CN1042192A - 高硬度、耐磨材料 - Google Patents

高硬度、耐磨材料 Download PDF

Info

Publication number
CN1042192A
CN1042192A CN89108183A CN89108183A CN1042192A CN 1042192 A CN1042192 A CN 1042192A CN 89108183 A CN89108183 A CN 89108183A CN 89108183 A CN89108183 A CN 89108183A CN 1042192 A CN1042192 A CN 1042192A
Authority
CN
China
Prior art keywords
molybdenum
tungsten
carbon
hardness
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN89108183A
Other languages
English (en)
Inventor
埃伦·M·杜本斯基
爱德华·E·蒂姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of CN1042192A publication Critical patent/CN1042192A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

当在密实化条件下处理第一种金属的硼、碳、氮或硅衍生物(如碳化钨)和第二种金属源(如:该第二种金属是钼时为钼的低碳化物)的粉末状混合物时,该混合物部分反应并变成一种硬质的耐磨材料。这种材料由碳化钨和钼的低碳化物的混合物制成;它含有一碳化钨和至少一种混合物的钨/钼碳化物。用一个1kg的负载测得该材料该材料的维氏硬度至少约为2200kg/mm2。由该材料制成的制品可用于如磨蚀或非磨蚀喷水切削机中的喷嘴和拉丝装置的各种零件。

Description

本申请是1988年9月20日提出的申请号247054申请书的接续。
一般地说,本发明涉及由第一种金属的硼、碳、氮或硅衍生物,第二种金属源和任选的硼、碳、氮或硅的一种混合物的不完全反应而制得的一种产品。更具体地说,本发明涉及由碳化钨(WC)(作第一种金属的衍生物)与钼的低碳化物(Mo2C)(作第二种金属源)之间不完全反应的产物而制得的一种材料。本发明还涉及由该材料制成的耐磨制品。
含钴的碳化钨硬质合金是一种众所周知的材料,该材料可用于切削刀具和其它需要高硬度的用途中。例如,碳化钨/钴可用于水磨切削喷嘴。但遗憾的是,钴是一种战略物质。因此,它的价格和可获量受政治因素的影响。诸如这些考虑为制订旨在寻找碳化钨/钴代用品的长远规划奠定了基础。
希望能找到硬度高于碳化钨/钴而成本低于金刚石的一种或多种非战略物质。也希望有一种方法可生产用浇铸熔融碳化物或热压方法所不能制成的复合的、接近成品的产品。
一方面,本发明是适用于制造硬度或耐磨性能要求高的制品的一种材料,该材料含有由AX、一种B源和任选的适量X之间不完全反应的至少一种产物,该反应产物含有至少一种化合物AX和至少一种化合物ABX,其中A和B是选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中的不同物质,X选自由硼、碳、硅和氮组成的组中。若生成化合物ABX时B源未完全耗尽,该反应产物还含有剩余的B源。当该反应产物足够密实时,它具有所要求的硬度和耐磨性能。
第二方面,本发明是适用于制造硬度或耐磨性能要求高的制品的一种材料的制备方法,该方法包括在一定的温度和压力条件下处理AX和一种B源以及任选的适量的熔点各不相同的X、AX和B源的粉末状混合物,该温度和压力足以使AX、B源和任选的X之间不完全反应而生成一种实质上完全密实、固结的产品,该产品晶粒生长最小,并含有至少一种化合物AX,和至少一种化合物ABX,其中A和B是选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中的不同物质,X选自由硼、碳、硅和氮组成的组中,该温度约低于AX和B源中较低熔点的 3/4 。人们认为,温度超过较低熔点的 3/4 会导致晶粒生长过大并使反应朝AX的完全反应进行。这些结果被认为是不合乎要求的。用1Kg负载测得该固结产品合适的维氏硬度至少约为1900Kg/mm2。最有利的维氏硬度至少约为2200Kg/mm2。该方法还包括一个或多个预处理步骤,例如制备AX与一种B源的粉末状混合物,和将该混合物制成一种成型坯件。该方法还包括密实化后的一个或多个精整步骤。
第三方面,本发明是用上述方法制备的材料制成一种耐磨性好的制品。虽然SiC和B4C的硬度高于本发明的材料,该材料中AX为碳化钨,B源为Mo2C(见表2),但后种材料具有意想不到的优良耐磨性能,还具有如喷嘴之类极为耐磨应用的性能,例如,喷水切削喷嘴或混合管道,磨蚀喷嘴,喷水喷嘴,喷雾干燥喷嘴,喷漆喷嘴及类似物。本发明材料还可用于别的用途,如作各种孔口,如节流阀和流量计零件;套管;泵和阀的零件;砖;管接头,料槽,管和用于处理磨料的其他零件,例如煤或矿浆的零件;切削刀具,如转换插件,端面铣刀,缩放刻模机钻头,铰刀,钻头、锯条和用于机械加工或切削各种材料如金属、塑料、木制品和合成材料的各种刀具;模具、铰盘、滚轴、导面装置、穿孔器、成型工具和类似拉丝,拉管、挤出,模压、纺织品制造和其他需要硬度或耐磨的用途中;粉末压模;放电加工(EDM)的电流触点和导管;运动器械;及钟表用的精密零件和类似物。上述用途只是为了举例说明,而不是想要确切的列出所有可能的用途。显然还有其它用途,这不必过多的试验。
图1是实施例1和比较例A和F的维氏热硬度试验数据与Al2O3和TiC合金的文献值的对照图。
图2是实施例1和8-13的密实材料(其中A为钨、B为钼、X为碳)的维氏硬度与耐磨性之间的关系图。各点的原料Mo2C含量(以粉末原料的重量计)如下:A=50wt-%;B=20wt-%;C=12wt-%;D=6wt-%;和E=1wt-%。
图3是实施例9-13和比较例K-N的密实材料的维氏硬度和Mo2C原料含量之间的关系图。
图4是实施例21的热等压周期的时间与压力的关系图。
本发明采用一种原料AX,其中A选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中,X选自硼、碳、硅和氮组成的组中。A以钨、铪或钛为好,为钨或钛更好,钨最好。X以碳、硅或氮为好,最好为碳。因此,碳化钨是一种较好的市场上可买到的原料。碳化钨的平均粒度约10微米或更小为宜,约5微米或更小为好,更好约为1微米或更小,最好约为0.4-0.8微米。无需过多试验可方便地确定类似于碳化钨的化学式为AX的其它原料的合适的粒度。该原料AX最好为粉末或颗粒状。
加入一种或多种辅助或粘合的金属,诸如铁族金属,如钴,而又要使其对合成组合物的物理性能无有害影响是没有必要的。虽然钴不是一种主要成分,若用制备粉末状混合物的研磨或碾磨机装置含一定量钴时,则无意中带入微量的钴是不可避免的。特别但钴有助于生成混合的碳化物,该碳化物可使密实化温度降至约1400℃或更低,这取决于其成分。但是,可以相信钴对于完全密实化不是主要的。在没有钴的情况下,只要用较高温度也能达到或接近完全密实化。
本发明还用一种B源,B是选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中,而且B不同于A。换句话说,当A是钨时,B可能是除钨以外的上述任何一种物质。B为钼、钒、锆、铬更好,当A不是钨时,B为钼或铬更好,钼最好。该B源最好为粉末或颗粒状。
B源包括上述金属以及硼、碳、硅和氮的衍生物。这里所用的衍生物最好是在化学上与AX一致。也就是说,如果X是碳,则B的衍生物最好是一种B的碳化物或低碳化物。举例来说,若B源为钼,则包括金属钼、碳化钼(MoC)和钼的低碳化物(Mo2C)。若B是一种单质粉末,例如金属钼,在此情况下,按需要加入适量的X,如碳,碳的量最好少于或等于与其它钼源如MoC和Mo2C等化学计量所需的量。加入的量多于化学计算当量时,可能有剩余的未反应的X,在碳的情况下,碳反而会对合成的密实材料的物理性质,如维氏硬度,有不利影响。
最好的一种钼源是低碳化物Mo2C。在制备混合的碳化物时,Mo2C既可作钼源,又可作碳源。一种合适的但不是最好的钼源是金属钼。另一种合适的但更差些的钼源是碳化钼(MoC)。二种或多种钼源的混合物也能得到满意的结果。该钼源最好为粉末或颗粒状。
B源的用量最好足以生成至少一种化合物ABX,其中A、B和X的限定如上。其用量最好足以生成所说的化合物但没有大量剩余,该剩余物会降低反应产物的物理性质或性能,从而使该反应产物失去实用价值。该量也最好少于所有的AX完全反应所需的量。这些量的改变取决于B的来源,无需过多试验,便可确定。
举例来说,当B是钼时,B源的用量最好足以生成至少一种钨-钼混合的碳化物。该钼源的用量最好足以使最终组合物中钼的含量约为1%(重量)或更多。当钼源是Mo2C时,合适的用量(以Mo2C和WC原料的总重量计)约为1-30%(重量),约为3-20%(重量)更好,约为6-10%(重量)最好。
本发明方法包括在密实化条件下处理AX,一种B源和任选的X的粉末状混合物,该密实化条件足以使AX与B之间不完全反应而生成一种固结产物,该产物含有至少一种化合物AX,和至少一种化合物ABX。变量A、B和X的限定如上。该密实化条件选定使晶粒生长最小,包括一定的温度和压力,该温度低于AX和B源熔点中较低熔点的3/4,但高于未明显发生固结的温度,该压力为足以达到所要密实化程度的压力。实质上该反应产物最好是完全密实的。
这里所用的术语“不完全反应”“不完全反应物”和“不完全反应的产物”均指AX与B源之间的反应,其中至少一部分AX未与B源反应。结果,未完全反应的那部分AX与ABX和任选的按本发明制得的产物中少量B源相混合。
当A是钨、B是钼、和X是碳时,该密实化条件最好足以生成一种材料,用1Kg负载测得该材料的维氏硬度至少约为2200Kg/mm2。该维氏硬度约高于2300Kg/mm2更好,最好约高于2400Kg/mm2。若该材料被用于不需要高硬度的用途中,较低的维氏硬度值,如约1900Kg/mm2或更低是容易达到的。达到这么低值的一种方法是选用金属钼作钼源。
当用钨、钼和碳以外的其它元素分别代替A、B和X时,该合成的密实材料其维氏硬度可低达约1000Kg/mm2。图2表示钨/钼/碳密实材料的维氏硬度和耐磨性之间的一般线性关系。由上述替代物制得的类似的密实材料将具有类似的性能。因此,维氏硬度为1000Kg/mm2的材料其耐磨性比维氏硬度为2400Kg/mm2的材料低得多。然而,由于化学相容性或其它原因,硬度较低的材料在某种用途中仍具有特殊的效用。
可用任何一种常规的混合方法制备该粉末状混合物,只要能得到均匀的混合物且对合成材料的物理性能无有害影响。尤其用一种碾磨机可得到满意的结果,该碾磨机中由硬度材料制成的球可用以促进混合,即使少部分球(一般由一种碳化钨/钴材料制成)在混合过程中磨损并加到该混合物中。反应产物或最终材料中存在少量钴对密实材料的物理性能无有害影响。采用由相同材料的混合物制成的球,如碳化钨/碳化钼球(其中A是钨、B是钼、和X是碳)可减少无意中加入的钴。
在原料AX、B源和任选的适量X变成一种混合物以前,它们最好为颗粒或粉末状。当AX是碳化钨,B是钼时,合适的原料平均粒度约小于5微米。当B是钼时,市场上可买到的较好的原料来源Mo2C粉至少有两种平均粒度即4微米和2微米。可以相信小颗粒比大颗粒具有更多的优点,尤其对Mo2C来说,至少在硬度、耐磨性和剩余的未反应Mo2C方面是这样。通常小颗粒所需的混合时间也比大颗粒少。因此,该粉末的平均粒度最好小于约2微米。对本发明的其它原料来说,同样的粒度足以满足需要。
最好借助一种液体如庚烷在研磨机中混合粉末。为便于混合后制成坯件,可在碾磨过程的最后阶段加入一种粘合剂如石蜡。在进一步加工以前,最好使碾磨过的混合物干燥。通过筛分或分级经碾磨和干燥的混合物以除去不要的团粒和细粉,可得到特别满意的结果。
本发明方法还包括另一个预处理步骤,即将经碾磨的,干燥的和分级的混合物制成一种预型件。可用粉末冶金或陶瓷工业中公知的方法制备预型件。参见已列入本文参考文献的US4446100和Moderm        Ceramic        Engineering.第6章,P178-215(1982)。
将含有增强剂、填料、密实助剂、粘结剂、润滑剂、分散剂、絮凝剂等的一种粒料制成预型件的常用方法为:先用单轴压制,等压压制,粉浆浇注、挤压成形、注射塑模或其它类似方法使该粉末制成或成型成一种所要的形状。然后用加热或化学脱粘结,预烧结,初加工,再次等压压制等方法进行密实化以制备所生成的制品。可在所生成的制品上涂保护涂层以防止与周围介质反应。在极个别情况下,可将该制品“密封”或放在一个不渗透的容器中以便在没有空气污染的情况下进行加工。经密实化而制得的该生成的制品被称为“坯件”。
当B是钼时,进行密实化的温度约低于1600℃,温度高于1600℃,如约1650℃,对提高密度无明显好处。可是,该温度的最大缺点是会加速晶粒长大,这对所要的密实材料的性能(如硬度等)有不利影响。温度太低以致无法达到完全密实也是不可取的。可以相信比钼源熔融温度的1/2低好多的温度不能达到完全密实。在三种比较好的钼源(金属钼、Mo2C和MoC)中金属钼的熔点最低,为2617℃。因此,达到密实化的合适的温度下限约为1300℃。密实化温度范围最好约为1350°-1500℃。对于AX和B的其它混合物来说,无需过多试验可容易地确定该温度范围。
用本专业技术人员公知的几种方法之一种方法对坯料加压以加速密实化,最好在高温下对坯料加压以生成所要的制品。这些方法包括热压、热等压压制(HIPing)和快速全向压制(RoC)。虽然用这些方法之任何一种均有不同程度的效果,但是用快速全向压制方法(用机械方法如用锻压方法产生压力)作坯件密实化的方法可得到特别好的结果。
将坯件变成一种令人满意的密实制品的最理想的方法如列入本文参考文献的US4744943中所述。当用这种方法时,合适的加压时间约少于1小时,该加压时间约少于30分钟为好,约少于1分钟更好,约少于10秒钟最好。为便于回收所生成的密实零件,最好将坯件包在石墨片中或其它惰性材料中,然后再放在玻璃外套液压模或其它密实化介质中。
US4081272公开了一种玻璃密封的热等压压制方法。US3622313公开了一种热等压压制方法。这些专利的说明书已列入本文参考文献。若用玻璃密封方法,改进之处最好包括:使装有待密实零件的玻璃容器抽真空,并避免使用粉状玻璃。合适的加压时间为一个小时或更少。
以上述方法制得的密实制品是一种复合的、多相、细粒组合物,它含有下列主要成分:至少一种化合物ABX和至少一种化合物AX。当A是钨、B是钼和X是碳时,该反应产物将含有碳化钨和至少一种钨和钼的混合碳化物(W·Mo)C。若B源未完全变成化合物ABX,该反应产物还含有适量的B源,如Mo2C。该量的变化范围可少至微量(如、约0.01%(重量)或更少),多至大量,这取决于许多相关的变量,这些变量包括原料的选择,混合的程度和密实化参数。最后若用一个碾磨机进行混合并且装在该碾磨机中的球至少部分是由不同于该原料的一种材料(如钴)制成,该材料可作为部分外加的混合碳化物相混入该组合物中。
该密实制品与由碳化钨/钴制成的类似制品相比具有意想不到高的硬度和耐磨性。当A是钨、B是钼和X是碳时,本发明制得的一种典型制品,用1Kg负载测得其维氏硬度至少约为2200Kg/mm2。该维氏硬度至少约为2300Kg/mm2更好,至少约为2400Kg/mm2最好,如上所述,低达1900Kg/mm2或更低的维氏硬度值对某些用途是可容许的。也加上所述,用本发明方法可容易地达到那些硬度值。用ASTM G65-80方法测得该制品的耐磨性至少约为500cm-3。该耐磨性最好至少约为550cm-3,用ASTM G76-83方法在30°角测得该制品的磨损率不大于每克磨料约3×10-3mm3,用ASTM G76-83方法在90°角测得该制品的磨损率最好每克磨料不大于2×10-3mm3。虽然低的磨损率无凝是合乎要求的,但是用目前通用的装置测定这么低的磨损率是十分困难的,甚至是不可能的。专业技术人员都知道硬度和耐磨性的变化取决于用A、B和X表示的材料。专业技术人员也知道耐磨性与硬度成正比,硬度低的材料其耐磨性低于500Cm-3。这些材料可适用于极限温度或化学腐蚀介质中。
该密实制品具有细粒结构,其平均粒度小于约10微米。粒度小于约5微米更好,约小于1微米最好。
本发明制品的密度通常约为理论密度的85%或更大。该密度约大于90%为好,约大于95%更好,最好约为理论密度的100%。这里所用的“理论密度”是基于原料成分的体积分数和密度的计算值。这里所用的“高密度”是指至少约为90%理论密度的一种密度。本发明材料特别可用于制造切削刀具和喷嘴,例如喷水切削喷嘴。
下列实施例和比较例只是为了说明本发明,不能通过推断或其它方法来限制其范围。所有的份数和百分数均以重量计,所有的温度均为摄氏度(℃),除非另有说明。本发明的实施例用阿拉伯数字表示,而比较例用大号字母作标记。
实施例1
粉末原料是94%碳化钨粉末(平均粒度为0.8微米)和6%Mo2C(平均粒度约为4微米)的一种混合物。在一个装有50Kg碳化钨-钴球的研磨机中,在有庚烷的情况下,使该粉末混合物剧烈混合8小时。在研磨机混合过程的最后30分钟,加入约2-3%的石蜡(作一种粘合剂)。使制得的混合物干燥并通过20目筛以进行筛分。以5000磅/英吋2(psi)(35MPa)的压力冷压通过钢制工具中筛网的混合物以制成坯件。然后在30000磅/英寸2(210MPa)的压力下冷等压压制经冷压的坯件。在真空下,在350℃使制得的零件脱蜡。然后将坯件放入一个玻璃外套液压模,或等压模组件中,在氮气气氛中,在1400℃预热2小时,再在120000磅/英寸2(830MPa)压力下等压压制5秒钟。在US4744943、US4428906和US4656002(已列入本文参考文献)中对压制方法作了更详细的描述。在空气中冷却液压模,回收该零件并进行喷砂。
分析工作包括使用金相分析,光学显微镜,分析扫描电子显微镜(ASEM)、电子探针分析(EPA)、分析透射电子显微镜(ATEM)和X-射线衍射(XRD)。在扫描电子显微镜(SEM)、分析用透射电子显微镜和光学显微镜下观测显微结构。用X-射线衍射测定存在的反应相。用电子探针分析和分析透射电子显微镜测定反应相的组成。用BSE像的体视学和用分析透射电子显微镜粒子计数测定相的体积分数。
该组合物的分析结果表明各组分含量(以重量计)为:W88.3%,Mo5.6%和C6.1%。该材料是一种松散的多相组合物,它含有(以体积计):约28.5%WC,约70%的一种混合的钨-钼碳化物(MoC-WC含有3-32摩尔%MoC和0.2重量%Co)、约1.3%的一种混合的钴-钨-钼碳化物(钴含量为2-10%(重量))、约0.01%Mo2C和约0.2%的空隙。该材料完全是粒状的,不含有粘合剂相或连续相。该材料也没有可见的颗粒间隙。该混合的钨-钼碳化物相是一种连续的组合物,在该混合碳化物中含有1.5-19%(重量)Mo,或3-32摩尔%MoC。该混合碳化物相的平均组成为:7.2%(重量)Mo或13.7摩尔%MoC(在混合碳化物相中)。
用截取方法(intercept        method)(如Under        Wood在Quantitative        Sterology,Addison-wesley,Reading,MA(1970)中所述)测定粒度分布。其平均粒度约为0.22微米,80%的颗粒其粒度小于0.3微米。最终的WC粒度约为0.25微米。该零件的物理性能列于表1中。
表        1
实施例1中制备的制品的物理性能
性能        测定值        方法
密度 14.9g/Cm3水浸ASTM B311-58
硬度 2650Kg/mm2维氏-1Kg
ASTM        E384-73
韧性(W)        25Kg/mm        帕姆奎斯特
(Palmqvist)
压痕法
强度        950MPa        横向断裂强度
ASTM        B406-76
磨损率
A磨蚀 693 1/cm3ASTM G65-80
B腐蚀 0.9×10-3ASTM
mm3/g(30°)
0.7×10-3G76-83
mm3/g(90°)
表1中所例数据表明,该组合物具有良好的硬度和耐磨性。用本发明的其它组合物,可期望得到类似的结果。
实施例2
重复实施例1的方法,只是用11.3%的Mo代替Mo2C粉末原料。分析数据表明最终的组合物含有72%WC、25%的一种混合的(W Mo)C相和3%Mo2C,主要的粘合相含有下列成分:61%W、33%Mo、6%C、该组合物的维氏1Kg硬度为1925Kg/mm2
实施例3
重复实施例2的方法,只是用6.8%Mo。分析数据表明最终的组合物其组成与实施例1相同。该组合物的维氏1Kg硬度为2570Kg/mm2
对于本文所公开的所有其它组分和加工条件来说,可得到类似于实施例1-3的结果。
将比较例A的碳化钨/钴原料制成坯件,并以类似于实施例1的方式使其密实。比较例B-E和G采用烧结方法密实,比较例F、H、和I用热压方法密实。后种方法在现有技术中是众所周知的。然后对比较例A-I的材料和实施例1和3制得的材料进行试验,通过磨蚀和腐蚀测定磨损率。用ASTM        G65-80的干砂橡胶轮试验测定磨蚀量,同时按ASTM        G76-83测定磨蚀量。磨耗量用体积损失量的倒数表示,腐蚀数据用体积损失量/磨耗的克数表示。这些试验结果以及该材料的维氏硬度列于表Ⅱ中。
表Ⅱ
Figure 891081836_IMG1
从Kennametal Inc买到,圆括号中的值表示粘合材料的重量百分数。
-未测定。
由表Ⅱ可见,本发明含碳化钨/钼的材料与碳化钨/钴和其它硬质材料相比具有令人惊奇的高硬度和耐磨性能。
按B.North在Engineering        Applications        ofBrittle Materials,P159(1985)(已列入本文参考文献中)所叙的方法对实施例1和比较例A和F的材料进行维氏热硬度试验,在不同的温度下,用1Kg负载和10秒钟的压痕时间得到的试验结果如图1所示。该图还显示了Al2O3和TiC合金的文献值。图1中所示的数据表明本发明组合物适用于高温用途,如作金属的切削刀具。对于本文所公开的所有其它材料和加工条件来说,可得到类似的结果。
实施例4-7
重复实施例1的方法,所不同的是在实施例5、6和7中碳化钨原料的平均粒度分别增加至1.6μm、3.5μm和10μm,用于维氏硬度试验的负载由1Kg增加至13.6Kg。维氏硬度试验结果(以Kg/mm2表示)如下:实施例4-2480;实施例5-2320;实施例6-2100;实施例7-1925。该维氏硬度试验数据表明原料的粒度至少会影响所生成的材料的硬度。对于本文公开的所有其它材料和加工条件来说,期望得到类似的结果。
实施例8和比较例J
各种方法所用的粉末原料均为99%碳化钨粉末(如与实施例1所用的相同)和1%Mo2C粉末(平均粒度为2μm)的一种混合物。
在一个球磨机中,在有庚烷的情况下混合比较例J的粉状混合物达24小时。在碾磨过程的最后30分钟,加入约1%的石蜡。按实施例1的方法制成坯件并脱蜡。然后在2225℃的温度下,在氩气氛中加热该坯件30分钟,通过烧结达到密实。该零件具有很粗的颗粒结构,其密度约为理论密度的96%,维氏硬度约为1100Kg/mm2
按实施例1的方法使实施例8的粉状混合物变成密实的零件。该零件具有很细的颗粒结构,其密度约为理论密度的98%,维氏硬度约为2750Kg/mm2
上述结果的简单比较表明相同的原料加工后可得到明显不同的结果,用本发明方法可制得一种硬得多的材料。用本发明的其它典型材料和加工参数都可得到类似的结果。
实施例9-13和比较例K-L
改变实施例1的碳化钨粉末的量和实施例8的Mo2C粉末的量,按实施例1的方法(有二个例外)制备若干密实的零件。其中一个例外为:按实施例1的方法(所不同的是省去碾磨机混合)加工100%Mo2C粉末。另一个例外为:将比较例K和L的坯件包在石墨片(如由Union Carbide买到、商标名为Grafoil)中以便于零件的回收。对密实的零件进行下列物理性能的测试:(a)维氏硬度(VHN),用1Kg负载,以Kg/mm2表示;(b)帕姆奎斯特韧性(W),用13.6Kg负载,以Kg/mm表示;(c)磨耗量(WN),用ASTM G65-80,以1/Cm3计;(d)在30°和90°的体积损失(VL)按ASTM G-76-83以10-3mm3/gm表示。该帕姆奎斯特韧性试验如R.Warren和H.Matzke的“Indentation Testing of a Broad Range of Cemented Carbides”,Science of Hard Materials,P563-82和R.K.Viswanadham,D.J.Rowcliffe and J.Gurland eds.,Plenum Press(1983)中所述。由这些试验所得到的物理性能的数据如下列的表Ⅲ所示:
Figure 891081836_IMG2
-表示未测定
表Ⅲ中所列数据和图3中结果表明本发明方法可用各种组合物制备硬质的、耐磨材料。由Mo2C含量为50%或更多的起始组合物制得的密实材料比由Mo2C含量为20%或更低的起始组合物制得的材料明显要软,耐磨性能要差。当Mo2C含量低于30%时(虽然在表Ⅲ中未列出)可得到满意的性能。用本发明提出的所有其它原料和加工参数都可得到类似的结果。
实施例14
重复实施例1的方法以制备长为2英寸、孔径为0.062英寸的磨料喷水嘴。该喷嘴孔是由固结的或密实的粉末制成的制品加工成的。按如下方法将制得的喷嘴与市场上买到的碳化钨/钴喷嘴进行对比试验。
将该喷嘴装在市售的(由Flow System.Inc.买到,型号为11X Dual)喷磨切削机上。参见US4648215中关于喷水切削机的实例说明,水压为35000磅/英寸2,磨料流速为1.5磅/分。喷嘴口径为0.018英寸。测定出口孔径增加与时间的函数关系以确定喷嘴磨损率。其结果列于表Ⅳ中。
表 Ⅳ
组合物 磨料 时间(分) 出口孔径增加(英寸) 磨损量Mil/分
WC/CO Al2O3 1 +0.015 15
WC/MO2C Al2O3 42 +0.012 0.29
WC/CO 金刚砂 45 +0.012 0.27
WC/MO2C 金刚砂 435 +0.002 0.0023
由表Ⅳ可见,用氧化铝或金刚砂作磨料时,本发明材料的磨损量意想不到的低于市售的材料。用氧化铝作磨料时,市售的WC/CO材料很快磨耗,以至从经济上讲它是不实用的。对于本发明的其它组合物和加工条件,可期望得到类似的结果。
用同样的方法进行第二组试验,所不同的是切削机型号为9X Dual,水压为3000磅/英寸2(208MPa),通过喷嘴入口孔径的增加与时间的函数关系测定磨损率。连续进行试验直到观察到喷嘴的磨损明显扩大,足以使水/磨料的射流发散并且明显影响零件的切削质量为止,或经过长时间的试验直到证明喷嘴无用为止。其结果列于表Ⅴ中。
表 Ⅴ
组合物 磨料 时间(分) 入口孔径的增加(英寸) 磨损量(Mil/分)
WC/CO 金刚砂 100 +0.020 0.20
WC/MO2C 金刚砂 720 0.010 0.014
令人惊奇的是,试验结果表明,由本发明材料制成的喷嘴其寿命比现在市售的碳化钨/钴喷嘴长14倍。采用本发明的其它原料和加工条件,可期望得到类似的结果。
实施例15和比较例O-P
重复实施例1的方法,所不同之处如下:(a)在一个工业用研磨机中(一般用于大规模生产WC/CO粉末)加工粉末原料和石蜡;(b)在约10000磅/英寸2(70MPa)而不是如以前的5000磅/英寸2(35MPa)压力下冷压坯件;(c)等压压制的最大压力在15-30吨/英寸2(tsi)(208-415MPa)之间变化(如表Ⅵ所示);(d)等压压制的保压时间增加至15或30砂,也如表Ⅵ所示;(e)将坯件包在石墨片(从Unin Carbide买到,商标名为Grafoil)中,然后放入玻璃外套的液压模中。按实施例1的方法测定所回收的零件的密度与硬度。测得的数据如表Ⅵ所示。
上述结果的简单比较表明在压力低和保压时间少的情况下(比较例O和P),该制品与实施例1的产品相比,其密度和硬度明显降低。但是,在压力低而保压时间较长的情况下(实施例15),所制得材料的性能与实施例1的材料性能相近。
实施例16-20和比较例Q
重复实施例1的方法,所不同的是在加压之前预热该坯件的温度不同(预热时间为2小时不变)。该温度以50℃增量从1250℃升到1500℃。此外,用实施例15的石墨片包裹坯件。按实施例1的试验说明测定密度和维氏硬度等物理性质。用帕姆奎斯特压痕测定帕姆奎斯特(Palmqvist)韧性(W)。测定结果和预热温度列于表Ⅶ中。
Figure 891081836_IMG4
与实施例1的数据相比较,可以看出,为了制得类似的材料,预热温度高于1300℃是合适的。若允许材料的硬度较低的话,可采用较低的预热温度。
比较例R
重复实施例15的方法,所不同的是用一个直径为0.609英寸的干袋等压工具,用30000磅/英寸2(208MPa)的压力,保压时间为10秒钟以冷压该零件。然后使它们脱蜡,按实施例1的方法装入液压模中,在1400℃预热2小时。从炉中取出已预热的零件,不加压使其冷却。按实施例1的方法回收该零件。用分析透射电子显微镜观测,显示了WC与Mo2C之间的某些反应迹象,但其反应程度比实施例1观测到的小得多,在实施例1中,预热过的零件从炉中取出以后,用120000磅/英寸2(830MPa)压力等压压制5秒钟。
用实施例1的分析方法分析该零件,结果表明其主要成分(以体积计)如下:约62%的WC,约28%的一种混合的钨-钼碳化物(与实施例1中所见到的相同)(即反应产物Ⅰ),约2.5%的一种高(含量)Mo混合的钨-钼碳化物(反应产物Ⅱ),约1.5%(体积)未反应的Mo2C和约6%(体积)的空隙。反应产物I平均含有约6.8%(重量)的Mo,Mo的含量约为1.8-17.9%(重量),反应产物Ⅱ是一种具有不同化学计量的MoC/WC产物,其中Mo平均为48%(重量),其含量范围为27-72%(重量)
比较例R比实施例1的材料含有更多的未反应的WC(62%对28.5%)。而比较例R所含的混合碳化物反应产物A少,只有28%,与此相比,实施例1为70%。比较例R还含有反应产物B(一种已部分反应的碳化钼,这是实施例1所没有的)以及约1.5%(重量)未反应的Mo2C(实施例1中为0.01%)。这些观测结果表明,至少在1400℃的预热温度下必须加压才能使二种碳化物之间的反应达到满意的程度。本例比实施例1还含有更多的空隙,这是由于密实化程度低而造成的。
该零件的空隙率比实施例1的零件高得多,前者为6%(体积)的空隙,后者为0.2%(体积)的空隙。空隙率高会影响密度的精确测定。该零件的维氏1Kg硬度为573Kg/mm2,比实施例1的2650Kg/mm2明显的低。这些差别表明加压不足而制得的零件不适于硬度要求高的用途。由于硬度与耐磨性有关,可以相信这些零件也不适于耐磨性要求好的用途。
实施例21
重复实施例15的方法,直到在30000磅/英寸2的压力下冷等压压制坯件这一步骤。为了减少热等压压制(HIP)过程中漏气的可能性,在真空下,在350℃使生成的零件脱蜡,接着在1400℃预烧结。然后将坯件放在一个派热克斯耐热玻璃瓶中,将该玻璃瓶抽真空并密封。将封装的零件放在热等压压制装置中,逐渐加压(见图4所示的循环)直至压力为30000磅/英寸2(208MPa)。同时使温度升至1400℃,保持30000磅/英寸2(208MPa)的压力和1400℃的温度达1小时。然后逐渐降压和降温,当循环结束时取出零件。从玻璃瓶中取出零件后,按实施例1的方法进行物理性质试验。其物理性质如下:密度-14.8g/Cm3;维氏硬度-2598Kg/mm2;帕姆奎斯特韧性(W)-22.5Kg/mm。这些性质与实施例1相似。该结果表明热等压压制是实施例1所述的一种可行的方法。
实施例22
重复实施例15的方法,只是粉末原料变为:94%WC、5.6%Mo和0.4%碳黑的混合物。所生成的密实材料其维氏1Kg硬度为2460Kg/mm2。其硬度测定结果表明,用适量X代替等量的B源实质上不会降低所生成的密实材料的物理性质。该结果还表明该密实材料适用于耐磨的用途。
比较例S
重复实施例22的方法,只是改变粉末原料,并用一个较小的碾磨机(装载3.5Kg WC/CO球)。该粉末原料为88.2%W、5.6%Mo和6.2%碳黑。该所生成的密实材料的维氏1Kg硬度测定值为725Kg/mm2。该硬度测定结果表明,用单质粉末的混合物不能制成良好的密实材料。该结果还表明其耐磨性能差,用其它单质粉末混合物可得到类似结果。
实施例23
除某些例外外,用碳化铬而不是用Mo2C作B源,重复实施例1的方法。其例外为:(a)用比较例S的碾磨机;(b)在10000磅/英寸2(70MPa)而不是在5000磅/英寸2(35MPa)的压力下冷压制,(c)按实施例15的方法将坯件包在石墨片中;(d)预热温度为1500℃而不是1400℃。该粉末原料为:95.5%碳化钨粉末(如同实施例1)和4.5%碳化铬粉末的一种混合物,其平均粒度为-325目(约小于48微米)。
该组合物的分析结果表明它含有(以体积计):约3.3%未反应的Cr3C2、约0.8%铬-钨碳化物(与未反应的碳化铬有关),约11%铬-钨碳化物(在WC/WC空隙中)、约0.1%的空隙和约85%未反应的WC。根据电子探针分析结果,该反应产物的成分范围看来很窄:约75%(重量)Cr、约12%(重量)W、和约12%(重量)C。该反应产物还含有约0.4%(重量)的V。它存在于WC粉末原料中(约0.15%(重量))。
用分析透射电子显微镜观测并用截取方法测出未反应的WC的平均粒度约为0.2微米。未反应Cr3C2的平均粒度约为0.3-5微米。
制得的零件其物理性质列于表Ⅷ中。试验方法如实施例1中所述。
由于该材料的硬度高且耐磨性好,可期望它能很好地适用于类似WC/Mo2C的用途中,由于含有Cr3C2,在高温下它具有潜在的附加的高抗氧化性能。
实施例24-26
重复实施例23的方法,只是粉末混合物中Cr3C2的重量百分数和预热程度作了改变,下列零件所用的预热程序包括:以10°/分的升温速度从室温直线升至1500℃,接着保温15分钟,然后加压。三种不同组合物的Cr3C2用量分别为:6%、10%、20%(重量)。表Ⅸ列出了每种组合物的某些物理性质试验结果。
由此数据可见,用许多组合物均能制得优质材料。尤其是将实施例25和26与实施例23的硬度和磨损数据相比,并从图2的耐磨性对硬度的曲线类推,它们应该具有高耐磨的性能。用本文公开的其它组合物可期望得到类似的结果。
实施例27
除改变预热周期外,用碳化钛而不是用碳化钨作一种AX源,并用碳化钒而不是Cr3C2作一种B源,重复实施例23的方法。粉末原料是88.4%(重量)平均粒度为3.8微米的碳化钛和11.6%(重量)平均粒度为5.6微米的碳化钒的一种混合物。加压前的预热温度变为如下周期:在600℃预热2小时,在1400℃预热2小时,在1650℃预热2小时。
用实施例1的方法分析显微结构,结果表明它含有(以体积计):约91%的混合的钛-钒-钨碳化物(含少量的碳化钛)、8.1%的空隙和1.0%杂质碳化物。用分析扫描电子显微镜、电子探针分析、分析透射电子显微镜或X射线衍射没有测出未反应的碳化钒,电子探针分析结果表明混合碳化物反应产物的成分范围极为有限,以重量计为:约67%Ti、约20%C、约10%V、约3%W和约0.2%Si。通过质子诱发的X射线发射方法测得,在粉末混合物中而不是在混合前的原始粉末中有3%(重量)的W。因此,W源可能是碾磨机或WC/CO碾磨介质中的杂质。
回收零件的物理性质列于表Ⅹ中。试验方法如实施例1所述。
预料该硬度和耐磨性随空隙容量减小而提高,使孔隙容量减小的最佳方法为:提高预热温度,减小粉末原料的粒度或更剧烈的研磨。
实施例28
用一种不同的粉末原料混合物,预热温度为1400℃而不是1500℃,重复实施例23的方法。该粉末原料为:93.1%平均粒度为6.1微米的WSi2和6.9%平均粒度为4.2微米的MoSi2
分析回收的材料,所显示的一种显微结构含有(以体积计):约51%WSi2、约16%的第一种反应产物(含有约3%的钼),约8%的第二种反应产物(含有约56%的钼),约18%的二氧化硅,约6%的WC(含少量Co),少于1%的空隙和约1%的各种杂质。根据电子探针和透射电子显微镜分析结果表明,第一种反应产物含有约72%钨,23%硅和3%钼。用分析扫描电子显微镜、电子探针分析或分析透射电子显微镜没有测出未反应的二硅化钼。各种杂质和二氧化硅可能来源于碾磨机或碾磨介质中的杂质以及在加热或加压过程中与液压模外套的玻璃反应的结果。
该回收材料的密度为8.8g/Cm3,维氏硬度为1395Kg/mm2,减少样品中SiO2的量可期望提高该材料的物理性能。可达到此目的的一种方法是在无氧环境中加工这些材料。其它方法是本专业技术人员公知的。
实施例29
除预热程序不同外,用一种不同的粉末原料混合物重复实施例23的方法。该粉料是86.9%平均粒度为1.6微米的TiN和13.1%平均粒度为8.2微米的ZrN。所用的预热程序包括:以每分钟10℃的升温速度由室温直升至1800℃,接着保温15分钟。
用实施例1的方法分析该样品的显微结构,结果表明其中TiN与ZrN之间充分反应生成了钛-钴氮化物,它是样品的约85%(体积)。未反应的TiN含量约为2.0%(体积),并有微量的未反应的ZrN〔<0.1%(体积)〕。其余的样品含有(以体积计):约4.7%ZrO2、约1.0%硅化钨(含少量Fe)和约6.6%空隙。由此可见该硅化钨杂质来自研磨机/介质。该钛-锆氮化物反应相的成分(以重量计)为:约70.9%钛、约6.9%锆和约22.2%氮。
回收样品的物理性质测定值列于表Ⅺ中。
表Ⅺ-实施例29的物理性质
该材料的硬度表明其耐磨性不如实施例1制得的材料高。该材料适用于硬度或耐磨性或二者均要求低的用途。
实施例30-32
除改变预热程序外,用不同的粉末原料混合物重复实施例23的方法。该粉末原料是平均粒度为2.1微米的碳化铪和平均粒度为1微米的金属钨。HfC与W的比率为85∶15或70∶30。预热程序包括以10℃/分的升温速度由室温直线升至所要的预热温度1650℃或1800℃。在加压前使样品保温15分钟。
物理性质测定值与有关的预热温度以及金属钨粉末的重量百分数如表Ⅻ所示。
表Ⅻ-实施例30-32的物理性能
Figure 891081836_IMG9
在扫描电子显微镜下观测该样品,并用电子色散谱仪分析,结果表明所有三种样品中,HfC和W之间均发生反应,并测出不同比例的Hf∶W的颗粒。
实施例32说明由于金属钨的百分比增加,其硬度和韧性均比实施例30高。实施例31表明预热温度提高而其性能没有改进。实施例32的材料表明由于其硬度高,因此可用于切削刀具和耐磨的用途。用本文公开的其它组合物可期望得到类似的结果。
如上所述,本发明材料可用于需要耐磨或硬度或二者兼备的用途中。该材料尤其可用于喷嘴如,喷砂喷嘴和喷水切削喷嘴、防磨导管、衬套、粉末压模、阀的零件、缩放刻模机钻头、切削刀具、端面铣刀、转换插件、拉丝模零件和类似物。

Claims (36)

1、适用于制造硬度或耐磨性能要求高的制品的一种材料,该材料含有AX和一种B源之间不完全反应的一种产物,将产物含有至少一种化合物AX和至少一种化合物ABX,其中A和B是选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中的不同物质,X选自由硼、碳、硅和氮组成的组中。
2、按权利要求1的材料,其特征为X是碳、硅或氮。
3、按权利要求1的材料,其特征为X是碳。
4、按权利要求2的材料,其特征为A选自由钨、铪或钛组成的组中,B是一种与A不同的物质,它选自由钨、锆、钒、铬和钼组成的组中。
5、按权利要求1的材料,其特征为A是钨,B是钼和X是碳。
6、权利要求1的材料还含有剩余量的B源。
7、按权利要求5的材料,其特征为B源是钼的低碳化合物(Mo2C)。
8、按权利要求1的材料,其特征为ABX是不同化学计量的钨/钼碳化物产物,该产物含有约60-99%的钨、约1-40%的钼和约4-9%的碳。
9、按权利要求8的材料,其特征为ABX含有约77-89%的钨,约5-16%的钼和约5-8%的碳。
10、按权利要求5的材料,用一个1Kg负载测得的维氏硬度至少约为2200Kg/mm2,用ASTMG65方法测得的耐磨性至少约为500Cm-3
11、按权利要求10的材料,其特征为用一个1Kg负载测得的维氏硬度至少约为2400Kg/mm2
12、按权利要求1的材料,其密度约大于90%的理论密度。
13、按权利要求4的材料,其粒度约小于5微米。
14、按权利要求3的材料,其特征为A是钨,B是铬和X是碳。
15、按权利要求14的材料,其特征为B源是碳化铬。
16、一种适用于制造硬度和耐磨性能要求高的制品的材料的制备方法,该方法包括处理AX,一种B源和任选的熔点各不相同的X、AX和B源的这样一种粉末状混合物,其处理的温度和压力足以生成一种AX与B源之间未完全反应的,实质上完全密实的固结产物,该固结产物的晶粒生长最小,并含有至少一种化合物AX和至少一种化合物ABX,其中A和B是选自由钛、锆、铪、钒、铌、钽、铬、钼和钨组成的组中的不同物质,X选自由硼、碳、硅和氮组成的组中,该温度约低于AX和B源中较低熔点的3/4。
17、权利要求16的方法还包括密实化之前使该混合物变成一个成型坯件制品的中间步骤。
18、按权利要求16的方法,其特征为A选自由钨、铪或钛组成的组中,B是一种不同的物质,它选自由钨、锆、钒、铬和钼组成的组中,X是碳、硅或氮。
19、按权利要求16的方法,其特征为A是钨、B是钼和X是碳。
20、按权利要求16的方法,其特征为A是钨、B是铬和X是碳。
21、按权利要求16的方法,其特征为该固结产物还含有剩余量的B源。
22、按权利要求19的方法,其特征为B源是钼的低碳化物(Mo2C)。
23、按权利要求19的方法,其特征为该固结产物含有,以组合物重量计,约65-93%钨、约0.9-28%钼、和约4-8%碳。
24、按权利要求19的方法,其特征为用一个1Kg负载测量该固结产物的维氏硬度至少约为2200Kg/mm2,用ASTMG65方法测得的耐磨性至少为500cm-3
25、按权利要求24的方法,其特征为维氏硬度至少约为2400Kg/mm2
26、按权利要求19的方法,其特征为密实化之前将该混合物加热到约低于1600℃的温度。
27、按权利要求26的方法,其特征为用快速全向压制方法传送密实化压力。
28、按权利要求27的方法,其特征为加压时间约少于1小时。
29、按权利要求27的方法,其特征为加压时间约少于30分钟。
30、按权利要求27的方法,其特征为加压时间约少于1分钟。
31、按权利要求28的方法,其特征为加压时间约少于10秒钟。
32、按权利要求16的方法,其特征为用热等压压制方法对粉末状混合物加热和加压。
33、按权利要求32的方法,其特征为加压时间约少于1小时。
34、按权利要求32的方法,其特征为该温度是在约1300-1450℃的范围内。
35、按权利要求19的方法,其特征为该固结产物B的粒度约小于10微米。
36、一种能用于喷水切削用途的经改进的喷嘴,其改进之处包括用权利要求1的材料制备该喷嘴。
CN89108183A 1988-09-20 1989-09-19 高硬度、耐磨材料 Pending CN1042192A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24705488A 1988-09-20 1988-09-20
US247054 1988-09-20

Publications (1)

Publication Number Publication Date
CN1042192A true CN1042192A (zh) 1990-05-16

Family

ID=22933362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89108183A Pending CN1042192A (zh) 1988-09-20 1989-09-19 高硬度、耐磨材料

Country Status (13)

Country Link
EP (1) EP0360567B1 (zh)
JP (1) JP2679744B2 (zh)
KR (1) KR900701683A (zh)
CN (1) CN1042192A (zh)
AT (1) ATE156110T1 (zh)
AU (1) AU627233B2 (zh)
BR (1) BR8907092A (zh)
CA (1) CA1331202C (zh)
DE (1) DE68928219T2 (zh)
DK (1) DK124190A (zh)
FI (1) FI902448A0 (zh)
IL (1) IL91695A0 (zh)
WO (1) WO1990003348A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057285C (zh) * 1996-11-15 2000-10-11 北京市天山新材料技术公司 一种仿陶瓷耐磨材料及其制备方法
CN102531603A (zh) * 2010-11-24 2012-07-04 钴碳化钨硬质合金公司 基体粉末系统和复合材料以及由其制成的物品
CN103373852A (zh) * 2012-04-20 2013-10-30 罗伯特·博世有限公司 混合陶瓷切削刀具和用于此的陶瓷粒料混合物和制造该切削刀具的方法
CN103586458A (zh) * 2013-11-09 2014-02-19 马鞍山成宏机械制造有限公司 一种韧性强硬度大的粉末冶金刀具及其制备方法
CN106399877A (zh) * 2016-06-22 2017-02-15 陈林美 一种耐磨硅化物基金属陶瓷刀具及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128325T2 (de) * 1990-09-20 1998-07-02 Kawasaki Heavy Ind Ltd Hochdruck-Injektordüse
US5434112A (en) * 1990-09-20 1995-07-18 Kawasaki Jukogyo Kabushiki Kaisha High pressure injection nozzle
EP0698002B1 (en) * 1993-04-30 1997-11-05 The Dow Chemical Company Densified micrograin refractory metal or solid solution (mixed metal) carbide ceramics
US5470807A (en) * 1995-03-17 1995-11-28 Industrial Technology Research Institute Chromium carbide based ceramics composite block gauge
JP3310138B2 (ja) * 1995-07-11 2002-07-29 ダイジ▲ェ▼ット工業株式会社 焼結硬質材
US6634837B1 (en) 2000-10-30 2003-10-21 Cerbide Corporation Ceramic cutting insert of polycrystalline tungsten carbide
GB0110134D0 (en) * 2001-04-25 2001-06-20 Miller Donald S Abrasive fluid jet machining apparatus and method
US6843824B2 (en) 2001-11-06 2005-01-18 Cerbide Method of making a ceramic body of densified tungsten carbide
US7163657B2 (en) 2003-12-03 2007-01-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
FR2947748B1 (fr) * 2009-07-09 2015-04-17 Air Liquide Coupage par jet de gaz cryogenique liquide additionne de particules abrasives
US8834594B2 (en) 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
GB201209482D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Polycrystalline material,bodies comprising same,tools comprising same and method for making same
CN104254152A (zh) * 2014-08-25 2014-12-31 常熟市董浜镇华进电器厂 安装简便的电热管
CN104446481A (zh) * 2014-10-29 2015-03-25 安徽省皖捷液压科技有限公司 一种无磷陶瓷喷嘴及其制作方法
KR101985858B1 (ko) * 2017-09-14 2019-06-04 (주)성철기계금속 고경도 및 고내마모성을 갖는 쇼트기용 휠 블레이드 및 그 제조방법 및 휠 블레이드 제조용 금형
CN113087542B (zh) * 2021-04-12 2023-04-07 马鞍山市绿科环保科技有限公司 一种利用铸造废砂生产的高硬度隔音砖及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1610061A (en) * 1914-04-16 1926-12-07 Lohmann Hugo Process for producing tungsten and molybdenum carbide in lumps of various sizes
US2081049A (en) * 1935-09-28 1937-05-18 Gen Electric Sintered hard carbide composition
US2196009A (en) * 1938-01-11 1940-04-02 Gen Electric Hard alloys and method for producing the same
US2188983A (en) * 1938-05-05 1940-02-06 Sirian Wire And Contact Compan Hard metal alloys and process of making the same
US2814566A (en) * 1955-11-10 1957-11-26 Frank W Glaser Boron and carbon containing hard cemented materials and their production
US3340076A (en) * 1966-05-03 1967-09-05 Corning Glass Works Fused refractory castings
US3535132A (en) * 1967-12-15 1970-10-20 Atomic Energy Commission Titanium carbide molten metal barrier and method of production
JPS589137B2 (ja) * 1975-02-14 1983-02-19 ダイジエツトコウギヨウ カブシキガイシヤ 切削用超硬合金
JPS51126309A (en) * 1975-04-28 1976-11-04 Daijietsuto Kogyo Kk Process for producing a tungsten carbide-based super alloy
US4049380A (en) * 1975-05-29 1977-09-20 Teledyne Industries, Inc. Cemented carbides containing hexagonal molybdenum
US4066451A (en) * 1976-02-17 1978-01-03 Erwin Rudy Carbide compositions for wear-resistant facings and method of fabrication
JPS538987A (en) * 1976-07-14 1978-01-26 Chuetsu Waukesha Kk Device for pitch variation of marine variable pitch propeller
US4216009A (en) * 1977-07-27 1980-08-05 Sumitomo Electric Industries, Ltd. Method of making alloy and carbide powders of molybdenum and tungsten
CH621749A5 (zh) * 1977-08-09 1981-02-27 Battelle Memorial Institute
US4257809A (en) * 1979-01-05 1981-03-24 General Electric Company Molybdenum monocarbide-tungsten monocarbide solid solutions
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
US4384884A (en) * 1981-01-05 1983-05-24 Sumitomo Electric Industries, Ltd. Process for the production of a hard solid solution containing molybdenum
JPS58223671A (ja) * 1982-06-17 1983-12-26 株式会社井上ジャパックス研究所 高硬度材およびその製造方法
JPS597342A (ja) * 1982-07-05 1984-01-14 Seiko Epson Corp 液晶パネル
US4454105A (en) * 1982-10-05 1984-06-12 Amax Inc. Production of (Mo,W) C hexagonal carbide
JPS6022642A (ja) * 1983-02-17 1985-02-05 Kawasaki Heavy Ind Ltd 供試体キヤツピング面の成形仕上方法及び装置
EP0190346A4 (en) * 1984-08-08 1987-01-22 Dow Chemical Co NEW COMPOSITE CERAMIC WITH INCREASED HARDNESS.
JPS61191563A (ja) * 1985-02-21 1986-08-26 倉富 龍郎 硬質物複合焼結体およびその製造法
JPS62211340A (ja) * 1985-08-08 1987-09-17 メタルウエルク、プランゼ−、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング 耐食性硬質合金
AU7705587A (en) * 1986-07-10 1988-02-10 Commonwealth Scientific And Industrial Research Organisation Method of forming a ceramic product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057285C (zh) * 1996-11-15 2000-10-11 北京市天山新材料技术公司 一种仿陶瓷耐磨材料及其制备方法
CN102531603A (zh) * 2010-11-24 2012-07-04 钴碳化钨硬质合金公司 基体粉末系统和复合材料以及由其制成的物品
US9056799B2 (en) 2010-11-24 2015-06-16 Kennametal Inc. Matrix powder system and composite materials and articles made therefrom
CN103373852A (zh) * 2012-04-20 2013-10-30 罗伯特·博世有限公司 混合陶瓷切削刀具和用于此的陶瓷粒料混合物和制造该切削刀具的方法
CN103586458A (zh) * 2013-11-09 2014-02-19 马鞍山成宏机械制造有限公司 一种韧性强硬度大的粉末冶金刀具及其制备方法
CN103586458B (zh) * 2013-11-09 2016-01-06 马鞍山成宏机械制造有限公司 一种韧性强硬度大的粉末冶金刀具及其制备方法
CN106399877A (zh) * 2016-06-22 2017-02-15 陈林美 一种耐磨硅化物基金属陶瓷刀具及其制备方法

Also Published As

Publication number Publication date
DE68928219D1 (de) 1997-09-04
JP2679744B2 (ja) 1997-11-19
EP0360567A2 (en) 1990-03-28
BR8907092A (pt) 1991-01-08
WO1990003348A1 (en) 1990-04-05
EP0360567A3 (en) 1991-01-30
KR900701683A (ko) 1990-12-04
IL91695A0 (en) 1990-06-10
DE68928219T2 (de) 1997-11-13
AU627233B2 (en) 1992-08-20
DK124190D0 (da) 1990-05-18
ATE156110T1 (de) 1997-08-15
DK124190A (da) 1990-05-18
JPH03505862A (ja) 1991-12-19
CA1331202C (en) 1994-08-02
EP0360567B1 (en) 1997-07-30
AU4332689A (en) 1990-04-18
FI902448A0 (fi) 1990-05-17

Similar Documents

Publication Publication Date Title
CN1042192A (zh) 高硬度、耐磨材料
US4945073A (en) High hardness, wear resistant materials
KR100555640B1 (ko) 입방결정 질화붕소 소결체 및 그것을 이용한 절삭 공구
CN1059137A (zh) 高断裂韧性自增强氮化硅陶瓷及其制备该陶瓷的方法
CN1854104A (zh) 固体溶液粉末、陶瓷、金属陶瓷粉末、金属陶瓷及制备法
US5256608A (en) High hardness, wear resistant materials
US5215945A (en) High hardness, wear resistant materials
JP3061699B2 (ja) サブミクロンの炭窒化物、その製造方法及びその使用
CN101056999A (zh) 高硬度、高耐蚀和高耐磨的合金
JP6048522B2 (ja) 焼結体および切削工具
JP2008069420A (ja) 超硬合金および被覆超硬合金並びにそれらの製造方法
US5089447A (en) High hardness, wear resistant materials
JP6048521B2 (ja) 焼結体および切削工具
JP2007254249A (ja) cBN基超高圧焼結体
JP2005281084A (ja) 焼結体およびその製造方法
JP2002167639A (ja) 工具用サーメット基焼結材及びその製造方法
JP2006111947A (ja) 超微粒子サーメット
CN108580912A (zh) 制备pcbn复合片时金属粘结剂的添加方法
US5223460A (en) High hardness, wear resistant materials
JP3152783B2 (ja) チタン化合物ウイスカーおよびその製造方法並びに複合材料
JP4636574B2 (ja) 工具用セラミック基焼結材及びその製造方法
Rasulov et al. CREATION OF SUPERHARD COMPOSITE MATERIALS BASED ON DIAMOND AND BORON NITRIDE
JPH08507746A (ja) 耐摩耗性を示す硬質の複合多相反応焼結材料
Khakimovich et al. Implementation of technology production of composite tools of super-hard materials
JPH06239664A (ja) 繊維強化セラミックスおよびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication