CN111378961B - 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途 - Google Patents

负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途 Download PDF

Info

Publication number
CN111378961B
CN111378961B CN202010201585.9A CN202010201585A CN111378961B CN 111378961 B CN111378961 B CN 111378961B CN 202010201585 A CN202010201585 A CN 202010201585A CN 111378961 B CN111378961 B CN 111378961B
Authority
CN
China
Prior art keywords
film
lfo
fto
loaded
spin coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010201585.9A
Other languages
English (en)
Other versions
CN111378961A (zh
Inventor
黄竹林
孟国文
刘勃彤
胡小晔
陈斌
唐海宾
霍德贤
潘其军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202010201585.9A priority Critical patent/CN111378961B/zh
Publication of CN111378961A publication Critical patent/CN111378961A/zh
Application granted granted Critical
Publication of CN111378961B publication Critical patent/CN111378961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及一种负载有金纳米颗粒的铁酸镧(LaFeO3,简称为LFO)薄膜及其制备方法和用途。本发明采用溶胶凝胶法制备含有比例可调的氯金酸和LFO溶胶前驱体的混合液,结合旋涂技术及热处理工艺在FTO玻璃上形成厚度可控的Au@LFO凝胶前驱体薄膜,退火后形成结晶态的Au@LFO薄膜。测试表明,LFO薄膜呈网状结构,Au以纳米颗粒的形态分布在薄膜表面和内部。添加了含量为0.33%~0.83%的纳米金颗粒以后,LFO的光电流密度从5.9μA/cm2提升到23.5μA/cm2,光电流提升了3倍。同时,Au@LFO增强了对可见光的吸收,促进了热电子‑空穴的产生、热电荷的分离,光电流随之增大。这种薄膜丰富了光电化学电极材料的选择,负载的金属纳米材料可拓展到其他等离激元金属,对太阳能‑化学能的高效转化具有潜在的应用价值。

Description

负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途
技术领域
本发明涉及一种负载有金纳米颗粒的铁酸镧(LaFeO3,简称为LFO)薄膜及其制备方法和在制备光化学电极上的用途。
背景技术
光电化学(photoelectrochemical,PEC)光催化技术被认为是太阳能转化的一种有前景的途径。在光电化学催化过程中,半导体吸收太阳光,产生光生电子-空穴对,被空间电场驱动到半导体-电解液界面,从而还原/氧化水。可见光响应的p-型半导体如Cu2O、CaFe2O4、BiVO4由于在可见光区吸收较强,将产生较高浓度光生载流子对,是一类理想的光催化材料,但是Cu2O材料容易氧化,CaFe2O4的制备温度通常在1100℃以上,BiVO4容易光腐蚀。综合考虑材料稳定性、光电转换效率及生产成本,仍需开发新型PEC电极材料。LFO光阴极材料,由于带隙为2.2eV位于可见光波段,导带为-1.11V位于氢的还原电势上部,且表现出良好的电化学稳定性,在电化学环境下持续20小时的计时电流测试仍表现出好的光电活性和结构稳定性,使得LFO在太阳能光解水领域具有较好的应用前景。然而,相对于其他金属氧化物材料(Cu2O),LFO材料对可见光的吸收率较低,使得光电流往往较小。为此,有报道提出将Mg2+和Zn2+以掺杂的方法加入LFO薄膜中取代Fe3+的浓度,进而提升多数载流子Fe4+的浓度,且由于晶格畸变效应提升了空穴的迁移率,从而促进光电流的提升[ChemSusChem.2017,10,2457]。遗憾的是,该策略采用的金属离子易于析出到电极表面引起薄膜钝化,降低光电极的活性。
贵金属与半导体材料的复合结构可极大提升对光的捕获,增强光电活性。这是因为,贵金属(Au和Ag)具有表面等离激元效应,与半导体耦合时,等离激元可增强位于半导体带隙上下的光转换效率,基于光散射的光陷阱,热电子/空穴转移,和基于近场的能量诱导共振能量转移,增加半导体中电荷的产生。因此,Au和Ag纳米结构可望用于增强半导体对光的吸收。实际上,已有报道表明Au和Ag可用于硅基太阳能电池、染料敏化太阳能电池、光解水[ACS Appl.Energy.Mater.2018,1,3449]及光电化学性能的增强[RSC Adv.2019,9,26780]。然而,针对Au纳米颗粒与LFO复合结构的复合方法、LFO薄膜厚度的影响规律、复合结构的稳定性及光电活性仍缺乏系统的研究。
发明内容
为了解决上述技术问题,本发明旨在提供一种负载有Au纳米颗粒的LFO薄膜及其制备方法,该负载有Au纳米颗粒的LFO薄膜可用作光电化学电极,获得增强的光电化学活性。
为了实现本发明的目的,本发明提供的技术方案为,一种负载金纳米颗粒的铁酸镧薄膜,所述薄膜呈网状结构,该薄膜的厚度为100-600nm,网孔直径为15-35nm,金以纳米颗粒的形态负载在铁酸镧薄膜的表面和内部,金纳米颗粒的直径为15-35nm。
为了实现本发明的目的,本发明提供的另一个技术方案为,一种负载金纳米颗粒的铁酸镧薄膜的制备方法,包括以下步骤:
S1、FTO玻璃的清洗和裁剪:将FTO玻璃切割成1.5cm×2cm尺寸的长方形衬底,彻底清洗后置于干净的去离子水中备用;
S2、制备前驱体溶液;将7.3g去离子水、1.3g硝酸镧、1.21g硝酸铁、1.26g柠檬酸依次加入玻璃瓶中,搅拌1-2小时,随后加入0.27-0.33mL乙酰丙酮和0.26-0.34mL Triton100X,以300-500rpm速率的搅拌15-25小时,制得前驱体溶液;
S3、制备旋涂的FTO衬底:在步骤S2制得的前驱体溶液中加入0.8μL~80μL的0.25mol/L的氯金酸水溶液,将混合液充分混合均匀;取70-110μL混合液滴在FTO玻璃上,以3000rpm的速率旋涂18-25s,置于300℃-400℃的加热盘上热处理0.75-1.5小时,形成干燥的凝胶薄膜,循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜,共操作旋涂-加热过程1-6次,最终制得旋涂后的FTO衬底;
S4、薄膜的退火;将旋涂后的FTO衬底置于马弗炉中,马弗炉以5-10℃/min的升温速率升至550℃~640℃,保温2-3小时,制得负载金纳米颗粒的铁酸镧薄膜。
上述制备方法进一步的技术方案,所述步骤S1中FTO玻璃彻底清洗的方式为用洗洁精清洗干净,再用9wt%的HCl水溶液超声清洗20min,随后依次用丙酮、异丙醇和去离子水各超声清洗20min。
为了实现本发明的目的,本发明提供的又一个技术方案为,一种如权利要求1所述的负载金纳米颗粒的铁酸镧薄膜在制备光化学电极上的用途。
上述负载金纳米颗粒的铁酸镧薄膜的用途进一步技术方案,该光化学电极的制备包括如下步骤:将长度为10-15cm直径为0.3mm的铜丝末端弯折,然后将弯折末端覆盖在FTO衬底的边沿未覆盖铁酸镧薄膜的区域,用银胶粘接铜丝末端和FTO玻璃,待银胶干燥后用环氧树脂粘合剂均匀涂抹在铜丝及铁酸镧薄膜的四周,仅暴露出0.8-1.3cm2面积的Au@LFO薄膜,经过12-24小时树脂老化,形成光化学电极。
本发明相比现有技术的有益效果在于:
1)本发明公开了一种负载有金纳米颗粒的铁酸镧,测试表明,LFO薄膜呈网状结构,Au以纳米颗粒的形态分布在薄膜表面和内部。添加了含量为0.33%~0.83%的纳米金颗粒以后,LFO的光电流密度从5.9μA/cm2提升到23.5μA/cm2,光电流提升了3倍。为了探究光电流增强机制,进一步测量了薄膜的莫特-肖脱基(M-S)曲线及电流-电压(J-V)曲线,结果表明,LFO呈现p-型半导体特性,引入的Au纳米颗粒有效减小了半导体的平带电势,使得Au@LFO半导体薄膜的反应起始电势减小,反应所需过电势降低;同时,Au@LFO增强了对可见光的吸收,Au纳米颗粒的等离激元(plasmon)效应促进了热电子-空穴的产生,由于肖特基势垒的形成,热空穴易于传输到外部电路,促进了热电荷的分离,光电流随之增大。这种负载Au的LFO薄膜丰富了光电化学电极材料的选择,负载的金属纳米材料可拓展到其他等离激元金属,对太阳能-化学能的高效转化具有潜在的应用价值。
2)本发明公开了一种负载有金纳米颗粒的铁酸镧的制备方法,该方法采用溶胶凝胶法制备含有比例可调的氯金酸和LFO溶胶前驱体的混合液,结合旋涂技术及热处理工艺在FTO玻璃上形成厚度可控的Au@LFO凝胶前驱体薄膜,退火后形成结晶态的Au@LFO薄膜。该制备方法可制备不同Au负载量及厚度的薄膜。
3)本发明公开了一种负载有金纳米颗粒的铁酸镧薄膜的用途,将铜丝末端弯折覆盖在负载Au@LFO的FTO衬底的边沿上,用银胶粘接,待银胶干燥后用环氧树脂粘合剂均匀涂抹在薄膜的四周,仅暴露出约0.8-1.3cm2面积的Au@LFO薄膜,经过12-24小时树脂老化,形成光电化学电极。该化学电极可有效密封银胶、铜丝及衬底边缘部分,仅露出均匀的LFO薄膜,便于稳定可靠的PEC测试。
附图说明
图1(a)为纯LFO薄膜1的正视SEM图;
图1(b)为纯LFO薄膜1的侧面SEM图;
图1(c)为Au@LFO薄膜6的正视SEM图;
图1(d)为对比例1和实施例6旋涂之前的混合液550℃退火之后的XRD谱;
图2为纯LFO薄膜1和Au@LFO薄膜1-6的可见近红外光吸收谱,换算后的LFO上Au负载量如图中所示;
图3(a)~(d)分别是纯LFO薄膜1中La 3d、Fe 2p、O1s和Au4f的束缚能谱;
图3(e)~(h)分别是Au@LFO薄膜4中La 3d、Fe 2p、O1s和Au4f的束缚能谱;
图4(a)为纯LFO电极1(黑色曲线)和Au@LFO电极1-6的莫特-肖特基曲线;
图4(b)为纯LFO电极1、Au@LFO电极2和Au@LFO电极5的J-V曲线,包括光照(虚线)和黑暗(实线)下的测试结果;
图4(c)为纯LFO电极1和Au@LFO电极1-6的J-T曲线;
图4(d)为Au@LFO电极6-9的J-T曲线,该样品Au的负载量为5%。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
材料:硝酸镧(La(NO3)3·6H2O,99.9%),硝酸铁(Fe(NO3)3·9H2O,99.9%),氯金酸(HAuCl4·2H2O,99.9%),硝酸银(AgNO3,99.9%),柠檬酸,乙酰丙酮,聚乙二醇辛基苯基醚(Triton 100X),丙酮,氢氧化钠,无水乙醇,异丙醇,去离子水。FTO导电玻璃(100mm×100mm×3mm,TEC 15),铜丝(0.3mm),环氧树脂黏合剂(JB Weld)。
按照以下步骤制备前驱体溶液:
S1、FTO玻璃的清洗和裁剪;将FTO玻璃切割成15mm×20mm的长方形衬底,用洗洁精清洗干净,再用9%的HCl水溶液超声清洗20min,随后用丙酮、异丙醇和去离子水超声清洗20min,置于干净的去离子水中备用;
S2、制备前驱体溶液;将7.3g去离子水、1.3g硝酸镧、1.21g硝酸铁、1.26g柠檬酸依次加入玻璃瓶中,形成9.4ml的混合液,搅拌1小时,随后加入0.3mL乙酰丙酮和0.3mLTriton 100X,搅拌20小时,速率400rpm,制得前驱体溶液;在前驱体溶液中,硝酸镧、硝酸铁、柠檬酸的浓度分别是0.3mol/L、0.3mol/L和0.6mol/L;从前驱体溶液中取出10份,每份1ml,备用。
对比例1
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃(FTO一端覆盖0.5cm宽度的塑料掩膜用于后续放置Cu丝电极)上,3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有两层凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底置于550℃的马弗炉中保温3小时,制得纯LFO薄膜1。
实施例1
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入2uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜1。
实施例2
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入4uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜2。
实施例3
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入10uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜3。
实施例4
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入20uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜4。
实施例5
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入40uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜5。
实施例6
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入60uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程2次,使得旋涂后的FTO上具有2层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜6。
实施例7
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入60uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程1次,使得旋涂后的FTO上具有1层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜7。
实施例8
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入60uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程4次,使得旋涂后的FTO上具有4层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜8。
实施例9
S1、制备旋涂的FTO衬底;从10份前驱体溶液中取出1份,在前驱体溶液中加入60uL的0.25mol/L的氯金酸水溶液,用振荡器均匀混合得到混合液;从混合液中取出100μL滴在FTO玻璃上,然后将FTO玻璃在3000rpm的速率旋涂20s,置于300℃的加热盘上热处理1小时,形成干燥的凝胶薄膜;循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜;用相同的方法共操作旋涂-加热过程6次,使得旋涂后的FTO上具有6层负载Au的凝胶前驱体薄膜;
S2、薄膜的退火;将步骤S1旋涂后的FTO衬底均置于马弗炉中保温3小时(500℃~640℃,升温速率10℃/min),制得Au@LFO薄膜9。
上述实施例制得的纯LFO薄膜1和Au@LFO薄膜1-9如下表所示:
Figure BDA0002419567550000091
实施例11
用上述实施例制得的纯LFO薄膜1、Au@LFO薄膜1-9分别做电极,步骤如下:将10根10-15cm内径为0.3mm的铜丝末端分别弯折覆盖在每个FTO衬底的边沿上,用银胶粘接,待银胶干燥后用环氧树脂粘合剂均匀涂抹在薄膜的四周,仅暴露出约0.8-1.3cm2面积的纯LFO薄膜或Au@LFO薄膜,经过12-24小时树脂老化,制得纯LFO电极1和Au@LFO电极1-9。
对以上制得的纯LFO薄膜1、Au@LFO薄膜1-9和Au@LFO电极1-9做基础表征和光电化学表征:
1、采用场发射扫描电子显微镜(FE-SEM,JEOL 7600F),表征纯LFO薄膜1的微观形貌,结果如附图1的(a)、(b)所示;用场发射扫描电子显微镜表征样品Au@LFO薄膜6的微观形貌,结果如附图1的(c)所示。
采用XRD表征样品的物相,由于用于测试的LFO样品只有数百纳米厚,为了避免FTO的衍射峰,我们分别将0.1mL对比例1和实施例6旋涂之前的混合液滴在FTO玻璃片上退火热处理,收集负载在FTO上较厚的样品,进行样品的粉末XRD测试,结果如图1的(d)所示。
图1(a)给出了纯LFO薄膜1的微观SEM图片,可见薄膜呈网状结构,表面带有15~35nm的细孔。旋涂两层溶胶前驱体后,薄膜的厚度约为200nm,如图1(b)中的截面图所示,由此推算每旋涂一层所得到的LFO薄膜厚度为100nm。LFO薄膜负载了较高浓度的5%的纳米Au之后,表面散布有大量的金纳米颗粒,从Au@LFO表面的SEM图1(c)可见,金纳米颗粒尺寸主要集中在15nm~35nm。图1(d)的XRD测试表明,退火后的LFO粉末表现出较好的结晶态,为正交晶型(PDF No:37-1493);但负载了Au以后由于Au的含量相对于LFO小很多,仅在38.2o测得一个微弱的衍射峰,归属于Au的(111)晶面。
2、利用紫外可见近红外(UV-Vis-NIR)分光光度计(Shimadzu 2550)测试纯LFO薄膜1和Au@LFO薄膜样品1-6产物的光学吸收特性,如附图2所示。
图2给出了封装成PEC电极后的LFO和Au@LFO的光学图片和可见-近红外光吸收谱。原始LFO呈淡黄色,负载Au颗粒之后,随着Au颗粒负载量浓度的递增,薄膜呈现出淡蓝色,相应的,在这一过程中Au@LFO薄膜对可见光的吸收愈加强烈。如图2下端的可见近红外光吸收谱所示,纯LFO在450nm~490nm有一个线性吸收带,其Tauc图应对的能隙为2.2eV,且LFO在可见光波段(550nm~750nm)的吸收很弱。随着Au纳米颗粒的负载量从0.17%提升到5%,由于Au纳米颗粒的等离激元效应,在550nm~750nm可见光波段的吸收增强,且高浓度样品直接表现出位于630nm的等离子体共振吸收峰。
3、采用X射线光电子能谱仪(XPS,PHI 5000Versa Probe system,PhysicalElectronics)表征纯LFO薄膜1和Au@LFO薄膜4元素各组分的化学结构,研究LFO薄膜负载金前后各元素价态的演变,如附图3所示;
如图3所示,当X光照射在LFO样品上时,能量被样品表面10nm深度的元素核电子吸收,电子随后跃迁,逃逸的电子动能和数量被外部检测器探测到,即可定量检测低至ppm浓度的元素并确定元素的化合态和电子结构。图3分别展示了LFO(图3(a)~(d))和Au@LFO(图3(e)~(h))的高分辨XPS能谱。结果表明,原始LFO的La 3d、Fe 2p和O1s和负载Au以后的样品相比,束缚能的峰位类似,并没有产生位移,Au以零价团簇或者纳米颗粒的状态负载在LFO的表面。其中,La 3d的双峰所在的束缚能为833.8eV和850.5eV,对应于La3d5/2和La3d3/2,表明La为3+氧化态;Fe 2p的双峰所在束缚能位于710.0eV和723.1eV,对应于Fe2p3/2和Fe2p1/2,位于718.3eV的束缚能则进一步表明铁的化合价为3+;O 1s束缚能可分解为三个化合态组分,包括位于529.1eV的钙钛矿晶格氧,位于530.9eV的羟基氧(M-OH,稀土La具有吸水性),及位于531.7eV的羧基氧(-COOH,由吸附的含碳杂质引入);Au@LFO薄膜4样品中,Au 4f的束缚能双峰分别位于83.7eV和87.4eV,分别对应零价Au的Au4f7/2和Au4f5/2。至此,确认了LFO薄膜的价态,且负载的金为零价的团簇态或颗粒状。
4、采用NaOH的水溶液(0.1mol/L,pH=13)作为电解液,测试之前用氮气吹扫溶液30min,采用Ag/AgCl作为参比电极,铂网作为对电极,采用300W的氙灯光源(AM 1.5G,100mW/cm2),用电化学工作站(Gamry Ref 3000)测量上述制得的纯LFO电极1和Au@LFO电极1-6的M-S曲线(5kHz,10mV交流电,-0.6V~1.2V),如图4的(a)表示;测量纯LFO电极1和Au@LFO电极2和5的J-V曲线(0.4V~-0.6V),包括光照(虚线)和黑暗(实线)下的测试结果,如图4的(b)表示;测量纯LFO电极1和Au@LFO电极1-6的J-T曲线,如图4的(c)表示;测量Au@LFO电极6-9的J-T曲线,如图4的(d)表示。
首先,为了确认LFO薄膜的半导体类型,测试了LFO和Au@LFO的莫特-肖特基(M-S)曲线。图4(a)表明,所有M-S曲线的线性区斜率为负,表明LFO具有p-型半导体特性,且随着Au负载量的增加,LFO的平带电势(相对于Ag/AgCl参比电极,可以将M-S曲线中的线性部分做线性外延与横轴交点得到平带电势)从0.524V(原始LFO)降低到0.434V(Au负载量为0.83%),然后缓慢升高至0.463V(Au负载量为5%),但在整体上显示出平带电势减小的趋势。这是由于当Au负载在LFO表面时,由于Au的功函数低于LFO的功函数,Au上的电子自发向LFO运动,两者费米能级达到新的平衡态,导致LFO产生向下的能带弯曲,形成肖特基势垒,促进电子与空穴的分离。图4(b)表明,负载Au后,平带电势的减小与J-V曲线中起始电势的右移表明了反应所需过电势减小,有利于反应在低偏压下进行。另一方面,LFO上Au的负载量增加到0.33%时,光电流密度显著提升,除了上述原因外,还可能是由于肖特基势垒的形成,大大的促进了Au表面等离子体效应产生的热电子与热空穴的分离,提高了热电子的寿命。然而随着Au的负载量增加得相对较高时(3.33%),由于薄膜电导率会提升从而导致暗电流的提升,明电流反而降低,是因为较大负载密度的Au纳米颗粒形成电子-空穴复合中心,虽然因等离激元效应产生的热电子-空穴较多,但是整体上光电流反而不升反降。图4(c)的J-T曲线表明,当外加电位为-0.3V时,经过300s的明暗光交替测试,LFO的光电流密度稳定在5.9μA/cm2,而负载Au之后,电流密度显著提升,最高可达到5.9μA/cm2提升到23.5μA/cm2,光电流提升了3倍,对应的Au的负载量区间为0.33%~0.83%,随着Au负载量的进一步提升,光电流反而降低,这仍由于Au纳米颗粒密度的提升引起了更多的电荷复合中心,与J-V特性曲线一致,但整体上仍高于原始LFO的光电流密度。
最后,通过控制旋涂溶胶前驱体的层数,调控了Au@LFO的厚度,并讨论了不同厚度Au@LFO的电流演变趋势,结果如图4(d)所示。采用Au负载量为5%的样品,当层数为一层时(厚约100nm),电流密度仅为0.7μA/cm2,可能是由于薄膜的厚度过小,光吸收很弱,限制了样品的光电流产生;层数为2时(厚约200nm)电流密度大幅度提升到14.3μA/cm2;随着层数提升到4层(400nm)和6层(600nm),依次减小到4.2μA/cm2和2.6μA/cm2,这可归因为在电子传输至外电路的过程中,经历的传输路径增大,电子-空穴复合概率同样增加,导致了降低的光电流,这可由开启或关闭光源之后的一段缓慢增加和减小的光电流进一步证明。因此,将旋涂2层后的Au@LFO作为最优化的光电极(厚度约200nm)。
应当理解本文所述的例子和实施方式仅为了说明,并不用于限制本发明,本领域技术人员可根据它做出各种修改或变化,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种负载金纳米颗粒的铁酸镧薄膜的制备方法,其特征在于,所述负载金纳米颗粒的铁酸镧薄膜呈网状结构,该薄膜的厚度为100-600nm,网孔直径为15-35nm,金以纳米颗粒的形态负载在铁酸镧薄膜的表面和内部,金纳米颗粒的直径为15-35nm,其制备方法包括以下步骤:
S1、FTO玻璃的清洗和裁剪:将FTO玻璃切割成1.5cm×2cm尺寸的长方形衬底,彻底清洗后置于干净的去离子水中备用;
S2、制备前驱体溶液:将7.3g去离子水、1.3g硝酸镧、1.21g硝酸铁、1.26g柠檬酸依次加入玻璃瓶中,搅拌1-2小时,随后加入0.27-0.33mL乙酰丙酮和0.26-0.34mL Triton 100X,以300-500rpm速率的搅拌15-25小时,制得前驱体溶液;
S3、制备旋涂的FTO衬底:在步骤S2制得的前驱体溶液中加入4μL~10μL的0.25mol/L的氯金酸水溶液,将混合液充分混合均匀;取70-110μL混合液滴在FTO玻璃上,以3000rpm的速率旋涂18-25s,置于300℃-400℃的加热盘上热处理0.75-1.5小时,形成干燥的凝胶薄膜,循环旋涂-加热过程,每循环旋涂-加热过程一次得到一层膜,共操作旋涂-加热过程2次,最终制得旋涂后的FTO衬底;
S4、薄膜的退火:将旋涂后的FTO衬底置于马弗炉中,马弗炉以5-10℃/min的升温速率升至550℃~640℃,保温2-3小时,制得负载金纳米颗粒的铁酸镧薄膜。
2.根据权利要求1所述的负载金纳米颗粒的铁酸镧薄膜的制备方法,其特征在于,所述FTO玻璃彻底清洗的方式为用洗洁精清洗干净,再用9wt%的HCl水溶液超声清洗20min,随后依次用丙酮、异丙醇和去离子水各超声清洗20min。
3.一种如权利要求1所述制备方法制得的负载金纳米颗粒的铁酸镧薄膜在制备光化学电极上的用途。
4.根据权利要求3所述的负载金纳米颗粒的铁酸镧薄膜在制备光化学电极上的用途,其特征在于,该光化学电极的制备包括如下步骤:将长度为10-15cm直径为0.3mm的铜丝末端弯折,然后将弯折末端覆盖在FTO衬底的边沿未覆盖铁酸镧薄膜的区域,用银胶粘接铜丝末端和FTO玻璃,待银胶干燥后用环氧树脂粘合剂均匀涂抹在铜丝及铁酸镧薄膜的四周,仅暴露出0.8-1.3cm2面积的Au@LFO薄膜,经过12-24小时树脂老化,形成光化学电极。
CN202010201585.9A 2020-03-20 2020-03-20 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途 Active CN111378961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010201585.9A CN111378961B (zh) 2020-03-20 2020-03-20 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010201585.9A CN111378961B (zh) 2020-03-20 2020-03-20 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN111378961A CN111378961A (zh) 2020-07-07
CN111378961B true CN111378961B (zh) 2022-04-08

Family

ID=71213844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201585.9A Active CN111378961B (zh) 2020-03-20 2020-03-20 负载金纳米颗粒的铁酸镧薄膜及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN111378961B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975110B (zh) * 2022-12-19 2024-01-26 武汉大学 特异性识别原儿茶酸的分子印迹聚合物和电化学传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553140B (zh) * 2013-10-14 2014-12-17 济南大学 一种铁酸镧纳米盘的制备方法
CN105761940A (zh) * 2016-04-14 2016-07-13 上海大学 铁酸镧薄膜光电极及其制备方法
EP3422430A1 (en) * 2017-06-26 2019-01-02 Universitat Jaume I de Castello Electrode for a perovskite-based photoelectrochemical device
US20190041370A1 (en) * 2017-07-21 2019-02-07 United States Department Of Energy Optical sensing materials comprising metal oxide nanowires
CN108754525B (zh) * 2018-05-22 2019-10-25 河北工业大学 一种锆钛酸铅铁电薄膜光电极及其制备方法
CN110316973B (zh) * 2019-04-28 2021-07-06 山东省科学院新材料研究所 一种镧、钛共掺的铁酸铋薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved》;Yuhuan Xu,etal;《Applied Surface Science》;20200131;1-8 *
Dipping into a drink: Basil-seed supported silver nanoparticles as;Qitao Zhoua, Guowen Meng,etal;《Sensors and Actuators B: Chemical》;20150924;第447–452页 *

Also Published As

Publication number Publication date
CN111378961A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
Arifin et al. Improvement of TiO2 nanotubes for photoelectrochemical water splitting
Liu et al. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting
Tian et al. ZnO/TiO 2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells
Smith et al. Quasi-core-shell TiO 2/WO 3 and WO 3/TiO 2 nanorod arrays fabricated by glancing angle deposition for solar water splitting
Saito et al. Large photocurrent generation in dye-sensitized ZnO solar cells
Salem et al. Ge-doped ZnO nanorods grown on FTO for photoelectrochemical water splitting with exceptional photoconversion efficiency
Mollavali et al. Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications
Sharma et al. Nanostructured SrTiO3 thin films sensitized by Cu2O for photoelectrochemical hydrogen generation
Kumar et al. Plasmonic Ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting
Venditti et al. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs
Mahadik et al. Highly efficient and stable 3D Ni (OH) 2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: effect of an improved TiO2/FTO interface and cocatalyst
Lee et al. Photoelectrochemical water splitting using one-dimensional nanostructures
Mu et al. Synergistic wide spectrum response and directional carrier transportation characteristics of Se/SnSe2/TiO2 multiple heterojunction for efficient photoelectrochemical simultaneous degradation of Cr (VI) and RhB
Wu et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes
Zhao et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays
Shilpa et al. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review
Liu et al. Fabrication of WO3 photoanode decorated with Au nanoplates and its enhanced photoelectrochemical properties
Yu et al. Photoelectrochemical property of the BiOBr-BiOI/ZnO heterostructures with tunable bandgap
Jeong et al. Improvement of CuO photostability with the help of a BiVO4 capping layer by preventing self-reduction of CuO to Cu2O
Kim et al. CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes
Han et al. Triggering heteroatomic interdiffusion in one-pot-oxidation synthesized NiO/CuFeO2 heterojunction photocathodes for efficient solar hydrogen production from water splitting
Kang et al. Hierarchically interconnected g-C3N4/BiVO4/ZnO array via spin coating for high photoelectrochemical performance
Shet Zinc oxide (ZnO) nanostructures for photoelectrochemical water splitting application
Yang et al. Improving the performance of solid-state quantum dot-sensitized solar cells based on TiO 2/CuInS 2 photoelectrodes with annealing treatment
Abouelela et al. Enhancing the photoelectrochemical performance of ZnO nanopagoda photoanode through sensitization with Ag and Ag2S NPs co-deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant