CN104157733A - 一种氧化钇硫化铋复合太阳能薄膜的制备方法 - Google Patents

一种氧化钇硫化铋复合太阳能薄膜的制备方法 Download PDF

Info

Publication number
CN104157733A
CN104157733A CN201410391676.8A CN201410391676A CN104157733A CN 104157733 A CN104157733 A CN 104157733A CN 201410391676 A CN201410391676 A CN 201410391676A CN 104157733 A CN104157733 A CN 104157733A
Authority
CN
China
Prior art keywords
film
ytterbium
yittrium oxide
solution
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410391676.8A
Other languages
English (en)
Other versions
CN104157733B (zh
Inventor
贾红
刘小峰
邱建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410391676.8A priority Critical patent/CN104157733B/zh
Publication of CN104157733A publication Critical patent/CN104157733A/zh
Application granted granted Critical
Publication of CN104157733B publication Critical patent/CN104157733B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种氧化钇硫化铋复合太阳能薄膜的制备方法。该方法是在导电玻璃衬底的一个侧面沉积有一层掺镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er),然后将Y2O3:Yb-Er薄膜上通过离子交换法沉积硫化铋薄膜,该复合薄膜在近红外有光电流响应。制备的复合薄膜均匀致密,是对近红外光有响应的复合太阳能薄膜。该薄膜材料在980纳米激光器下,有明显的光电流响应。本发明工艺方法简单、原料易得、成本低,能耗低,无毒,可以在常温常压操作,有希望进行工业化生产。

Description

一种氧化钇硫化铋复合太阳能薄膜的制备方法
技术领域
本发明涉及一种氧化钇硫化铋复合太阳能薄膜的制备方法。
背景技术
随着能源危机的到来,人们对清洁能源,绿色能源的应用研究成为热点,太阳能是清洁绿色的能源之一,但大部分太阳能电池只吸收所有可见光及紫外光部分,然而由太阳光能量分布知,约52%的红外光不能用与光催化,因此如果通过上转换材料将红外光转换为可见光用于太阳能电池具有很大的研究价值,本发明专利第一次采用电化学沉积法,将上转换薄膜(Y2O3:Yb-Er)与太阳能电池薄膜(Bi2S3)结合,实现了近红外响应。
发明内容
本发明的目的是针对现有技术的不足,提出一种氧化钇硫化铋复合太阳能薄膜的制备方法。
本发明的目的是通过以下技术方案实现的:一种氧化钇硫化铋复合太阳能薄膜的制备方法,步骤如下:
1)将硝酸钇,硝酸镱,硝酸铒分别配成浓度为0.1mol/L的水溶液,并按照体积比为72~94:6~25:1~5混合,作为电镀镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)电镀溶液;
2)以导电玻璃ITO为工作电极,铂金电极为对电极,Ag/AgCl/饱和KCl溶液电极为参比电极,在导电玻璃上进行薄膜沉积:将三电极插入步骤1配置的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)的电镀溶液溶液中,在30-80°C下沉积10分钟~1小时,沉积电压为-0.8 V~-1.2 V (vs Ag/AgCl/KCl参比电极);将得到的薄膜清洗并干燥,然后在300-600°C下热处理30分钟-4小时,在ITO上沉积得到镱掺铒氧化钇(Y2O3:Yb-Er)上转换薄膜;
3)将步骤2得到的带有镱掺铒氧化钇上转换薄膜的ITO浸入浓度为0.0001~0.001mol/L的硝酸铋溶液中5~30秒,然后移入去离子水中10~20秒,然后浸入浓度为0.0002~0.002mol/L硝酸铋溶液中5-30秒,再浸入去离子水中10-20秒
4)重复若干次步骤3,得到复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)。
本发明具有的有益效果是:
本发明通过简单的电化学沉积方法和离子交换法过程,制得一种新型氧化钇硫化铋近红外响应的复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3),该复合薄膜,在980nm激光器下,有光电流响应。本发明工艺方法简单、原料易得、成本低,能耗低,无毒,便于工业化生产。 
附图说明
图1是氧化钇硫化铋复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)的制备流程图;
图2是实施例1所得产物的XRD谱图:a为单纯氧化钇的薄膜XRD ,b为单纯硫化铋薄膜,c为氧化钇硫化铋复合薄膜;
图3复合薄膜电镜照片图:图3a和3b为实施例1制备的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)上转换薄膜热处理前后的电镜照片,图3c为实施例1得到的氧化钇硫化铋复合太阳能薄膜的表面电镜照片;图3d实施例2得到的氧化钇硫化铋复合太阳能薄膜的电镜图;
图4镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)和复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)光致发光发射光谱图;
图5氧化钇硫化铋复合太阳能薄膜在980激光器下的光电流响应曲线图。
具体实施方式
如图1所示,本发明在导电玻璃衬底的一个侧面沉积有一层掺镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er),然后将Y2O3:Yb-Er薄膜上通过离子交换法沉积硫化铋薄膜。该薄膜材料在在980nm激光器下,有光电流响应。
实施例1
一种氧化钇硫化铋复合太阳能薄膜的制备方法,步骤如下:
1)将硝酸钇,硝酸镱,硝酸铒分别配成浓度为0.1mol/L的溶液,按照体积比为72:6:1的进行混合,作为电镀镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)电镀溶液。
2)以导电玻璃ITO为工作电极,铂金电极为对电极,Ag/AgCl/饱和KCl溶液电极为参比电极,在导电玻璃上进行薄膜沉积:将三电极插入步骤1配置的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)的电镀溶液溶液中,在30°C下沉积1小时,沉积电压为-0.8 V (vs Ag/AgCl/KCl参比电极);将得到的薄膜清洗并干燥,然后在300°C下热处理4小时,得到镱掺铒氧化钇(Y2O3:Yb-Er)上转换薄膜。图2(a)为其热处理后的XRD,证明其为氧化钇薄膜。图3 a为沉积后的氧化钇薄膜电镜图为片状,图3b为热处理后的氧化钇薄膜电镜图,为片状,有分层。
3)将步骤2得到的带有镱掺铒氧化钇上转换薄膜的ITO浸入0.001的硝酸铋溶液中5秒,然后移入去离子水中10秒,然后浸入0.002mol/L硝酸铋溶液中5秒,然后再浸入去离子水中10秒,如此循环50次,得到复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)。制备的复合薄膜,是对近红外光有响应的复合太阳能薄膜。
图2c为复合薄膜的XRD图,从图中可以看出,为氧化钇和硫化铋复合物。图3c为复合薄膜的电镜图,从图中可以看出,硫化铋颗粒在氧化钇的表面生长,为颗粒物。图4为镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)和复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)光致发光发射光谱的比较,从图中看出,上转换的可见光被硫化铋有效吸收。
实施例2
一种氧化钇硫化铋复合太阳能薄膜的制备方法,步骤如下:
1)将硝酸钇,硝酸镱,硝酸铒分别配成浓度为0.1mol/L的溶液,按照体积比为94:25:5的进行混合,作为电镀镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)电镀溶液。
2)以导电玻璃ITO为工作电极,铂金电极为对电极,Ag/AgCl/饱和KCl溶液电极为参比电极,在导电玻璃上进行薄膜沉积:将三电极插入步骤1配置的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)的电镀溶液溶液中,在80°C下沉积10分钟,沉积电压为-1.2 V (vs Ag/AgCl/KCl参比电极);将得到的薄膜清洗并干燥,然后在600°C下热处理30分钟,得到镱掺铒氧化钇(Y2O3:Yb-Er)上转换薄膜。
3)将步骤2得到的带有镱掺铒氧化钇上转换薄膜的ITO浸入0.0001mol/L的硝酸铋溶液中30秒,然后移入去离子水中20秒,然后浸入0.0002mol/L硝酸铋溶液中5-30秒,然后再浸入去离子水中20秒,如此循环80次,得到复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)。图3d为复合薄膜的电镜图,从图中可以看出,硫化铋颗粒在氧化钇的表面生长,为颗粒物。图5为复合薄膜在980nm激光器下的光电流曲线,可以看出,该薄膜在有近红外响应的太阳能电池薄膜。
实施例3
一种氧化钇硫化铋复合太阳能薄膜的制备方法,步骤如下:
1)将硝酸钇,硝酸镱,硝酸铒分别配成浓度为0.1mol/L的溶液,按照体积比为82:17:3的进行混合,作为电镀镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)电镀溶液。
2)以导电玻璃ITO为工作电极,铂金电极为对电极,Ag/AgCl/饱和KCl溶液电极为参比电极,在导电玻璃上进行薄膜沉积:将三电极插入步骤1配置的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)的电镀溶液溶液中,在50°C下沉积30分钟,沉积电压为-1.0V (vs Ag/AgCl/KCl参比电极);将得到的薄膜清洗并干燥,然后在450°C下热处理2小时,得到镱掺铒氧化钇(Y2O3:Yb-Er)上转换薄膜。
3)将步骤2得到的带有镱掺铒氧化钇上转换薄膜的ITO浸入0.0005mol/L的硝酸铋溶液中15秒,然后移入去离子水中15秒,然后浸入0.0008mol/L硝酸铋溶液中15秒,然后再浸入去离子水中15秒,如此循环多次,得到复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)。制备的复合薄膜,是对近红外光有响应的复合太阳能薄膜。

Claims (1)

1.一种氧化钇硫化铋复合太阳能薄膜的制备方法,其特征在于,该方法的步骤如下:
1)将硝酸钇,硝酸镱,硝酸铒分别配成浓度为0.1mol/L的水溶液,并按照体积比为72~94:6~25:1~5混合,作为电镀镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)电镀溶液;
2)以导电玻璃ITO为工作电极,铂金电极为对电极,Ag/AgCl/饱和KCl溶液电极为参比电极,在导电玻璃上进行薄膜沉积:将三电极插入步骤1配置的镱掺铒氧化钇上转换薄膜(Y2O3:Yb-Er)的电镀溶液溶液中,在30-80°C下沉积10分钟~1小时,沉积电压为-0.8 V~-1.2 V;将得到的薄膜清洗并干燥,然后在300-600°C下热处理30分钟-4小时,在ITO上沉积得到镱掺铒氧化钇(Y2O3:Yb-Er)上转换薄膜;
3)将步骤2得到的带有镱掺铒氧化钇上转换薄膜的ITO浸入浓度为0.0001~0.001mol/L的硝酸铋溶液中5~30秒,然后移入去离子水中约10~20秒,然后浸入浓度为0.0002~0.002mol/L硝酸铋溶液中5-30秒,再浸入去离子水中10-20秒
4)重复若干次步骤3,得到复合太阳能薄膜(Y2O3:Yb-Er/Bi2S3)。
CN201410391676.8A 2014-08-12 2014-08-12 一种氧化钇硫化铋复合太阳能薄膜的制备方法 Expired - Fee Related CN104157733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410391676.8A CN104157733B (zh) 2014-08-12 2014-08-12 一种氧化钇硫化铋复合太阳能薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410391676.8A CN104157733B (zh) 2014-08-12 2014-08-12 一种氧化钇硫化铋复合太阳能薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN104157733A true CN104157733A (zh) 2014-11-19
CN104157733B CN104157733B (zh) 2016-04-27

Family

ID=51883188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410391676.8A Expired - Fee Related CN104157733B (zh) 2014-08-12 2014-08-12 一种氧化钇硫化铋复合太阳能薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN104157733B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292763A (zh) * 2018-06-26 2021-01-29 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN112382510A (zh) * 2020-10-23 2021-02-19 华中科技大学 一种近红外光催化电极、制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462893A (zh) * 2009-01-12 2009-06-24 浙江理工大学 一种氧化钇薄膜及其制备方法
WO2009157879A1 (en) * 2008-06-26 2009-12-30 National University Of Singapore A photovoltaic apparatus
CN102140662A (zh) * 2011-01-18 2011-08-03 浙江大学 采用电沉积制备NaYF4:Yb,Er上转换荧光材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157879A1 (en) * 2008-06-26 2009-12-30 National University Of Singapore A photovoltaic apparatus
CN101462893A (zh) * 2009-01-12 2009-06-24 浙江理工大学 一种氧化钇薄膜及其制备方法
CN102140662A (zh) * 2011-01-18 2011-08-03 浙江大学 采用电沉积制备NaYF4:Yb,Er上转换荧光材料的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292763A (zh) * 2018-06-26 2021-01-29 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN112292763B (zh) * 2018-06-26 2024-04-05 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN112382510A (zh) * 2020-10-23 2021-02-19 华中科技大学 一种近红外光催化电极、制备方法及应用

Also Published As

Publication number Publication date
CN104157733B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN104659123B (zh) 化合物薄膜太阳能电池及其制备方法
CN102220615B (zh) 制备CdS/ZnO纳米管阵列光电极的方法
CN104393099A (zh) 一种四氟钇钠碘氧铋复合太阳能薄膜的制备方法
WO2012063440A1 (ja) 光電変換素子の製造方法
CN105826425A (zh) 一种铜锌锡硫薄膜太阳电池的制备方法
CN103943721A (zh) 一种铜锌锡硫薄膜及其制备方法和用途
CN109706478A (zh) 氢气还原的薄层碳化钛负载光电解水用氧化亚铜光阴极材料及其制备方法
CN104152964A (zh) 一种四氟钇钠氧化亚铜复合太阳能薄膜的制备方法
CN105386061A (zh) Bi2S3/TiO2纳米棒复合膜光阳极的制备方法
CN104178742A (zh) 一种嵌入型金属/透明导电薄膜的制备方法
CN103489651A (zh) 一种硒化镉纳米颗粒修饰二氧化钛纳米管阵列电极材料的制备方法
JP2017054917A (ja) 光電変換層及び光電変換層の製造方法
JP5815848B2 (ja) 光電変換装置の製造方法
CN101871111B (zh) 一种均匀致密碘化亚铜半导体薄膜的电化学制备方法
CN107464881B (zh) 一种面向光解水制氢的集成器件及其制作方法
CN104157733A (zh) 一种氧化钇硫化铋复合太阳能薄膜的制备方法
CN106159096B (zh) 一种双面受光大面积钙钛矿太阳电池及其制备方法
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
CN109234761B (zh) 一种用于光电催化产氢的Co3O4/Pt复合薄膜的制备方法
CN108560012B (zh) 高光电转换效率Sn2Nb2O7光阳极及其制备方法和应用
CN104269461B (zh) n型In2S3缓冲层的成膜方法及其应用
CN104098147A (zh) 用电化学方法制备具有玫瑰花状形貌特征的NiO纳米颗粒
CN103898589A (zh) 一种纳米铋氧化物薄膜的制备方法
CN111441066A (zh) 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法
KR20180121480A (ko) 광전기분해 디바이스를 위한 광전캐소드, 이러한 광전캐소드를 생산하는 방법, 및 광전기분해 디바이스

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427

Termination date: 20180812