CN104289179A - 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法 - Google Patents

一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法 Download PDF

Info

Publication number
CN104289179A
CN104289179A CN201410493771.9A CN201410493771A CN104289179A CN 104289179 A CN104289179 A CN 104289179A CN 201410493771 A CN201410493771 A CN 201410493771A CN 104289179 A CN104289179 A CN 104289179A
Authority
CN
China
Prior art keywords
attapulgite
activation
carbon composite
composite adsorbent
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410493771.9A
Other languages
English (en)
Other versions
CN104289179B (zh
Inventor
吴雪平
程丽萍
张先龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201410493771.9A priority Critical patent/CN104289179B/zh
Publication of CN104289179A publication Critical patent/CN104289179A/zh
Application granted granted Critical
Publication of CN104289179B publication Critical patent/CN104289179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents

Abstract

本发明公开了一种一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法,本方法以廉价的天然凹凸棒石粘土和生物质纤维素碳源为原料,以ZnCl2为活化剂,通过一步煅烧法制备凹凸棒石/碳复合材料吸附剂。本方法不仅使凹凸棒石晶体表面负载具有亲有机特性的无定性炭,而且通过ZnCl2的活化造孔作用,大大提高了复合材料的比表面积。与天然的未改性的凹凸棒石粘土相比,活化后的复合材料吸附剂对水中污染物亚甲基蓝的脱除率大幅提高。本发明原料来源广泛,价格低廉,制备工艺简单,反应条件温和,本方法制备的凹凸棒石/碳复合材料吸附剂对水中有机污染物吸附能力明显提升,可用于水中有机污染物的深度处理。

Description

一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法
技术领域
本发明涉及到一种低成本改性凹凸棒石吸附剂的方法,具体为利用煅烧活化的方法制备凹凸棒石/碳复合材料吸附剂以改善凹凸棒石作为吸附剂对污水中有机污染物的吸附能力,所制备的凹凸棒石/碳复合材料吸附剂可应用于水体中微量难降解染料的脱除。
背景技术
凹凸棒石是一种天然的纳米尺度的层状水合镁铝硅酸盐矿物,来源广泛、价格低廉、理化性能优越,具有较丰富的孔道结构和一定的比表面积,对无机金属离子有较强的吸附性能。因此,凹凸棒石已被广泛应用于各种领域,包括总金属离子和染料吸附剂以及催化剂载体,但由于凹凸棒石表面具有较强的亲水性使得其在有机污染物的吸附性能上仍有较大的局限性。
凹凸棒石传统的亲有机改性方法主要是采用表面活性剂改性,比如使用表面活性剂(如十六烷基溴化铵、十八烷基三甲基氯化铵等)和偶联剂(如硅烷偶联剂和钛酸酯偶联剂)对凹凸棒石进行改性;此外还有高温煅烧以及酸处理等改性方法。然而表面活性剂和偶联剂存在着改性方法繁琐、成本高等缺点;高温煅烧法改性凹凸棒石,反应温度至少达到500℃以上,能耗较高,且对有机污染物的吸附性能提升不大。
目前,利用凹凸棒石为模板与其他碳质材料复合制备吸附剂已有一定的领域,中国专利文献CN 102276237 A和CN 102614851 A分别公开了一种凹凸棒石基碳复合陶粒的制备方法和一种坡缕石粘土/植物秸秆复合吸附剂的制备方法,但尚未对复合材料的比表面积和孔隙结构有较好的改善效果。中国专利文献CN 103316633 A公开了一种凹土/多孔炭复合材料的制备方法,以凹凸棒石和稻壳为原料,先与硫酸溶液混合进行热处理,再进行碱活化,高温煅烧制得凹土/多孔炭复合材料,虽然复合材料经碱活化后比表面有一定程度的提高,但处理过程中产生的硫酸和碱废液对环境会产生严重污染,无法达到环保而高效的目的。
发明内容
本发明旨在提供一种煅烧活化法有机改性凹凸棒石吸附剂的制备方法,所要解决的技术问题是通过煅烧活化复合改善凹凸棒石亲有机性,提高材料的比表面积来提高其对有机污染物的吸附能力。
为实现上述发明目的,本发明采用如下技术方案:
1)、将凹凸棒石粘土原矿粉碎并过200目筛得凹凸棒石粉料;
2)、将凹凸棒石粉料、纤维素以1:2的质量比浸渍于ZnCl2溶液中,所述纤维素与ZnCl2的质量比分别为1:3~3:1,超声或搅拌混合,分散均匀,浸渍4~24小时得到混合物料;
3)、将所述混合物料烘干后置于活化炉中350℃~600℃煅烧30~120分钟,再依次经盐酸、热水洗涤,干燥粉碎后即可得到活化改性的凹凸棒石/碳复合材料。
步骤3)中,活化过程是采用在N2气氛下煅烧,即先将水平活化炉中的空气用真空泵抽尽,再通入N2,反复三次,保证活化过程中无空气的影响。
与现有技术相比,本发明的有益效果体现在:
1)、本发明采用一步煅烧活化复合的方法,制得了具有高比表面积的复合材料,与常规的500~1000℃高温煅烧制备改性凹凸棒石方法以及800~1000℃高温物理活化制备活性炭相比,本制备方法中的煅烧活化温度低于600℃,属于低温活化。常规技术中单纯以生物质为原料通过化学活化方法制备活性炭,收率常常在30%以下,有的甚至低于10%。本发明将凹凸棒石和纤维素两种材料复合在一起制备所得到的产品收率高于30%,有的可达50~60%。
本发明通过一步煅烧法,炭化活化复合同时进行,不仅工艺简单,原料易得,而且反应条件温和,能耗较低。
2)、本发明以凹凸棒石为模板,纤维素为碳源,以ZnCl2为活化剂。凹凸棒石具有独特的棒状结构,它本身的孔隙结构亦具有一定的吸附能力,这一特性使它在反应中具有充当模板的优势,且凹凸棒石的加入有效地提高了产品的收率。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上,以纤维素为碳源,灰分低、碳产率高,原料来源纯净,有益于制备形貌均匀的复合材料吸附剂。ZnCl2作为活化剂,能够有效一步炭化活化,显著地改善了产品的孔隙结构。
在煅烧活化过程中,ZnCl2通过与含氧官能团相互作用促进了纤维素的脱水和脱氢作用,导致纤维素芳构化,随着温度的升高,ZnCl2分子浸渍到碳的内部起到骨架作用,碳的高聚物进一步碳化后沉积到骨架上,当用酸和热水洗去氯化锌后,就生成了具有巨大比表面积的多孔碳负载在作为模板的凹凸棒石表面,生成了形貌单一的凹凸棒石/碳复合材料吸附剂,由上述方法制备得到的材料不仅具有凹凸棒石/碳复合材料吸附剂的特征优势,亲有机性得到改善,而且大大提高了材料的比表面积,对有机污染物的吸附性能大大提高。
附图说明
图1为凹凸棒石原矿及实施例3所得活化复合产物的IR图谱。与原凹土即凹凸棒石原矿相比,实施例3中与活性炭复合的凹凸棒石在1617cm-1处出现芳香结构的C=C振动吸收峰,在795cm-1处出现了芳香结构的C-H面外弯曲振动吸收峰。
图2a、2b均为实施例3所得活化复合产物的SEM图,可以看出,由ZnCl2为活化剂一步炭化活化纤维素,所得活性炭产物负载在凹凸棒石上,成功包覆在凹凸棒石表面,表1为元素分析结果,含碳量可达48%。实施例3所制得的产物为凹凸棒石/碳复合材料吸附剂。
图3为原凹土和实施例1、实施例2、实施例3所得活化复合产物与活性炭对亚甲基蓝溶液(50mg/L)的吸附对比,吸附24小时达到平衡。可以明显看出经过活化复合改性的凹凸棒石/碳复合材料吸附剂对亚甲基蓝的吸附性能大大提高,平衡吸附量由原凹土的33mg/g提升至123mg/g。
图4为实施例5的对比实验中原凹土、活性炭和实施例3所得活化复合产物对不同浓度亚甲基蓝的吸附等温平衡曲线。图4可以看出,实施例3所得活化复合产物对亚甲基蓝吸附相比于凹凸棒石原矿有显著提高,且吸附性能优于活性炭。将其拟合Langmuir等温吸附曲线结果对比见表2,其最大吸附容量由原凹土的63mg/g提升至346mg/g。
具体实施方式
下面结合具体实施例对本发明的制备过程做详细说明。
在下列实施例中,如没有特别说明,所记载的百分含量均为重量百分含量。
亚甲基蓝是一种常见的很难降解的染料废水污染物,对固体表面表现出良好的亲和力,并在染料工业常用。它主要是以芳烃和杂环化合物为母体,并带有显色基团和极性基团,结构复杂,性能稳定,这给印染废水的处理带来了很大困难。目前用于治理染料废水的处理方法主要包括生物氧化法、氧化法、光催化法、吸附法、混凝法和电化学法等。其中吸附法以其操作简便、成本低而备受关注。在吸附法处理过程中,吸附剂是核心。
将本发明活化复合改性制得的凹凸棒石/碳复合材料用于水体中有机污染物的吸附处理过程如下:
以亚甲基蓝作为废水燃料的代表进行吸附处理,亚甲基蓝初始浓度50mg/L,本发明中改性凹凸棒石/碳复合材料的添加量与亚甲基蓝溶液的固液比为1g:2500mL,200rpm、25℃下恒温振荡吸附4小时,测定吸附脱除率。
实施例1
称量3gZnCl2固体溶于水中,取0.5g事先粉碎的凹凸棒石粉料及1g纤维素,加入到ZnCl2溶液中,搅拌或超声分散均匀,浸渍8小时后烘干得到样品。
将烘干后的样品置于水平管式炉中,5℃/min升温至450℃,保温30min。待冷却至室温后,用1.2mol/L的盐酸溶液洗涤,再用70℃热水洗至pH为7。在60℃烘干后到得到活化复合产物即凹凸棒石/碳复合材料。
所得活化复合产物测得BET比表面积为990m2/g,高于凹凸棒石原矿及活性炭的比表面积(见表3)。
取初始浓度为50mg/L的亚甲基蓝溶液为有机污染物,活化复合改性的凹凸棒石/碳复合材料与亚甲基蓝溶液的固液比为1g:2500mL,25℃下200rpm转速下恒温振荡吸附4小时。凹凸棒石/碳复合材料对亚甲基蓝的平衡吸附量为113mg/g,去除率为98%(见图3)。
实施例2
称量3gZnCl2固体溶于水中,取0.5g事先粉碎的凹凸棒石粉料及1g纤维素,加入到ZnCl2溶液中,搅拌或超声分散均匀,浸渍24小时后烘干。
将烘干后的样品置于水平管式炉中,5℃/min升温至600℃,保温2h。待冷却至室温后,用1.2mol/L的盐酸溶液洗涤,再用70℃热水洗至pH为7。在60℃烘干后到得到活化复合产物即凹凸棒石/碳复合材料。
所得活化复合产物测得BET比表面积为1478m2/g,高于凹凸棒石原矿及活性炭的比表面积(见表3)。
取初始浓度为50mg/L的亚甲基蓝溶液为有机污染物,活化复合改性的凹凸棒石/碳复合材料与亚甲基蓝溶液的固液比为1g:2500mL,25℃下200rpm转速下恒温振荡吸附4小时。凹凸棒石/碳复合材料对亚甲基蓝的平衡吸附量为115mg/g,去除率为99%(见图3)。
实施例3
称量1gZnCl2固体溶于水中,取0.5g事先粉碎的凹凸棒石粉料及1g纤维素,加入到ZnCl2溶液中,搅拌或超声分散均匀,浸渍12小时后烘干。
将烘干后的样品置于水平管式炉中,5℃/min升温至450℃,保温1h。待冷却至室温后,用1.2mol/L的盐酸溶液洗涤,再用70℃热水洗至pH为7。在60℃烘干后到得到活化复合产物即凹凸棒石/碳复合材料。
所得活化复合产物测得BET比表面积为1139m2/g,高于凹凸棒石原矿的比表面积(见表3)。
取初始浓度为50mg/L的亚甲基蓝溶液为有机污染物,活化复合改性的凹凸棒石/碳复合材料与亚甲基蓝溶液的固液比为1g:2500mL,25℃下200rpm转速下恒温振荡吸附4小时。凹凸棒石/碳复合材料对亚甲基蓝的平衡吸附量为123mg/g,去除率为99%(见图3)。
实施例4:对比实验
取初始浓度为50mg/L亚甲基蓝溶液为目标污染物,凹凸棒石原矿与亚甲基蓝溶液固液比为1g:2500mL,25℃下200rpm转速下恒温振荡吸附4小时。凹凸棒石原矿对亚甲基蓝的平衡吸附量为33mg/g,去除率为31%(见图3)。
实施例5:对比实验
取初始浓度为10~300mg/L亚甲基蓝溶液为目标污染物,以凹凸棒石原矿、实施例3的样品、活性炭分别为吸附剂,各种吸附剂与亚甲基蓝溶液固液比均为1g:2500mL,25℃下200rpm转速下恒温振荡吸附24小时。平衡曲线见图4,各种吸附剂吸附性能对比见表2。
表1 实施例3的元素分析结果
材料 C/% H/% N/% O/%
实施例3 48.52 2.41 0.55 13.84
表2 不同材料对亚甲基蓝的不同吸附性能对比
材料 qm/mg·g-1 b R2 SBET/m2·g-1
凹凸棒石 63 0.124 0.994 133
活性炭 318 0.198 0.959 910
实施例3 346 0.238 0.989 1139
表3 不同材料的BET比表面积对比
材料 SBET(m2/g)
原凹土 133
活性炭 910
实施例1 990
实施例2 1478
实施例3 1139

Claims (2)

1.一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法,其特征在于包括如下步骤:
1)、将凹凸棒石粘土原矿粉碎并过200目筛得凹凸棒石粉料;
2)、将凹凸棒石粉料、纤维素以1:2的质量比浸渍于ZnCl2溶液中,所述纤维素与ZnCl2的质量比分别为1:3~3:1,超声或搅拌混合,分散均匀,浸渍4~24小时得到混合物料;
3)、将所述混合物料烘干后置于活化炉中350℃~600℃煅烧30~120分钟,再依次经盐酸、热水洗涤,干燥粉碎后即可得到活化改性的凹凸棒石/碳复合材料。
2.根据权利要求1所述的一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法,其特征在于:步骤3)中,活化过程是采用在N2气氛下煅烧,即先将水平活化炉中的空气用真空泵抽尽,再通入N2,反复三次,保证活化过程中无空气的影响。
CN201410493771.9A 2014-09-24 2014-09-24 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法 Active CN104289179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410493771.9A CN104289179B (zh) 2014-09-24 2014-09-24 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410493771.9A CN104289179B (zh) 2014-09-24 2014-09-24 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法

Publications (2)

Publication Number Publication Date
CN104289179A true CN104289179A (zh) 2015-01-21
CN104289179B CN104289179B (zh) 2017-01-18

Family

ID=52309266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410493771.9A Active CN104289179B (zh) 2014-09-24 2014-09-24 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法

Country Status (1)

Country Link
CN (1) CN104289179B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944660A (zh) * 2016-06-27 2016-09-21 安徽金联地矿科技有限公司 一种凹凸棒粉提取材料的制备方法
CN106000310A (zh) * 2016-06-15 2016-10-12 合肥工业大学 一种用于脱除no的埃洛石/炭复合吸附剂的制备方法
CN106512970A (zh) * 2016-11-24 2017-03-22 湖南大学 一步式碳化活化制备蒙脱石/生物炭复合材料的方法及其用途
CN106629933A (zh) * 2017-03-20 2017-05-10 合肥智慧龙图腾知识产权股份有限公司 一种处理印染废水中亚甲基蓝的方法
CN106732375A (zh) * 2017-01-18 2017-05-31 湖南大学 一种粘土矿物质改性生物炭的制备方法及其应用
CN106824083A (zh) * 2017-04-10 2017-06-13 东南大学 一种凹凸棒土/生物质炭复合吸附剂的制备方法及其应用
CN107262033A (zh) * 2017-06-30 2017-10-20 安徽工业大学 一种凹凸棒石/Fe3O4/碳复合材料的制备及应用
CN108610014A (zh) * 2018-05-04 2018-10-02 温州大学 富营养化水体高效除磷可回收型生物陶粒的制备方法及陶粒中磷回收和生物陶粒再生方法
CN109331777A (zh) * 2018-11-05 2019-02-15 浙江省地质矿产研究所 一种可回收再生碳网结合粉体非金属矿物多孔净水材料制备方法
CN110479209A (zh) * 2019-09-03 2019-11-22 邓晖 一种天然矿物/活性炭复合材料及其制备方法
CN110709162A (zh) * 2017-04-07 2020-01-17 阿维亚科技有限公司 用于处理受污染液体的吸附剂
CN111019404A (zh) * 2019-11-29 2020-04-17 淮阴工学院 一种橡胶补强用改性凹凸棒土及其制备方法
CN111437793A (zh) * 2020-03-27 2020-07-24 浙江工业大学 一种叶腊石-碳复合吸附材料及其液相制备方法
CN113929096A (zh) * 2021-10-20 2022-01-14 青海大学 一种中空结构生物质碳材料的制备方法及其应用
CN114682214A (zh) * 2022-03-17 2022-07-01 中国科学院广州能源研究所 一种凹凸棒石基生物炭复合吸附剂的制备方法及其应用
CN114733482A (zh) * 2022-04-20 2022-07-12 淮阴工学院 一种基于凹凸棒土的复合重金属吸附剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492165A (zh) * 2009-03-09 2009-07-29 合肥工业大学 凹凸棒石有机改性方法及有机改性凹凸棒石的应用
CN102974320A (zh) * 2012-12-18 2013-03-20 合肥工业大学 一种有机改性凹凸棒石吸附剂的制备方法
CN103191696A (zh) * 2013-04-10 2013-07-10 合肥工业大学 一种水热法改性提高凹凸棒石吸附性能的方法
CN103316633A (zh) * 2013-06-13 2013-09-25 常州大学 一种凹土/多孔炭复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492165A (zh) * 2009-03-09 2009-07-29 合肥工业大学 凹凸棒石有机改性方法及有机改性凹凸棒石的应用
CN102974320A (zh) * 2012-12-18 2013-03-20 合肥工业大学 一种有机改性凹凸棒石吸附剂的制备方法
CN103191696A (zh) * 2013-04-10 2013-07-10 合肥工业大学 一种水热法改性提高凹凸棒石吸附性能的方法
CN103316633A (zh) * 2013-06-13 2013-09-25 常州大学 一种凹土/多孔炭复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUAT UCAR ET AL.: "Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation", 《APPLIED SURFACE SCIENCE》, vol. 255, 25 June 2009 (2009-06-25), pages 8890 - 8896, XP 026392462 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000310A (zh) * 2016-06-15 2016-10-12 合肥工业大学 一种用于脱除no的埃洛石/炭复合吸附剂的制备方法
CN105944660A (zh) * 2016-06-27 2016-09-21 安徽金联地矿科技有限公司 一种凹凸棒粉提取材料的制备方法
CN106512970A (zh) * 2016-11-24 2017-03-22 湖南大学 一步式碳化活化制备蒙脱石/生物炭复合材料的方法及其用途
CN106732375A (zh) * 2017-01-18 2017-05-31 湖南大学 一种粘土矿物质改性生物炭的制备方法及其应用
CN106629933A (zh) * 2017-03-20 2017-05-10 合肥智慧龙图腾知识产权股份有限公司 一种处理印染废水中亚甲基蓝的方法
CN110709162A (zh) * 2017-04-07 2020-01-17 阿维亚科技有限公司 用于处理受污染液体的吸附剂
CN106824083A (zh) * 2017-04-10 2017-06-13 东南大学 一种凹凸棒土/生物质炭复合吸附剂的制备方法及其应用
CN107262033A (zh) * 2017-06-30 2017-10-20 安徽工业大学 一种凹凸棒石/Fe3O4/碳复合材料的制备及应用
CN108610014A (zh) * 2018-05-04 2018-10-02 温州大学 富营养化水体高效除磷可回收型生物陶粒的制备方法及陶粒中磷回收和生物陶粒再生方法
CN108610014B (zh) * 2018-05-04 2021-07-20 温州大学 富营养化水体高效除磷可回收型生物陶粒的制备方法及陶粒中磷回收和生物陶粒再生方法
CN109331777A (zh) * 2018-11-05 2019-02-15 浙江省地质矿产研究所 一种可回收再生碳网结合粉体非金属矿物多孔净水材料制备方法
CN109331777B (zh) * 2018-11-05 2021-12-14 浙江省地质矿产研究所 一种可回收再生碳网结合粉体非金属矿物多孔净水材料制备方法
CN110479209A (zh) * 2019-09-03 2019-11-22 邓晖 一种天然矿物/活性炭复合材料及其制备方法
CN111019404A (zh) * 2019-11-29 2020-04-17 淮阴工学院 一种橡胶补强用改性凹凸棒土及其制备方法
CN111437793A (zh) * 2020-03-27 2020-07-24 浙江工业大学 一种叶腊石-碳复合吸附材料及其液相制备方法
CN113929096A (zh) * 2021-10-20 2022-01-14 青海大学 一种中空结构生物质碳材料的制备方法及其应用
CN114682214A (zh) * 2022-03-17 2022-07-01 中国科学院广州能源研究所 一种凹凸棒石基生物炭复合吸附剂的制备方法及其应用
CN114733482A (zh) * 2022-04-20 2022-07-12 淮阴工学院 一种基于凹凸棒土的复合重金属吸附剂及其制备方法
CN114733482B (zh) * 2022-04-20 2023-10-27 淮阴工学院 一种基于凹凸棒土的复合重金属吸附剂及其制备方法

Also Published As

Publication number Publication date
CN104289179B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104289179B (zh) 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法
CN107115843A (zh) 一种源于花生壳改性活性炭的制备方法及其应用
CN103936006A (zh) 一种用米糠制备多孔活性炭材料的方法
CN106732358B (zh) 一种负载氧化铁的生物质碳化微球及其制备和应用
CN105056949B (zh) 一种植物中空纤维负载的类Fenton催化剂、制备方法及其应用
CN104289178B (zh) 基于水热-活化耦合技术制备凹凸棒石/碳吸附剂的方法
CN109569519A (zh) 利用城市污泥制备活性污泥炭基甲醛吸附剂的方法
CN101962184A (zh) 一种机械力化学法制备活性炭的方法
CN106044770B (zh) 一种埃洛石为模板制备纤维素基多级孔碳材料的方法
CN103111265B (zh) 去除水中抗生素的吸附剂制备方法、制得吸附剂及应用
CN101492165A (zh) 凹凸棒石有机改性方法及有机改性凹凸棒石的应用
CN108773844A (zh) 一种微量钙添加催化活化制备煤基多孔碳材料的方法
CN102974320A (zh) 一种有机改性凹凸棒石吸附剂的制备方法
CN104226259A (zh) 一种苏氨酸改性凹凸棒土吸附剂及其应用
CN103288084B (zh) 常压制备改性活性炭的方法
CN106744789A (zh) 一种利用木质素制备多孔炭以及在超级电容器中的应用
CN106185929A (zh) 一种具有发达孔隙结构的活性炭的制备方法
CN106044744A (zh) 一种石墨烯/木质素基复合多级孔碳片材料的制备方法及其用途
CN108706585A (zh) 一种大麻杆活性炭的制备方法
CN112194131A (zh) 一种化学活化法制备造纸污泥碳质吸附剂方法和应用
CN114180553B (zh) 一种废弃农作物根系为原料制备掺氮多孔碳的方法及应用
CN102423690B (zh) 一种多介孔西红柿杆活性炭的制备方法
CN107651686A (zh) 喂养石墨烯蚕沙活性炭的制备方法及其蚕沙活性炭
CN107159121A (zh) 一种改性活性炭及其制备方法和应用
CN106902758A (zh) 一种好氧颗粒污泥n掺杂的石墨烯吸附剂的制备及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant