CN104419983B - 单晶铜、其制备方法及包含其的基板 - Google Patents

单晶铜、其制备方法及包含其的基板 Download PDF

Info

Publication number
CN104419983B
CN104419983B CN201310406266.1A CN201310406266A CN104419983B CN 104419983 B CN104419983 B CN 104419983B CN 201310406266 A CN201310406266 A CN 201310406266A CN 104419983 B CN104419983 B CN 104419983B
Authority
CN
China
Prior art keywords
copper
single crystal
crystal
negative electrode
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310406266.1A
Other languages
English (en)
Other versions
CN104419983A (zh
Inventor
陈智
杜经宁
吕佳凌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spring Foundation of NCTU
Original Assignee
Spring Foundation of NCTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spring Foundation of NCTU filed Critical Spring Foundation of NCTU
Publication of CN104419983A publication Critical patent/CN104419983A/zh
Application granted granted Critical
Publication of CN104419983B publication Critical patent/CN104419983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • C30B19/103Current controlled or induced growth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component

Abstract

本发明公开了一种单晶铜,其具有[100]方向,且体积介于0.1μm3~4.0×106μm3。本发明还提供一种单晶铜的制备方法,以及包含该单晶铜的基板。

Description

单晶铜、其制备方法及包含其的基板
技术领域
本发明涉及一种单晶铜,采用有别于现有的方法,在基板上制备出具有[100]方向的大单晶铜,适合应用于凸块金属垫层(UBM,under bump metallization)、半导体芯片的内连线(interconnect)、金属导线或基板线路。
背景技术
单晶铜是由具有固定结晶方向的晶粒所形成,其拥有良好的物理特性,与多晶铜相比,具有优选的伸长量及低电阻率,且因横向晶界的消除促使电迁移寿命大幅提升,再加上(100)表面扩散速度较其他晶面慢,故适合应用为封装凸块金属垫层及集成电路的铜内连线,对于集成电路工业应用发展非常有贡献。
一般来说,金属的抗电迁能力影响电子元件的可靠度,过去研究发现可通过三种方法提升铜的抗电迁能力,第一种是改变导线晶格结构,使其内部晶粒结构具有一优选方向;第二种是增加晶粒尺寸,使晶粒边界数量减少而降低原子迁移路径;第三种是添加纳米双晶金属,减缓原子电迁移到双晶晶界时的流失速度。
关于第一种及第二种方式,公知技术是以脉冲电镀技术形成单晶铜结构,然而公知技术却存在两大缺失,首先,单晶铜晶粒为块材,无法直接生长于硅基材进而应用于微电子产业,再者,参考近期由Jun Liu等发表的相关文献,虽指出优化电镀掺数的脉冲电镀法能够控制铜晶体生长方向,且此方法能够生长出大晶粒的铜,然而却仍存在有掺杂小晶粒铜的问题,无法完全生长为单晶铜(参考Jun Liu,Changqing Liu,Paul P Conway,″Growthmechanism of copper column by electrodeposition for electronicinterconnections,″Electronics Systemintegration Technology Conference,p679-84(2008)以及Jun Liu,Changqing Liu,Paul P Conway,Jun Zeng,Changhai Wang,″Growthand Recrystallization of Electroplated Copper Columns,″InternationalConference on Electronic Packaging Technology&High Density Packaging,p695-700(2009))。
有鉴于电子制造业发展日新月异,研发具有高度导电特性、低电阻率极高伸长量的单晶铜已成为当务之急,本发明的发明人研究出更佳的解决方法,不但能以简单的工艺制作具有特定方向的单晶铜,且能突破现有的形成单晶铜晶粒尺寸的限制。
发明内容
本发明的目的是提供一种通过单晶铜制备方法制备单晶铜及含有单晶铜的基板,以通过特殊工艺而获得具有[100]方向的大单晶铜。
为达上述目的,本发明提供一种单晶铜,其具有[100]的方向,且该单晶铜的体积可介于0.1μm3~4.0×106μm3之间,优选为介于20μm3~1.0×106μm3之间,更优选为介于450μm3~8×105μm3之间。
本发明单晶铜的粒子形状无特别限制,可为圆柱状、线状、立方体、长方体、不规则状等,若单晶铜为圆柱状,则直径可介于1μm~500μm,优选介于5μm~300μm,更优选为介于10μm~100μm,若单晶铜为线状,则该线状的长度可达700μm。另外,无论该单晶铜的形状,其厚度可介于0.1μm~50μm,优选介于1μm~15μm,更优选为介于5μm~10μm。
上述单晶铜可应用于凸块金属垫层(UBM,under bump metallization)、半导体芯片的内连线(interconnect)、金属导线或基板线路,但无特别限制。
本发明另提供一种制备单晶铜的方法,主要通过电镀法于欲形成单晶铜的基板上先形成高密度且晶粒规则排列的一纳米双晶铜柱,再通过退火处理使纳米双晶铜柱利用再结晶方式而使晶粒异常生长,进而产生具有[100]方向的大单晶铜颗粒。本发明制备单晶铜的步骤包括:
(A)提供一电镀装置,该装置包括一阳极、一阴极、一电镀液以及一电力供应源,该电力供应源分别与该阳极及该阴极连接,且该阳极及该阴极浸泡于该电镀液中,该电镀液包括:一铜的盐化物、一酸以及一氯离子来源;
(B)使用该电力供应源提供电力进行电镀,并于该阴极的一表面生长一纳米双晶铜柱,其中该纳米双晶铜柱包含多个纳米双晶铜晶粒;以及
(C)将形成有该纳米双晶铜柱的该阴极于350℃~600℃下进行0.5小时~3小时的一退火处理,以获得一单晶铜,其中该单晶铜结晶方向为[100],且体积介于0.1μm3~4.0×106μm3之间。
在上述步骤(A)中,该阴极可包括一晶种层,其中该晶种层是一铜层,且厚度为0.1μm~0.3μm,该晶种层可由一物理气相沉积法(PDV)形成,但无特别限制。
在上述步骤(B)中,该纳米双晶铜柱形成于该晶种层上。
在上述步骤(B)中,该纳米双晶铜柱的生长速率介于1nm/cycle~3nm/cycle,优选为介于1.5nm/cycle~2.5nm/cycle。
在上述步骤(B)中,该纳米双晶铜的厚度可介于0.1μm~50μm,优选为介于1μm~15μm,更优选为介于5μm~10μm。
在上述步骤(B)中,电力供应源可为一高速脉冲电镀供应源,且其操作条件为:Ton/Toff(sec)=0.1/2~0.1/0.5,电流密度为0.01~0.2A/cm2。基本上除了高速脉冲电镀供应源外,亦可使用直流电电镀供应源,或两者交互使用。
在上述步骤(A)的电镀液中,氯离子主要功能之一是可用以微调整晶粒生长方向,使双晶金属具有结晶优选方向。此外,其酸可为一有机或无机酸,以增加电解质浓度而提高电镀速度,例如可使用硫酸、甲基磺酸、或其混合,此外,电镀液中的酸的浓度优选为80~120g/L。此外,电镀液须同时包含有铜离子来源(亦即,铜的盐化物,例如,硫酸铜或甲基磺酸铜)。该电镀液较优选的组成中,也可包括一添加物选自由明胶(gelatin)、界面活性剂、晶格修整剂(lattice modification agent)、及其混合所组成的集合,用以调整此些添加物质可用以微调整晶粒生长方向。
在上述步骤(A)中,该铜的盐化物优选为硫酸铜。该酸优选为硫酸、甲基磺酸或其混合,且该酸的浓度优选为80g/L~120g/L。该基板可选自由硅基板、玻璃基板、石英基板、金属基板、塑料基板、印刷电路板、III-IV族材料基板及其混合所组成的集合,无特别限制,优选为硅基板。
本发明另提供一种具有上述单晶铜的基板,其包括一基板;以及上述本发明的单晶铜,该单晶铜配置于该基板上,可配置为线路状,或配置为阵列状,随着不同应用或需求而改变。在此,单晶铜以及基板的特性与上述相同,不另赘述。
通过本发明制备方法所制得的单晶铜具有100]方向的大晶粒,其优秀的机械、电、光和热稳定性及抗电迁移特性能大幅提升产业应用性。
附图说明
图1是本发明实施例的电镀装置;
图2A是直径为17μm的单颗单晶铜的聚焦离子束(FIB)俯视图;
图2B是直径为17μm的单颗单晶铜的EBSD分析结果图;
图3A是直径为25μm的单晶铜阵列聚焦离子束(FIB)俯视图;
图3B是粒径为25μm的单颗单晶铜的聚焦离子束(FIB)俯视图;
图3C是图3B的聚焦离子束(FIB)剖面图;
图3D是图3A的EBSD分析结果图;
图3E是图3B的EBSD分析结果图;
图4是直径为50μm的单晶铜阵列的EBSD分析结果图;
图5A是直径为100μm的单晶铜阵列的聚焦离子束(FIB)俯视图;
图5B是图5A的EBSD分析结果图。
【附图标记说明】
1 电镀装置
11 阳极
12 阴极
13 电镀液
14 电力供应源
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明提供如图1所示的电镀装置1,该电镀装置包括:一阳极11、一阴极12、一电镀液13以及一电力供应源15,该电力供应源14分别与该阳极11及该阴极12连接,且该阳极11及该阴极12浸泡于该电镀液13中。
在此,阳极11选用纯度99.99%的商用纯铜靶材,而阴极12为硅芯片,电镀液13包括硫酸铜(铜离子浓度为20~60g/L)、氯离子(浓度为10~100ppm)、以及甲基磺酸(浓度为80~120g/L),且可选择性的添加其他接口活性剂或晶格修整剂(如BASF Lugalvan1~100ml/L)。此外,电镀液13中还可包含有机酸(例如甲基磺酸)或明胶等。
上述阴极12硅芯片可通过物理气相沉积法(PVD)沉积厚度为0.2μm的铜膜作为晶种层,以使电镀电流源只需接触硅芯片的边缘附近,即可把电流均匀的传导至芯片中央,达到晶种层厚度的均匀性。
本实施例的电力供应源14为高速脉冲电镀供应源,其操作条件为Ton/Toff(sec)为0.1/2~0.1/0.5(例如0.1/2、0.1/1或0.1/0.5),电流密度为0.01~0.2A/cm2,最佳为0.05A/cm2,在此条件下,以大约2nm/cycle生长速度生长纳米双晶铜柱,其厚度为6~10μm。接着,图案化该纳米双晶铜柱,以于硅芯片上形成纳米双晶铜柱图案。基本上,纳米双晶铜柱的图案无特别限制,可为为圆柱状、线状、立方体、长方体、不规则状等,且该些图案可排列为阵列。
接着将表面形成纳米双晶铜柱的硅芯片置放于高真空(8×10-7torr)的退火炉管内,温度维持于400~450℃,0.5~1小时,进行退火处理,以形成具有大粒径的[100]结晶方向的单晶铜。
图2A是直径为17μm的单颗单晶铜晶粒的聚焦离子束(FIB)俯视图,图2B是其的EBSD分析结果图,图2A、2B的退火处理条件为450℃,60分钟。由图2A、2B可证实本实施例的单晶铜具有[100]方向,且单颗单晶铜体积为1362μm3
图3A是直径为25μm的单晶铜阵列聚焦离子束(FIB)俯视图,图3B是直径为25μm的单颗单晶铜的聚焦离子束(FIB)俯视图,图3C是图3B的聚焦离子束(FIB)剖面图,图3D是图3A的EBSD分析结果图,图3E是图3B的EBSD分析结果图。图3A至3E的退火处理条件为450℃,60分钟,由此结果可发现直径25μm的单晶铜不掺杂其他晶粒,具有[100]方向,且单颗单晶铜体积为2945μm3
图4是直径为50μm的单晶铜阵列EBSD分析结果图。图4退火条件为450℃,60分钟,由此结果同样证实形成直径为50μm的具有[100]方向的单晶铜,且该单颗单晶铜体积为1.2×104μm3
图5A是直径为100μm的单晶铜阵列聚焦离子束(FIB)俯视图,图5B是图5A的EBSD分析结果图。由图5A、5B结果可发现,由本实施例的方法所制成的直径为100μm的单晶铜同样具有[100]方向,且单颗单晶铜体积为4.8×104μm3
由于单晶铜拥有良好的物理特性,与目前应用的多晶铜相比,具有良好的伸长量和低电阻率,并且消除了横向晶界,从而大大提电迁移寿命。就此,本发明的单晶铜非常适合用于制造IC的铜内连线与凸块金属垫层等等,对于集成电路工业的应用发展非常有贡献。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种制备单晶铜的方法,其步骤依序包括:
A、提供一电镀装置,该装置包括一阳极、一阴极、一电镀液以及一电力供应源,该电力供应源分别与该阳极及该阴极连接,且该阳极及该阴极浸泡于该电镀液中,该电镀液包括:一铜的盐化物、一酸以及一氯离子来源;
B、使用该电力供应源提供电力进行电镀,并于该阴极的一表面生长一纳米双晶铜柱,该纳米双晶铜柱包含多个纳米双晶铜晶粒;以及
C、将形成有该纳米双晶铜柱的该阴极于350℃~600℃下进行0.5小时~3小时的一退火处理,以获得一单晶铜,
其特征在于:该单晶铜具有[100]方向,且体积介于0.1μm3~4.0×106μm3之间,该单晶铜的厚度介于0.1μm~50μm。
2.如权利要求1所述的方法,其特征在于,在步骤A中,该阴极包括一晶种层,其中该晶种层是一铜层,且厚度为0.1μm~0.3μm,该晶种层由一物理气相沉积法形成。
3.如权利要求2所述的方法,其特征在于,在步骤B中,该纳米双晶铜金属柱形成于该晶种层上。
4.如权利要求1所述的方法,其特征在于,在步骤B中,该纳米双晶铜金属柱的生长速率介于1nm/cycle~3nm/cycle。
5.如权利要求1所述的方法,其特征在于,在步骤B中,该纳米双晶铜金属柱的厚度5μm~15μm。
6.如权利要求1所述的方法,其中步骤B的该电力供应源是一高速脉冲电镀供应源,且其操作条件为:Ton/Toff(sec)=0.1/2~0.1/0.5,电流密度为0.01A/cm2~0.2A/cm2
7.如权利要求1所述的方法,其特征在于,该单晶铜的体积介于20μm3~1.0×106μm3之间。
8.如权利要求1所述的方法,其特征在于,步骤A的该电镀液还包括一明胶、一接口活性剂、一晶格修饰剂或其混合物。
9.如权利要求1所述的方法,其特征在于,步骤A的该铜的盐化物硫酸铜。
10.如权利要求1所述的方法,其特征在于,步骤A的该酸为硫酸、甲基磺酸、或其混合。
11.如权利要求1所述的方法,其特征在于,步骤A的该酸的浓度为80g/L~120g/L。
12.如权利要求1所述的方法,在步骤A中,该阴极选自由硅基板、玻璃基板、石英基板、金属基板、塑料基板、印刷电路板、III-IV族材料基板及其混合所组成的集合。
CN201310406266.1A 2013-08-30 2013-09-09 单晶铜、其制备方法及包含其的基板 Active CN104419983B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102131258A TWI507569B (zh) 2013-08-30 2013-08-30 單晶銅、其製備方法及包含其之基板
TW102131258 2013-08-30

Publications (2)

Publication Number Publication Date
CN104419983A CN104419983A (zh) 2015-03-18
CN104419983B true CN104419983B (zh) 2018-03-02

Family

ID=52583658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310406266.1A Active CN104419983B (zh) 2013-08-30 2013-09-09 单晶铜、其制备方法及包含其的基板

Country Status (3)

Country Link
US (1) US20150064496A1 (zh)
CN (1) CN104419983B (zh)
TW (1) TWI507569B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761523B2 (en) * 2015-08-21 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure with twin boundaries and method for forming the same
CN108486512B (zh) * 2018-03-01 2020-04-10 南京理工大学 一种没有横向晶界铜导线的组织定向方法
CN108754605B (zh) * 2018-06-22 2019-11-12 东北大学 水溶液电解质中电沉积定向生长金属单晶体的装置和方法
WO2020006761A1 (zh) * 2018-07-06 2020-01-09 力汉科技有限公司 电解液、使用该电解液以电沉积制备单晶铜的方法以及电沉积设备
US10985378B2 (en) 2018-09-12 2021-04-20 Industrial Technology Research Institute Electrolyzed copper foil and current collector of energy storage device
CN110894615B (zh) * 2018-09-12 2021-02-26 财团法人工业技术研究院 电解铜箔与储能装置的集电体
EP3966366A1 (en) * 2019-05-07 2022-03-16 Total Se Electrocatalysts synthesized under co2 electroreduction and related methods and uses
TWI741466B (zh) * 2019-12-27 2021-10-01 鉑識科技股份有限公司 利用水/醇溶性有機添加劑製備之奈米雙晶層及其製備方法
CN112553681B (zh) * 2020-11-21 2021-10-08 嘉兴固美科技有限公司 一种大块体单晶铜的制备方法
TWI753798B (zh) * 2021-03-16 2022-01-21 財團法人工業技術研究院 基底穿孔結構及其製造方法、重佈線層結構及其製造方法
KR102411717B1 (ko) * 2021-05-12 2022-06-22 아주대학교산학협력단 구리 복합 구조체의 제조방법 및 이에 의해 제조된 구리 복합 구조체를 포함하는 에너지 저장 장치 및 라만 분광 기판 구조물
CN114411233B (zh) * 2022-01-11 2023-05-26 大连理工大学 一种快速制备(100)单晶铜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657624B1 (fr) * 1990-01-26 1992-04-24 Saint Louis Inst Procede pour la fabrication de plaques en metal ductile et ses applications.
CN1057136C (zh) * 1997-11-19 2000-10-04 西北有色金属研究院 一种立方织构镍基带的制造方法
US6535365B1 (en) * 2000-02-17 2003-03-18 The Regents Of The University Of Michigan Magnetic tunneling structure having ferromagnetic layers of different crystallographic structure
US6465887B1 (en) * 2000-05-03 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with diffusion barrier and process for making same
EP1388900A1 (en) * 2001-05-15 2004-02-11 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element
JP2006283146A (ja) * 2005-04-01 2006-10-19 Nikko Kinzoku Kk 圧延銅箔及びその製造方法
WO2007014322A2 (en) * 2005-07-27 2007-02-01 University Of Houston Nanomagnetic detector array for biomolecular recognition
US8557507B2 (en) * 2010-11-05 2013-10-15 California Institute Of Technology Fabrication of nano-twinned nanopillars
TWI432613B (zh) * 2011-11-16 2014-04-01 Univ Nat Chiao Tung 電鍍沉積之奈米雙晶銅金屬層及其製備方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction;R. Maaß et al.;《APPLIED PHYSICS LETTERS》;20080221;第92卷;第071905页 *

Also Published As

Publication number Publication date
TWI507569B (zh) 2015-11-11
CN104419983A (zh) 2015-03-18
TW201508099A (zh) 2015-03-01
US20150064496A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
CN104419983B (zh) 单晶铜、其制备方法及包含其的基板
US10094033B2 (en) Electrodeposited nano-twins copper layer and method of fabricating the same
Toimil Molares et al. Electrical characterization of electrochemically grown single copper nanowires
US5039381A (en) Method of electroplating a precious metal on a semiconductor device, integrated circuit or the like
KR101306856B1 (ko) 전기도금 수용액 및 이의 제조 및 사용방법
CN101568670A (zh) 在太阳能电池基板上进行电镀的方法与设备
JP2013536986A (ja) ガリウムおよびガリウム合金膜の電着方法ならびに関連する光起電構造
TW200304966A (zh)
CN107195605A (zh) 以薄镍层作为阻挡层的铜镍锡微凸点结构及其制备方法
KR20130108978A (ko) 구리 도금 조성물 및 이 조성물을 사용한 반도체 기판에서 공동을 충진하기 위한 공정
DE60100233T2 (de) Keimschicht
TW201542888A (zh) 奈米雙晶鎳金屬層、其製備方法、及包含其之電性連接結構、基板及封裝結構
KR101141923B1 (ko) 이중 전기도금법을 이용한 전기도금법 및 이로부터 형성되는 금속 박막
KR20140120878A (ko) 도전재료 구조체의 형성방법 및 도금장치 및 도금방법
US20130252020A1 (en) Electro-Depositing Metal Layers of Uniform Thickness
Kim et al. Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology
KR101908144B1 (ko) 금속화 프로세스, 혼합물 및 전자 디바이스
CN103603020A (zh) 电化学沉积制备铜互连用微纳米针锥结构的方法
CN103741178B (zh) 一种用于硅表面直接电镀光滑致密银薄膜的溶液及电镀方法
CN103603015B (zh) 铜互连用微纳米针锥结构的电化学制备方法
WO2020006761A1 (zh) 电解液、使用该电解液以电沉积制备单晶铜的方法以及电沉积设备
CN110760903A (zh) 一种铜薄膜材料及其电沉积制备方法
JP2009001897A (ja) バイポーラ無電解プロセス方法
CN109576645A (zh) 一种直流电沉积制备锡铟纳米线的方法
US20180355499A1 (en) Manufacturing method of ultra-large copper grains without heat treatment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant