CN104272469B - 太阳能电池装置及其制造方法 - Google Patents

太阳能电池装置及其制造方法 Download PDF

Info

Publication number
CN104272469B
CN104272469B CN201380018189.0A CN201380018189A CN104272469B CN 104272469 B CN104272469 B CN 104272469B CN 201380018189 A CN201380018189 A CN 201380018189A CN 104272469 B CN104272469 B CN 104272469B
Authority
CN
China
Prior art keywords
buffer layer
layer
band gap
cushion
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380018189.0A
Other languages
English (en)
Other versions
CN104272469A (zh
Inventor
裵道园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of CN104272469A publication Critical patent/CN104272469A/zh
Application granted granted Critical
Publication of CN104272469B publication Critical patent/CN104272469B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

根据本实施例的太阳能电池装置包括支撑基板;在所述支撑基板上的背电极层;在所述背电极层上的光吸收层;在所述光吸收层上的多个缓冲层,所述缓冲层具有向上逐渐增加的能带隙;以及在所述缓冲层上的窗口层。

Description

太阳能电池装置及其制造方法
技术领域
本实施例涉及一种太阳能电池装置及其制造方法。
背景技术
近来,由于能量消耗增加,开发了将太阳光转化成电能的太阳能电池。
在直接将太阳光转化成电能的太阳能电池发电中,太阳能电池(或光伏电池)是核心部件。
例如,当能量大于半导体的带隙能量的太阳光入射到具有PN结结构的太阳能电池中时,产生电子-空穴对。当电子和空穴被分别收集到N层和P层时,由于在PN结部分形成的电场,在N与P层之间产生光电压。在这种情况下,如果负载连接至设在太阳能电池两端的电极,电流将流过太阳能电池。
特别地,已广泛应用一种CIGS-基太阳能电池,该太阳能电池为PN异质结装置,具有包括玻璃基板、金属背电极层、P型CIGS-基光吸收层、高阻缓冲层及N型窗口层的基板结构。
然而,根据现有技术,当生长作为缓冲层的CdS层时,由于高毒性CdS,沉积废料的费用增加,致使制造太阳能电池的费用增加。
发明内容
技术问题
本实施例提供一种能够改善其环境污染和产率的太阳能电池装置。
技术方案
根据本实施例,提供一种太阳能电池装置,该太阳能电池装置包括:支撑基板;在所述支撑层上的背电极层;在所述背电极层上的光吸收层;在所述光吸收层上的多个缓冲层,所述多个缓冲层具有向上逐渐增加的能带隙;以及在所述缓冲层上的窗口层。
有益效果
根据本实施例所述的太阳能电池装置,能够解决由于Cd引起的太阳能电池装置的制造费用增加的问题,并能改善太阳能电池装置的产率。
另外,能够降低所述光吸收层与所述缓冲层之间的能带隙差别,进而能够改善光电转化效率。
附图说明
图1是示出了根据实施例的太阳能电池装置的截面图;以及
图2到图5是示出了根据实施例的太阳能电池板制造工艺的截面图。
具体实施方式
在对实施例的描述中,应该明白,当某一基板、层、膜或者电极被称作是在另一基板、另一层、另一膜或者另一电极“之上”或者“之下”时,它可以是“直接”或“间接”地在该另一基板、层、膜或电极之上或之下,或者也可以存在一个或多个中间层。参照附图描述了层的这种位置。为了说明的目的,附图中所示的元件的大小可能被夸大,并且可能不完全反映实际的大小。
图1是示出了根据实施例的太阳能电池装置的截面图。参见图1,太阳能电池板包括支撑基板100、背电极层200、光吸收层300、包括第一缓冲层410和第二缓冲层420的缓冲层400,以及窗口层500。
支撑基板100为平板状,且支撑背电极层200、光吸收层300、缓冲层400及窗口层500.
支撑基板100可以是绝缘体。支撑基板100可以是金属基板。另外,支撑基板100可以由不锈钢形成(SUS,STS)。可以根据其中包括的元素物质的比对支撑基板100分类,并且可以包括C、Si、Mn、P、S、Ni、Cr、Mo及Fe中的至少一种。支撑基板100可以是柔性的。
背电极层200设置在支撑基板100上。背电极层200为导电层。背电极层200可以转移太阳能电池的光吸收层300产生的电荷,从而允许电流流向太阳能电池外部。为了执行上述功能,背电极层200必须表现出高导电性和低电阻系数。
另外,在形成CIGS复合物的过程,当在所需的硫(S)和硒(Se)的氛围下进行热处理时,背电极层200必须保持高温稳定性。另外,由于背电极层200与基板100的热膨胀系数存在差异,背电极层200必须表现关于基板100的优越粘合性能以免背电极层200从基板100上剥离。
背电极层200可以包括钼(Mo)、金(Au)、铝(Al)、铬(Cr)、钨(W)和铜(Cu)中的任意一种。在以上材料中,与其他材料相比,Mo的热膨胀系数与支撑基板100的差异更低,所以钼表现出优越的粘合性能,从而防止发生上述剥离现象,并且完全满足背电极层200所需特性。背电极层200的厚度可以在400nm到1000nm的范围内。
光吸收层300可以形成在背电极层200上。光吸收层300包括P型半导体复合物。更详细地讲,光吸收层300包括I-Ⅲ-Ⅵ族-基复合物。例如,光吸收层300可以具有Cu(IN,Ga)Se2(CIGS)晶体结构、Cu(IN)Se2晶体结构、Cu(Ga)Se2晶体结构。光吸收层300的能带隙范围可以为1.1eV到1.3eV,厚度范围可以为1.5μm到2.5μm。
缓冲层400设置在光吸收层300上。根据具有光吸收层300(包括CIGS复合物)的太阳能电池,在作为P型半导体的CIGS复合物薄膜与作为N型半导体的窗口层50之间形成P-N结。然而,由于两种材料在晶格常数和带隙能量上表现出较大差异,所以需要能带隙介于两种材料能带隙中间的缓冲层,以在两种材料之间形成较好的结。
缓冲层400可以包括第一缓冲层410和第二缓冲层420。
第一缓冲层410的能带隙可以高于光吸收层300的能带隙。第二缓冲层420的能带隙可以高于第一缓冲层410的能带隙。
第一缓冲层410的厚度可以与第二缓冲层420的厚度不同。具体地,第一缓冲层410的厚度可以比第二缓冲层420薄。
第一缓冲层410可以包括Zn和Se并且可以具有ZnSe的化学式。第一缓冲层410可以包括比例为1:1的Zn和Se。带隙能可以随着组合物比例变化。第一缓冲层410的能带隙可以在约1.5eV到约2.6eV的范围内。第一缓冲层410厚度可以在2nm到10nm的范围内。
第二缓冲层420可以包括Zn和S并且可以具有ZnS的化学式。第二缓冲层420可以包括比例为1:1的Zn和S。第二缓冲层420的能带隙可以在约2.7eV到约3.7eV的范围内。第二缓冲层420厚度可以在5nm到50nm的范围内。
高阻缓冲层(未示出)可以设置在缓冲层400上。高阻缓冲层可以包括未掺杂杂质的氧化锌(i-ZnO)。高阻缓冲层可以具有高于缓冲层400的能带隙,并且可以具有50nm到60nm的厚度。
窗口层500设在缓冲层400上。窗口层500为透明导电层。窗口层500的电阻高于背电极层200。
窗口层500包括氧化物。例如,窗口层可以包括氧化锌、铟锡氧化物(ITO)或铟锌氧化物(IZO)。另外,窗口层500可以包括铝掺杂的氧化锌(AZO)或者镓掺杂的氧化锌(GZO)。窗口层500的厚度可以形成为在800nm到1000nm的范围内。
根据本实施例所述的太阳能电池,由于形成的缓冲层未包含Cd,能够改善环境污染问题。另外,由于能带隙逐渐变化,能够改善光电转化效率。
图2到图5是示出了根据实施例的太阳能电池板制造工艺截面图。将会参考上面描述的太阳能电池装置来描述本发明制造方法。以上对太阳能电池的描述可以并入本发明制造方法的描述中。
参见图2,在基板100上形成背电极层200。可以通过沉积Mo形成背电极层200。可以通过溅射方案形成背电极层200。另外,可以在支撑基板100与背电极层200之间插入附加层,例如防扩散层。
参见图3,在背电极层200上形成光吸收层300。光吸收层300可以通过广泛采用的方案形成,例如通过同时或分别蒸发铜、铟、镓、硒来形成(Cu(In,Ga)(Se)2(CIGS)基光吸收层300的方案,以及在形成金属前体层之后进行硒化工艺的方案。
相反地,使用Cu靶、In靶和Ga靶的溅镀工艺与硒化工艺可以同时进行。可以通过仅使用Cu靶和In靶或者仅使用Cu靶和Ga靶的溅镀过程或硒化过程来形成CIS基或CIG基光吸收层300。
参见图4,在光吸收层300上形成缓冲层400。可以通过化学浴沉积(CBD)方案形成缓冲层400,该方案包括:过程P1,将基板浸入盛有包含薄膜组成元素的水溶液并且配有用于加热水溶液的加热单元和用于搅拌水溶液的搅拌单元的水槽中;以及过程P2,通过从基板的表面生长薄膜来形成缓冲层。
加热单元通过使用加热器加热水槽的底面或侧面,并且包括温度传感元件以使存储在水槽的水溶液的温度保持在设定温度。搅拌单元搅拌储存在水槽中的水溶液,使得水溶液包含的薄膜组成元素可以广泛地与基板接触,从而快速地形成薄膜。
首先,通过利用Zn溶液和Se溶液作为基础形成具有化学式ZnSe的第一缓冲层410。第一缓冲层410的厚度可以形成为在2nm到10nm的范围内。通过利用Zn溶液和S溶液作为基础形成化学式为ZnS的第二缓冲层420。第二缓冲层420的厚度可以形成为在5nm到50nm的范围内。通过以上工艺可以形成包括第一缓冲层410和第二缓冲层420的缓冲层400。
可以通过在光吸收层300的上表面形成富Se层后再形成ZnS膜的方案形成缓冲层400。在这种情况下,可以形成厚度相对较薄的第一缓冲层410,并可以形成厚度相对较薄的第二缓冲层420。
另外,可以通过USP方案多沉积缓冲层以使其具有双重结构。
然后,在缓冲层400上形成窗口层500。利用溅射方案通过沉积透明导电材料,如铝掺杂的氧化锌(AZO),可以在缓冲层400上形成窗口层500。
在本说明书中每提及“一个实施例”、“某个实施例”、“示例性实施例”等时意味着,结合该实施例描述的具体特征、结构、或特性包含在本发明的至少一个实施例中。在本说明书中不同地方出现的此类短语不一定都是指同一实施例。另外,当结合任何实施例描述具体特征、结构、或特性时,所主张的是,结合其他实施例实现该特征、结构,或特性落入本领域技术人员的能力范围内。
虽然参照本发明的若干说明性实施例对实施例进行了描述,但应该知道,本领域技术人员可以构思出很多其它的变型和实施例,这些变型和实施例落入本发明原理的精神和范围内。更具体地讲,在本发明公开、附图和所附权利要求书的范围内,可以对主题组合结构的组成部分和/或排列做出各种改变和变型。除了所述组成部分和/或排列的改变和变型之外,其它用途对于本领域技术人员而言也是显然的。

Claims (4)

1.一种太阳能电池装置,包括:
支撑基板;
在所述支撑基板上的背电极层;
在所述背电极层上的光吸收层;
在所述光吸收层上的多个缓冲层,所述缓冲层具有向上逐渐增加的能带隙;以及
在所述缓冲层上的窗口层,
其中,所述多个缓冲层的能带隙高于所述光吸收层的能带隙,
其中,所述缓冲层包括:
第一缓冲层;
在所述第一缓冲层上的第二缓冲层;
在所述第二缓冲层的上高阻缓冲层,
其中,所述第一缓冲层的能带隙在1.5eV到2.6eV的范围内,
其中,所述第二缓冲层的能带隙在2.7eV到3.7eV的范围内,
其中,所述高阻缓冲层的能带隙高于所述第二缓冲层的能带隙,
其中,所述第一缓冲层的厚度在2nm到10nm的范围内,所述第二缓冲层的厚度在5nm到50nm的范围内,所述高阻缓冲层的厚度在50nm到60nm的范围内,其中,所述第一缓冲层的化学式为ZnSe,
其中,所述第二缓冲层的化学式为ZnS,
其中,所述高阻缓冲层的化学式为i-ZnO,所述高阻缓冲层没有掺杂杂质。
2.一种太阳能电池装置的制造方法,所述方法包括:
在支撑层上形成背电极层;
在所述背电极层上形成光吸收层;以及
形成多个缓冲层,所述缓冲层具有向上逐渐增加的能带隙,
其中,所述多个缓冲层的能带隙高于所述光吸收层的能带隙,
其中,所述缓冲层包括:
第一缓冲层;
在所述第一缓冲层上的第二缓冲层;
在所述第二缓冲层上的高阻缓冲层,
其中,所述第一缓冲层的能带隙在1.5eV到2.6eV的范围内,
其中,所述第二缓冲层的能带隙在2.7eV到3.7eV的范围内,
其中,所述高阻缓冲层的能带隙高于所述第二缓冲层的能带隙,
其中,所述第一缓冲层的厚度在2nm到10nm的范围内,所述第二缓冲层的厚度在5nm到50nm的范围内,所述高阻缓冲层的厚度在50nm到60nm的范围内,其中,所述第一缓冲层的化学式为ZnSe,
其中,所述第二缓冲层的化学式为ZnS,
其中,所述高阻缓冲层的化学式为i-ZnO,所述高阻缓冲层没有掺杂杂质。
3.根据权利要求2所述的方法,其中,形成所述缓冲层包括:
在所述光吸收层上利用Zn溶液和Se溶液作为基础形成所述第一缓冲层;以及
在所述第一缓冲层上利用Zn溶液和S溶液作为基础形成化学式为ZnS的所述第二缓冲层。
4.根据权利要求2所述的方法,其中,形成所述缓冲层包括:
通过在所述光吸收层上形成富Se层之后再生长ZnS来形成ZnSe的所述第一缓冲层和ZnS的所述第二缓冲层。
CN201380018189.0A 2012-04-02 2013-04-02 太阳能电池装置及其制造方法 Expired - Fee Related CN104272469B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0034001 2012-04-02
KR1020120034001A KR20130111815A (ko) 2012-04-02 2012-04-02 태양전지 및 이의 제조방법
PCT/KR2013/002740 WO2013151313A1 (en) 2012-04-02 2013-04-02 Solar cell apparatus and method of fabricating the same

Publications (2)

Publication Number Publication Date
CN104272469A CN104272469A (zh) 2015-01-07
CN104272469B true CN104272469B (zh) 2018-01-12

Family

ID=49300743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380018189.0A Expired - Fee Related CN104272469B (zh) 2012-04-02 2013-04-02 太阳能电池装置及其制造方法

Country Status (4)

Country Link
US (1) US9691927B2 (zh)
KR (1) KR20130111815A (zh)
CN (1) CN104272469B (zh)
WO (1) WO2013151313A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523246B1 (ko) * 2013-12-19 2015-06-01 한국에너지기술연구원 황화아연(ZnS)을 포함하는 이중 버퍼와 이를 이용한 태양전지 및 이들의 제조방법
US20150255659A1 (en) * 2014-03-10 2015-09-10 Tsmc Solar Ltd. Solar module
KR20150142094A (ko) * 2014-06-10 2015-12-22 에스케이이노베이션 주식회사 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
KR101638462B1 (ko) * 2015-02-27 2016-07-11 영남대학교 산학협력단 황화아연 박막의 제조방법 및 이를 이용한 박막태양전지
CN108321216A (zh) * 2018-01-30 2018-07-24 北京铂阳顶荣光伏科技有限公司 一种可调光学带隙的氧锌镁材料、制备方法及太阳能电池
CN109449228A (zh) * 2018-12-27 2019-03-08 中建材蚌埠玻璃工业设计研究院有限公司 一种柔性可弯曲cigs薄膜太阳能电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006393A2 (en) * 2003-05-27 2005-01-20 Triton Systems, Inc. Pinhold porosity free insulating films on flexible metallic substrates for thin film applications
KR20080009346A (ko) * 2006-07-24 2008-01-29 주식회사 엘지화학 태양전지 버퍼층의 제조방법
KR100999810B1 (ko) * 2009-03-31 2010-12-08 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR20110012314A (ko) 2009-07-30 2011-02-09 엘지전자 주식회사 박막 태양전지 및 그의 제조방법
KR101034150B1 (ko) * 2009-11-02 2011-05-13 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN102782853A (zh) * 2010-03-05 2012-11-14 第一太阳能有限公司 具有分级缓冲层的光伏器件
JP2012004287A (ja) 2010-06-16 2012-01-05 Showa Shell Sekiyu Kk Cis系薄膜太陽電池

Also Published As

Publication number Publication date
WO2013151313A1 (en) 2013-10-10
US20150059838A1 (en) 2015-03-05
KR20130111815A (ko) 2013-10-11
US9691927B2 (en) 2017-06-27
CN104272469A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
Kapadnis et al. Cadmium telluride/cadmium sulfide thin films solar cells: a review
Afzaal et al. Recent developments in II–VI and III–VI semiconductors and their applications in solar cells
CN104272469B (zh) 太阳能电池装置及其制造方法
TW201108425A (en) Solar cell and fabrication method thereof
CN103620794B (zh) 太阳能电池及其制造方法
KR101848853B1 (ko) 반투명 cigs 태양전지 및 이의 제조방법 및 이를 구비하는 건물일체형 태양광 발전 모듈
CN104025310A (zh) 太阳能电池及其制造方法
CN104115283B (zh) 太阳能电池模块及其制造方法
Dang Nanostructured Semiconductor Device Design in Solar Cells
CN103339741B (zh) 太阳能电池设备及其制造方法
KR20130040358A (ko) 태양전지
JP2014503128A (ja) 太陽電池及びその製造方法
CN105789353B (zh) 具有掺杂缓冲层的太阳能电池和制造太阳能电池的方法
CN104882511B (zh) 具有合适原子分布的i‑iii‑vi2化合物吸收件的光伏器件制造方法
Mosavi et al. Brief review on thin films, perovskite solar cells and nanostructure’s applications
CN104952982B (zh) 通过合适的热处理制造光伏器件的方法
CN104115278B (zh) 太阳能电池及其制造方法
TWI430466B (zh) 高效率碲化鎘薄膜太陽能電池之元件結構
Narayanan et al. CdTe Photovoltaics in Superstrate Geometry–Back-Contact Materials: A Review
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
CN104285303B (zh) 太阳能电池及其制造方法
KR102596328B1 (ko) Czts계 박막 태양전지 광흡수층의 제조방법, 이로부터 제조되는 czts계 박막 태양전지 광흡수층
Sharma et al. Design and Analysis of Various Solar Cell Technologies for Improvements in Efficiencies: A Review
WO2019205458A1 (zh) 铜铟镓硒太阳能电池组件的制作方法及铜铟镓硒太阳能电池组件
Dang et al. Molybdenum oxide contacts for nanowire CdS-CdTe solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180112

Termination date: 20190402

CF01 Termination of patent right due to non-payment of annual fee