CN111441066A - 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法 - Google Patents

一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法 Download PDF

Info

Publication number
CN111441066A
CN111441066A CN202010120787.0A CN202010120787A CN111441066A CN 111441066 A CN111441066 A CN 111441066A CN 202010120787 A CN202010120787 A CN 202010120787A CN 111441066 A CN111441066 A CN 111441066A
Authority
CN
China
Prior art keywords
nano
bivo4
cds
aluminum sheet
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010120787.0A
Other languages
English (en)
Inventor
周思宇
周颖
陶洁
付群
雷勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010120787.0A priority Critical patent/CN111441066A/zh
Publication of CN111441066A publication Critical patent/CN111441066A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法。具体实施方法是通过氧化铝模板法制备大范围且高度有序的镍柱作为基底,并利用超声辅助原位沉积法在镍柱表面包括一些Ag纳米颗粒,再用离子连续吸附法在Ag颗粒外部包裹BiVO4纳米颗粒薄膜,最后用化学浴沉积法在最外层包裹一层CdS纳米薄膜,最终制成Ni/Ag/BiVO4/CdS纳米阵列复合电极。本发明中制得的复合光电极和单一的BiVO4光电极相比具有更高的吸光效率,同时降低了光生载流子的复合效率,增加了其迁移效率,从而对其光电效率有显著提高的效果。

Description

一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电 极制备方法
技术领域
本发明涉及一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法。
背景技术
从21世纪初开始,人类过度的使用石油等矿物燃料,导致有害气体的大量排放,造成了全球变暖和气候变化等环境问题。因此,开发和利用可替代的、可再生的绿色能源已成为人类长期面临的挑战。在绿色能源中太阳能是迄今为止最大的可开发能源资源,研究人员进行了各种各样的努力试图将太阳能转化为可储存的化学能。光电化学分解水被广泛认为是最有前途的太阳能转化为氢能的途径之一,在此情形下,半导体光催化剂因其效率高,安全环保,无二次污染等特点广泛得到研究者的关注。其中,BiVO4因其合适的能带位置,较窄带隙能(2.4eV)等优势备受研究者青睐。之前有发明者通过在基于氧化铝模板而制得的Ni纳米柱阵列上成功地包覆BiVO4纳米颗粒薄膜提升了BiVO4的光吸收效率,从而提升了其光电性能。然而,单一的BiVO4纳米阵列不可避免的存在一些缺点,如:电荷迁移较慢,光生电子空穴的复合率较高,水氧化动力低等,从而限制了其作为光催化剂的实际应用。
发明内容
本发明的目的是提供一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法,从而部分解决单一BiVO4材料造成的光电性能限制。
本发明解决上述问题所采用的技术方案是:
一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法,包括如下步骤:
(1)步骤S1制备氧化铝模板,具体步骤如下:
S1.1裁剪铝片:裁剪大小适合的铝片并用丙酮、乙醇对其进行超声清洗处理;
S1.2抛光清洁:用电化学的方法对预处理过的铝片进行抛光处理,达到二次清洁的作用;
S1.3物理压印:用已制备的表面有纳米点阵列的镍膜对光滑的铝片表面进行物理压印,使铝片表面有排布规则的纳米凹坑;
S1.4阳极氧化:取压印过的铝片放置于配制好的电解液中,对其进行阳极氧化,使得压印得到的纳米凹坑向下凹陷,并在纳米孔及部分表面生成Al2O3。
(2)步骤S2制备镍纳米阵列基底,具体步骤如下:
S2.1物理气相沉积蒸金:使用真空镀膜机缓慢匀速的在Al2O3孔道及铝模板表面覆盖一定厚度的金纳米颗粒,以增强基底导电性,方便后续镀镍;
S2.2电化学镀镍:利用电化学工作站,选取合适的程序,在镀有金的氧化铝模板表面电化学沉积一层镍膜,镍顺着Al2O3孔道生长,填满孔道形成一根根的镍柱,并在表面形成一定厚度的镍膜。沉积结束后,取下模板冲净自然晾干,而后将镍膜自氧化铝模板上剥除。
(3)步骤S3制备Ag/Ni纳米阵列:采用超声辅助原位沉积的方法在Ni柱表面沉积Ag纳米颗粒,并通过控制超声时长得到不同厚度的Ag膜。
(4)步骤S4制备Ni/Ag/BiVO4纳米阵列:通过连续离子层吸附反应的方法,在S3步骤得到的Ag膜外部沉积一定圈数、均匀的BiVO4纳米颗粒薄膜
(5)步骤S5制备Ni/Ag/BiVO4/CdS纳米阵列:采用化学浴沉积的方法,在上述步骤制得的样品表面沉积一定厚度的CdS膜,并通过控制沉积次数的不同,得到不同厚度的CdS膜。
本发明与现有技术相比,具有以下优点:
(1)本发明制备的Ni/BiVO4/CdS纳米阵列复合电极通过在BiVO4纳米颗粒薄膜外部包裹CdS这种窄带隙半导体薄膜,提高了可见光吸收,并通过BiVO4与CdS间形成的Type-Ⅱ异质结,高效地阻止光生载流子的复合,提高光生载流子的分离效率;
(2)本发明制备的Ni/Ag/BiVO4复合电极使得BiVO4与Ag形成了欧姆接触,二者界面间电阻减小,大大提高了光生电子的转移;又因贵金属的表面等离子体共振(SPR)效应,较大的增强了BiVO4表面的光吸收效率,增大光生载流子浓度。
(3)本发明制备的复合器件中,最后通过将Ag/BiVO4/CdS三种物质相结合,即保持(1),(2)中已有的优势,同时通过将BiVO4上聚集的电子快速迁移至Ag纳米颗粒处,并通过外电路传至对电极处,更大程度的减少了空穴-电子对的复合,且有效的快速消耗了CdS价带处的空穴,改善了CdS材料本身易被光腐蚀的缺点。
(4)本发明中所采用的制备方法所用设备及仪器常见,操作简单,周期短,所使用的材料也低价,无毒,且易于制备,所以具有潜在的推广潜力。
附图说明
附图说明:
图1是本发明实施例中Ni/BiVO4和Ni/Ag/BiVO4的光电流性能对比图。
图2是本发明实施例中Ni/BiVO4和Ni/BiVO4/CdS的光电流性能对比图。
图3是本发明实施例中Ni/Ag/BiVO4、Ni/BiVO4/CdS及Ni/Ag/BiVO4/CdS的光电流性能对比图。
具体实施方式
下面结合附图并通过实施例对本发明作进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
本发明的目的是提供一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法,具体步骤如下:
1.剪裁铝片
选取表面光滑无刮痕的铝片裁剪成圆直径为2~3cm的水滴形状(方便后续操作),将裁剪好的铝片在80KHZ的频率下丙酮超声40min,乙醇超声10min,储存于乙醇中备用
2.抛光清洁
将上述处理好的铝片置于乙醇与高氯酸体积比为7:1的抛光液中,以铝片做阳电极,铅块做阴电极,施加一定的电流将铝片表面的污渍去除干净,使其表面如镜子般光滑。
3.物理压印
取电化学处理过的铝片置于压片机上,将自制的带有纳米阵列的复型镍膜贴合于光滑的铝片表面,对其施加20Kg的力压3min左右,而后卸去压力取下铝片,可以观察到铝片表面压印过的区域呈现出七彩的光泽,证明其表面已经存在了纳米凹坑。
4.阳极氧化
配制磷酸,乙二醇和去离子水的混合溶液,倒入自制的电解槽中,将铝片压印过的一面置于电解液中,使其做阳极,铅块做阴极连接好后将装置放于2℃的冰箱中冷却50~60min,而后打开装置对其施加160V的电压并在施加偏压的一刻开始计时,25min后取出,用去离子水冲去表面残留溶液后用氮气吹干。
5.物理气相沉积蒸金
用铜导电胶将氧化后的铝片粘在掩膜版上,置于真空镀膜机(PVD)中,并在仪器内加入适量的金粉;待仪器抽真空至适当的数值后,施加8.3V左右的电压使固体金颗粒汽化,均匀地覆盖在氧化铝模板表面,蒸发速率保持在0.03~0.05nm/s之间,直至膜厚达到20~30nm。
6.电化学镀镍
配制0.38M NiSO4·H20,0.12M NiCl2·6H2O和0.5M H3BO3的混合溶液作为电解液,将电解液倒进烧杯中,用铝片镀Au的一面做工作电极,镍块做对电极,用电化学工作站对其施加偏压,使得铝片表面生长一层一定厚度的镍膜,具体的程序如下:首先用-1mA/cm2的电流沉积半个小时,接着将电流提升到-2mA/cm2沉积一个小时,最后用-10mA/cm2的大电流沉积5小时以获得足够厚度作为支撑。程序停止后取下覆盖了一层镍膜的氧化铝模板用去离子水冲净后自然晾干,最后用剪刀小面积的剪开铝片和镍膜连接的边缘再用镊子缓慢的将镍膜剥离铝片。
7.超声辅助原位沉积Ag纳米颗粒
第一步,将0.1M的氨溶液加入10mM的AgNO3溶液中搅匀,形成A溶液;第二步,在A溶液中加入0.4g的聚乙烯吡咯烷酮(PVP-K30),搅拌均匀后在超声仪中以80KHZ超声10分钟,形成B溶液,最终将超声仪调至45℃,将溶液放入其中,使其在45℃的水浴中保温;第三步,称量0.9g的葡萄糖放入10ml去离子水中,搅拌均匀形成C溶液;第四步,待B溶液升温至45摄氏度后,将基底(镍膜)泡进B溶液中静置10min,之后将C溶液倒入B溶液中,超声不同时长形成不同厚度的Ag膜。第五步,超声结束后取出样品用去离子水冲干净,并在60℃烘箱中干燥30min。
8.化学浴沉积钒酸铋
第一步,称量0.121g的Bi(NO3)3·5H2O溶解于50ml的乙二醇甲醚中,配制成0.5mM的溶液A;称量0.117g的NH4VO3溶解于200ml的去离子水中,并在90℃的油浴锅中搅匀,配制成溶液B。第二步将被Ag纳米颗粒包裹的镍膜放入A溶液中浸泡60s,取出后在60℃的烘箱中烘干;再放入B溶液中浸泡60S,取出后放入同条件烘箱烘干,以上为一个循环。将此循环重复20次后将样品用去离子水冲净,烘干后在管式炉中以500℃空气退火1h,使BiVO4充分结晶。
9.化学浴沉积硫化镉
第一步,配制20ml0.32M的CdSO4·8/3H2O溶液,搅匀为A溶液;配制20ml1.54M的硫脲溶液,搅匀为B溶液;第二步,将样品用铜导电胶粘好固定在烧杯中,在烧杯中加入48.129ml去离子水后密封烧杯,将其放入80℃的油浴锅中预热10min;第三步,在烧杯中加入0.234mlA溶液,一滴氨水(胶头滴管),1.623ml的B溶液,搅拌1h。第四步,取出样品后用去离子水冲净,并在空气中自然干燥,以上是沉积1层CdS的步骤。循环以上步骤,分别沉积不同层数的CdS。
图1中,其中(a)是在Ni柱表面覆盖不同厚度的Ag纳米颗粒样品,与纯BiVO4样品的光电流密度对比图;(b)是固定一定偏压值,Ni柱表面覆盖不同厚度的Ag纳米颗粒样品,与纯BiVO4样品的时间-电流(I-T)曲线对比图
图2中,其中(a)是在BiVO4表面覆盖厚度不同的CdS纳米薄膜的样品,以及纯BiVO4样品的光电流对比图;(b)是偏压值固定,BiVO4表面覆盖厚度不同的CdS纳米薄膜的样品,以及纯BiVO4样品的电流-时间(I-T)曲线对比图。
图3是中,其中(a)是CdS厚度一定,Ni柱上Ag参数不同的样品与,Ni/Ag/BiVO4以及Ni/BiVO4/CdS性能最好样品的光电流密度对比图;(b)是偏压值固定,CdS厚度一定,Ni柱上Ag参数不同的样品与,Ni/Ag/BiVO4以及Ni/BiVO4/CdS性能最好样品的时间-电流(I-T)曲线对比图。
由图中的结果可以表明,本发明与现有技术相比,具有以下优点:
(1)本发明制备的Ni/BiVO4/CdS纳米阵列复合电极通过在BiVO4纳米颗粒薄膜外部包裹CdS这种窄带隙半导体薄膜,提高了可见光吸收,并通过BiVO4与CdS间形成的Type-Ⅱ异质结,高效地阻止光生载流子的复合,提高光生载流子的分离效率;
(2)本发明制备的Ni/Ag/BiVO4复合电极使得BiVO4与Ag形成了欧姆接触,二者界面间电阻减小,大大提高了光生电子的转移;又因贵金属的表面等离子体共振(SPR)效应,较大的增强了BiVO4表面的光吸收效率,增大光生载流子浓度。
(3)本发明制备的复合器件中,最后通过将Ag/BiVO4/CdS三种物质相结合,即保持(1),(2)中已有的优势,同时通过将BiVO4上聚集的电子快速迁移至Ag纳米颗粒处,并通过外电路传至对电极处,更大程度的减少了空穴-电子对的复合,且有效的快速消耗了CdS价带处的空穴,改善了CdS材料本身易被光腐蚀的缺点。
(4)本发明中所采用的制备方法所用设备及仪器常见,操作简单,周期短,所使用的材料也低价,无毒,且易于制备,所以具有潜在的推广潜力。
本说明书中所描述的以上内容仅仅是对本发明所作的举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明说明书的内容或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (2)

1.一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法,其特征在于:包括以下步骤:
(1)步骤S1制备氧化铝模板,
(2)步骤S2制备镍纳米阵列基底,具体步骤如下:
S2.1物理气相沉积蒸金:使用真空镀膜机缓慢匀速的在Al2O3孔道及铝模板表面覆盖一定厚度的金纳米颗粒,以增强基底导电性,方便后续镀镍;
S2.2电化学镀镍:利用电化学工作站,选取合适的程序,在镀有金的氧化铝模板表面电化学沉积一层镍膜,镍顺着Al2O3孔道生长,填满孔道形成一根根的镍柱,并在表面形成一定厚度的镍膜。沉积结束后,取下模板冲净自然晾干,而后将镍膜自氧化铝模板上剥除。
(3)步骤S3制备Ag/Ni纳米阵列:采用超声辅助原位沉积的方法在Ni柱表面沉积Ag纳米颗粒,并通过控制超声时长得到不同厚度的Ag膜。
(4)步骤S4制备Ni/Ag/BiVO4纳米阵列:通过连续离子层吸附反应的方法,在S3步骤得到的Ag膜外部沉积一定圈数、均匀的BiVO4纳米颗粒薄膜
(5)步骤S5制备Ni/Ag/BiVO4/CdS纳米阵列:采用化学浴沉积的方法,在上述步骤制得的样品表面沉积一定厚度的CdS膜,并通过控制沉积次数的不同,得到不同厚度的CdS膜。
2.根据权利要求1所述的基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法,其特征在于:步骤S1制备氧化铝模板,具体步骤如下:
S1.1裁剪铝片:裁剪大小适合的铝片并用丙酮、乙醇对其进行超声清洗处理;
S1.2抛光清洁:用电化学的方法对预处理过的铝片进行抛光处理,达到二次清洁的作用;
S1.3物理压印:用已制备的表面有纳米点阵列的镍膜对光滑的铝片表面进行物理压印,使铝片表面有排布规则的纳米凹坑;
S1.4阳极氧化:取压印过的铝片放置于配制好的电解液中,对其进行阳极氧化,使得压印得到的纳米凹坑向下凹陷,并在纳米孔及部分表面生成Al2O3。
CN202010120787.0A 2020-02-26 2020-02-26 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法 Pending CN111441066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010120787.0A CN111441066A (zh) 2020-02-26 2020-02-26 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010120787.0A CN111441066A (zh) 2020-02-26 2020-02-26 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法

Publications (1)

Publication Number Publication Date
CN111441066A true CN111441066A (zh) 2020-07-24

Family

ID=71627072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010120787.0A Pending CN111441066A (zh) 2020-02-26 2020-02-26 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法

Country Status (1)

Country Link
CN (1) CN111441066A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073344A (zh) * 2021-03-23 2021-07-06 西南科技大学 一种银掺杂硫化镉纳米棒电催化剂的制备方法
CN113267549A (zh) * 2021-07-01 2021-08-17 萍乡学院 BiVO4/CdS光阳极、制备方法及其在Cu2+检测上的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073344A (zh) * 2021-03-23 2021-07-06 西南科技大学 一种银掺杂硫化镉纳米棒电催化剂的制备方法
CN113073344B (zh) * 2021-03-23 2022-02-18 西南科技大学 一种银掺杂硫化镉纳米棒电催化剂的制备方法
CN113267549A (zh) * 2021-07-01 2021-08-17 萍乡学院 BiVO4/CdS光阳极、制备方法及其在Cu2+检测上的应用
CN113267549B (zh) * 2021-07-01 2023-05-30 萍乡学院 BiVO4/CdS光阳极、制备方法及其在Cu2+检测上的应用

Similar Documents

Publication Publication Date Title
CN108796532B (zh) 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用
Wu et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes
CN110983359B (zh) 一种氮掺杂背表面电场增强的氧化亚铜基光阴极
CN109943857B (zh) 一种硅基光电极、及其制备方法和用途
CN110137278A (zh) 原位还原制备电镀种子层的异质结太阳电池及其制备方法
CN111441066A (zh) 一种基于阳极氧化铝模板的Ni/Ag/BiVO4/CdS纳米阵列光电极制备方法
CN104525209A (zh) 氧化铁—铁酸锌异质结薄膜及其制备方法和在光催化中的应用
CN110137297B (zh) 一种基于柔性衬底的p-i-n结太阳能电池及制备方法
Zheng et al. Optimization of photoelectrochemical performance of Ag2S/TiO2 interface by successive ionic layer adsorption and reaction
CN111334812B (zh) 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法
CN105161319A (zh) 无定形碳包覆及氧空位修饰二氧化钛纳米管阵列负载镍钴氧化物电极材料的制备方法
JPWO2013157321A1 (ja) 光電変換装置の製造方法
CN105470393A (zh) 一种钙钛矿太阳能电池电解水制氢集成器件及其制备方法
CN109234761B (zh) 一种用于光电催化产氢的Co3O4/Pt复合薄膜的制备方法
CN108977848B (zh) 一种Cu2O基多层光电阴极薄膜材料的制备方法
CN115679371B (zh) 一种双阴极并联光驱动分解水制氢电极系统
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
Ho Studies of power conversion efficiency and optical properties of Ni3Pb2S2 thin films
CN107988615B (zh) 一种氮化碳修饰ZnO/CdS光阳极材料的制备及应用
CN105895735A (zh) 氧化锌靶溅射制备铜锌锡硫薄膜太阳电池的方法
CN111326603A (zh) 一种以氧化锌做电子传输层的无机钙钛矿电池制备方法
CN111378961B (zh) 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途
CN108054022A (zh) 一种表层多孔结构镍钴氧化物的非晶合金复合电极及其制备方法
CN110042391B (zh) 基于阳极氧化铝模板的钒酸铋纳米颗粒包裹的镍阵列方法
CN110556446B (zh) 一种异质结薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200724

WD01 Invention patent application deemed withdrawn after publication