含碳耐火材料的制备方法 Pending CN111807358A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010559721.1A CN111807358A (zh) 2020-06-18 2020-06-18 一种含碳耐火材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010559721.1A CN111807358A (zh) 2020-06-18 2020-06-18 一种含碳耐火材料的制备方法

Publications (1)

Publication Number Publication Date
CN111807358A true CN111807358A (zh) 2020-10-23

Family

ID=72844813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010559721.1A Pending CN111807358A (zh) 2020-06-18 2020-06-18 一种含碳耐火材料的制备方法

Country Status (1)

Country Link
CN (1) CN111807358A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398662A (zh) * 2021-07-20 2021-09-17 西安特种设备检验检测院 高温气体过滤除尘装置用层叠式过滤介质及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922760A (zh) * 2014-03-03 2014-07-16 武汉科技大学 一种用于碳复合耐火材料的碳素原料及其制备方法
CN106115707A (zh) * 2016-06-29 2016-11-16 武汉科技大学 一种抗氧化的鳞片石墨粉体及其制备方法
CN110615682A (zh) * 2019-09-23 2019-12-27 西安建筑科技大学 一种含碳耐火浇注料用石墨表面改性方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922760A (zh) * 2014-03-03 2014-07-16 武汉科技大学 一种用于碳复合耐火材料的碳素原料及其制备方法
CN106115707A (zh) * 2016-06-29 2016-11-16 武汉科技大学 一种抗氧化的鳞片石墨粉体及其制备方法
CN110615682A (zh) * 2019-09-23 2019-12-27 西安建筑科技大学 一种含碳耐火浇注料用石墨表面改性方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOGUANG LIU ET AL.: "Preparation of TiC-SiC composite coatings on graphite flakes and their effects on hydrophilicity and dispersivity", 《SURFACE & COATINGS TECHNOLOGY》 *
毕玉保等: "含碳浇注料用鳞片石墨的表面改性技术综述", 《材料导报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398662A (zh) * 2021-07-20 2021-09-17 西安特种设备检验检测院 高温气体过滤除尘装置用层叠式过滤介质及其制备方法

Similar Documents

Publication Publication Date Title
Abdollahi et al. Thermal shock resistance and isothermal oxidation behavior of C/SiC-SiCnano functionally gradient coating on graphite produced via reactive melt infiltration (RMI)
JP4634263B2 (ja) マグネシアカーボンれんが
Masoudifar et al. Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables
Qian-Gang et al. Microstructure and anti-oxidation property of CrSi2–SiC coating for carbon/carbon composites
CN101648812A (zh) 一种高铬砖的制备方法
Chen et al. High temperature oxidation resistance of La2O3-modified ZrB2-SiC coating for SiC-coated carbon/carbon composites
Jiang et al. Oxidation protective ZrB2-MoSi2-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration
Abdollahi et al. SiC nanoparticles toughened-SiC/MoSi 2-SiC multilayer functionally graded oxidation protective coating for carbon materials at high temperatures
WO2008091041A1 (en) Carbon-containing refractory composition containing no resinous binder
Ren et al. Dynamic oxidation protective behaviors and mechanisms of HfB2-20wt% SiC composite coating for carbon materials
Li et al. Thermal cycling behavior and failure mechanism of the Si-HfO2 environmental barrier coating bond coats prepared by atmospheric plasma spraying
Chen et al. Application of SiC whiskers synthesized from waste rice husk in low-carbon MgO–C refractories
Wang et al. Recovery in oxidation behavior of damaged SiCZrB2/SiC coating of carbon/carbon composites
Li et al. Improved mechanical strength and oxidation resistance of SiC/SiC-MoSi2-ZrB2 coated C/C composites by a novel strategy
CN111807358A (zh) 一种含碳耐火材料的制备方法
Li et al. Antioxidation enhancement and siliconization mitigation for SiC coated C/C composites via a nano-structural SiC porous layer
CN110615682A (zh) 一种含碳耐火浇注料用石墨表面改性方法及其应用
Mukhopadhyay et al. Spinel‐coated graphite for carbon containing refractory castables
Chen et al. Study on structure and properties of low carbon spinel-C refractory composites
He et al. Influence of CLVD thermal gradient on the deposition behavior, microstructure and properties of C/C-ZrC composites
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
Liu et al. Preparation and application of unfired Al2O3–Al–C slide plate materials in the presence of trace Zn
Si et al. Effect of Al addition on creep resistance of the fired SiC-MgAl2O4 composite refractories
CN115028455A (zh) 免烧碳化硅-镁铝尖晶石耐火材料及其制备方法与制品
Zhao et al. Large‐scale fabrication of TiC@ C powders and its effect on the properties of Al2O3‐MgO‐C castables

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201023

RJ01 Rejection of invention patent application after publication