CN110137297B - 一种基于柔性衬底的p-i-n结太阳能电池及制备方法 - Google Patents

一种基于柔性衬底的p-i-n结太阳能电池及制备方法 Download PDF

Info

Publication number
CN110137297B
CN110137297B CN201910460505.9A CN201910460505A CN110137297B CN 110137297 B CN110137297 B CN 110137297B CN 201910460505 A CN201910460505 A CN 201910460505A CN 110137297 B CN110137297 B CN 110137297B
Authority
CN
China
Prior art keywords
flexible substrate
solar cell
cssnx
azo
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910460505.9A
Other languages
English (en)
Other versions
CN110137297A (zh
Inventor
周艳文
武俊生
李彤
吕哲
吴法宇
方方
滕越
李瑞武
张开策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Original Assignee
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL filed Critical University of Science and Technology Liaoning USTL
Priority to CN201910460505.9A priority Critical patent/CN110137297B/zh
Publication of CN110137297A publication Critical patent/CN110137297A/zh
Application granted granted Critical
Publication of CN110137297B publication Critical patent/CN110137297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种基于柔性衬底的P‑I‑N结太阳能电池,依次由柔性衬底、超薄复合电极AZO/Ag/AZO、掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层、CuAlO2空穴传输层、超薄金属金电极组成;所述的柔性衬底是柔性白云母薄片、PI、PET、PEN中的一种。优点是:太阳能电池结构中采用P‑I‑N结物理理论,在上述新型架构的基础上结合双结(多结)结构有利于电荷的产生、分离,有效抑制电子空穴的复合过程,提高了电池光电转换效率。空穴传输材料采用的是CuAlO2,钙钛矿材料采用的是CsSnX3等无机材料体系,采用全无机材料体系结构提高了电池工作稳定性。

Description

一种基于柔性衬底的P-I-N结太阳能电池及制备方法
技术领域
本发明属于太阳能电池领域,尤其涉及一种基于柔性衬底的P-I-N结太阳能电池及制备方法。
背景技术
传统单结太阳电池由于固有的禁带宽度,受到肖克利·奎伊瑟效率极限制约,光电转换效率极限值只能达到29.4%,无法突破30%效率大关,而串联结构太阳电池(双结或者多结)则提供了突破极限效率的可能。
围绕上述问题,中国专利公开号:CN108604615A,公开了一种混合串联太阳能电池;中国专利公开号:CN108352421A,公开了一种具有通过载流子选择性触点互连的多个吸收体的太阳能电池;加州大学洛杉矶分校Yang Yang教授课题组联合日本厚木研究中心设计开发了全新的双端串联钙钛矿(perovskite)/铜铟镓硒(CIGS)太阳电池,光电转换效率高达22.43%,创下该类型电池的效率记录。相关研究成果发表在《Science》[Qifeng Han,Yao-Tsung Hsieh,Lei Meng,et al.Science,2018,361(6405):(904-908)]。研究人员首先制备了禁带宽度为1eV的CIGS电池,这意味着其吸收的太阳光的波段大于700nm。随后在其表面依次沉积一层硼掺杂的氧化锌(BZO)和铟掺杂的氧化锡(ITO)薄膜作为中间层,接着采用化学机械抛光工艺对ITO进行打磨抛光以降低其表面粗糙度(从250nm减少至40nm),提升平整度为后续,为顶部的钙钛矿电池制备提供良好的中间界面层,减少接触电阻。此外,由于BZO的功函数较电子传输层聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)低,直接接触会形成势垒阻碍空穴传输;而引入ITO可以有效地克服这一问题,可以与PTAA形成良好的欧姆接触。接着通过旋涂退火的方法制备了半透明的倒置平面结构的钙钛矿电池,紫外可见光谱显示钙钛矿电池在770-1300nm的波长区域的透射率超过了80%,表明了大部分的长波段光可以穿过钙钛矿电池层,而这区域的波段恰好是CIGS电池吸收的波段。因此,将钙钛矿作为顶电池与CIGS底电池采用双端串联形成叠层结构,在一个标准太阳光照射下(受照面积为0.042cm2),串联电池的短路电流、开路电压和填充因子分别为17.3mA/cm2、1.774V和73.1%,因此获得了高达22.43%的光电转换效率,创造了perovskite/CIGS双结太阳电池效率新高,且获得了权威机构认证收录到美国国家可再生能源实验室的效率表中。更为关键的是,在室温环境下连续辐照500小时后,未封装的串联电池仍可维持初始效率的88%以上,而放置于黑暗环境12小时后,电池效率又可以恢复到初始值的93%,即串联电池展现出优异的稳定性。而电池良好的稳定性主要是得益于钙钛矿顶电池表面的金属氧化物层有效阻隔了环境中空气和水分对钙钛矿薄膜的侵蚀。此外,顶电池平面型钙钛矿很容易通过氯苯洗去,而CIGS底电池性能不受影响可以重复使用,减少浪费提升环保性。
这种新型架构的钙钛矿/铜铟镓硒双结太阳能电池,不仅获得高光电转换效率还增强了电池稳定性和环保性,为进一步提升太阳能电池发电效率降低成本提供了新思路。
发明内容
本发明的目的是提供一种基于柔性衬底的P-I-N结太阳能电池及制备方法,提高电池光电转换效率。
为实现上述目的,本发明通过以下技术方案实现:
一种基于柔性衬底的P-I-N结太阳能电池,依次由柔性衬底、超薄复合电极AZO/Ag/AZO、掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层、CuAlO2空穴传输层、超薄金属金电极组成;
所述的柔性衬底是柔性白云母薄片、PI、PET、PEN中的一种。
超薄复合电极AZO/Ag/AZO的厚度为80~100nm;所述掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层的总厚度为300~1000nm;CuAlO2空穴传输层的厚度为50~100nm;超薄金属金电极的厚度小于20~50nm。
一种基于柔性衬底的P-I-N结太阳能电池的制备方法,包括如下步骤:
1)对柔性衬底进行前处理;
2)在前处理后的柔性衬底表面使用PLD设备生长超薄复合电极AZO/Ag/AZO;
3)利用真空蒸发镀膜设备,在超薄复合电极AZO/Ag/AZO上蒸发掺杂F的钙钛矿CsSnX3薄膜,作为吸收层中n型材料;
4)利用真空蒸发镀膜设备,在掺杂F的钙钛矿CsSnX3薄膜上蒸发CsSnX3薄膜,并在氧气中氧化,形成氧化的钙钛矿CsSnX3,作为吸收层中本征半导体材料;
5)利用真空蒸发镀膜设备及快速热处理设备,在氧化的钙钛矿CsSnX3上蒸发铜铟镓薄膜,并在快速热处理设备中快速硒化,形成铜铟镓硒吸收层,作为吸收层中p型材料;
6)在铜铟镓硒吸收层上磁控溅射CuAlO2作为太阳能电池空穴传输层;
7)将步骤6)制备的器件烘干,完成阳极金属电极的沉积,得到叠层太阳能电池。
步骤1)中所述前处理为:
步骤1)中所述前处理为:①将柔性衬底用湿无尘纸沾清洗液擦洗一遍,冲洗干净,除去表面灰尘;②将柔性衬底垂直放置于清洗架内,用去离子水加入洗洁精超声20min以上;③去离子水超声20min以上,取出去离子水冲洗,检查柔性衬底表面是否干净整洁,有污点用棉签沾湿擦拭表面,再冲洗,直到干净为止;重复一次;④柔性衬底在丙酮中超声20min以上,取出,用乙醇冲洗;最后将柔性衬底放入臭氧清洗机干燥处理。
步骤2)中制备超薄复合电极AZO/Ag/AZO方法为:先打开机械泵预抽真空,当真空度低于1Pa时,打开分子泵,将前处理后的柔性衬底置于真空腔内,待真空度达到10-4Pa以后,对柔性衬底升温到200℃,均匀保温1小时以上;通入氧气,调节氧分压为0.8~2.0Pa,激光能量150-200mJ/p,激光频率5Hz,靶距为4-6cm,沉积05-1h,保温1-2小时后,室温空冷。
步骤2)中制备超薄复合电极AZO/Ag/AZO时,将柔性衬底先行遮挡,对靶材进行激光预打3-5min,以去除靶材表面的氧化物和杂质,保证靶材表面成分的一致性。
步骤3)、4)中利用真空蒸发镀膜设备制备薄膜的过程是:将柔性衬底体固定在真空腔内,正面朝下与蒸发源相对;与蒸发源的垂直距离为13~18cm;两种蒸发源分别为CsI、SnI2,共同蒸发。
步骤3)中掺杂F的钙钛矿CsSnX3薄膜中掺杂F所占摩尔比为11%;
步骤3)、4)中钙钛矿CsSnX3,X为I、Br和Cl中的一种或几种。
步骤5)中铜铟镓硒吸收层的制备方法为:真空度抽至本底真空度2×10-3Pa,先蒸发Cu、In、Ga沉积到步骤4)所得衬底上形成金属预制膜,即CuInGa叠层预制膜;在快速热处理炉中,氩气环境下利用Se蒸汽进行硒化,与金属预制膜反应形成铜铟镓硒吸收层。
步骤6)中磁控溅射CuAlO2作为太阳能电池空穴传输层的方法为:将步骤5)所得衬底置于射频磁控溅射真空腔内,镀膜前真空度抽至本底真空度3×10-3Pa,随后充入高纯氩气,工作压强0.3Pa;射频溅射功率为100-120W,靶距为13-18cm,氩气通量为10-20sccm,溅射1-2h;
步骤7)中将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发设备蒸镀金属电极,完成电极沉积。
与现有技术相比,本发明的有益效果是:
1)太阳能电池结构中采用P-I-N结物理理论,在上述新型架构的基础上结合双结(多结)结构有利于电荷的产生、分离,有效抑制电子空穴的复合过程,提高了电池光电转换效率。
2)空穴传输材料采用的是CuAlO2,钙钛矿材料采用的是CsSnX3等无机材料体系,采用全无机材料体系结构提高了电池工作稳定性,且原材料成本低。
3)采用掺杂F的CsSnX3和其氧化产物Cs2SnX6共同作用,可以有效消耗掺杂F的CsSnX3制备过程中附着的氧原子,提高材料稳定性。
4)利用PLD设备沉积制备超薄复合电极AZO/Ag/AZO薄膜,不仅具有良好的光、电性能,还有一定的抗潮能力。
附图说明
图1是P-I-N结太阳能电池的结构示意图。
图中:1-柔性衬底2-超薄复合电极AZO/Ag/AZO 3-掺杂F的钙钛矿CsSnI3薄膜4-氧化的钙钛矿CsSnI3 5-铜铟镓硒吸收层6-CuAlO2空穴传输层7-超薄金属金电极。
具体实施方式
下面结合说明书附图对本发明进行详细地描述,但是应该指出本发明的实施不限于以下的实施方式。
实施例
见图1,一种基于柔性衬底的P-I-N结太阳能电池,该太阳能电池依次由柔性衬底、超薄复合电极AZO/Ag/AZO、掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层、CuAlO2空穴传输层、超薄金属金电极组成;柔性衬底是柔性白云母薄片、PI、PET、PEN中的一种。
超薄复合电极AZO/Ag/AZO的厚度为80~100nm;所述掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层的总厚度为300~1000nm;CuAlO2空穴传输层的厚度为50~100nm;超薄金属金电极的厚度小于20~50nm。
基于柔性衬底的P-I-N结太阳能电池的制备方法,包括以下步骤:
1)对柔性衬底进行前处理。前处理为:①将柔性衬底用湿无尘纸沾清洗液擦洗一遍,冲洗干净,除去表面灰尘;②将柔性衬底垂直放置于清洗架内,用去离子水加入适量洗洁精超声20min。③去离子水超声20min,取出去离子水冲洗,检查柔性衬底表面是否干净整洁,有污点用棉签沾湿擦拭表面,再冲洗,直到干净为止。重复一次。④丙酮超声20min,取出乙醇冲洗。最后将柔性衬底放入臭氧清洗机干燥处理。
2)在前处理后的柔性衬底表面使用PLD设备生长超薄复合电极AZO/Ag/AZO。先打开机械泵预抽真空,当真空度低于1Pa时,打开分子泵,将前处理后的柔性衬底置于真空腔内,待真空度达到10-4Pa以后,对柔性衬底升温到200℃,均匀保温1小时以上;通入氧气,调节氧分压为0.8~2.0Pa,将柔性衬底先行遮挡,对靶材进行激光预热3-5min,以去除靶材表面的氧化物和杂质保证靶材表面成分的一致性。激光能量150-200mJ/p,激光频率5Hz,靶距为4-6cm,沉积05-1h,保温1-2小时后,室温空冷。
3)利用真空蒸发镀膜设备,在超薄复合电极AZO/Ag/AZO上蒸发掺杂F的钙钛矿CsSnX3薄膜,作为吸收层中n型材料。将步骤2)所得衬底固定在真空腔内,正面朝下与蒸发源相对;与蒸发源的垂直距离为13~18cm;两种蒸发源分别为CsI、SnI2。真空蒸发镀膜时,待真空室内的真空度达到10-4Pa,手动调节电压为80V。掺杂F的钙钛矿CsSnX3薄膜中掺杂F所占摩尔比为11%。其中,钙钛矿CsSnX3,X为I、Br和Cl中的一种或几种。
4)利用真空蒸发镀膜设备,在掺杂F的钙钛矿CsSnX3薄膜上蒸发CsSnX3薄膜,并在氧气中氧化,形成氧化的钙钛矿CsSnX3,作为吸收层中本征半导体材料。蒸发过程同步骤3)。
5)利用真空蒸发镀膜设备及快速热处理设备,在氧化的钙钛矿CsSnI3上蒸发铜铟镓薄膜,并在快速热处理设备中快速硒化,形成铜铟镓硒吸收层,作为吸收层中p型材料。真空度抽至本底真空度2×10-3Pa,先蒸发Cu、In、Ga沉积到步骤4)所得衬底上形成金属预制膜,即CuInGa叠层预制膜;在快速热处理炉中,氩气环境下利用Se蒸汽进行硒化,与金属预制膜反应形成铜铟镓硒吸收层。
6)在铜铟镓硒吸收层上磁控溅射CuAlO2作为太阳能电池空穴传输层。将步骤5)所得衬底置于射频磁控溅射真空腔内,镀膜前真空度抽至本底真空度3×10-3Pa,随后充入高纯氩气,工作压强0.3Pa;射频溅射功率为100-120W,靶距为13-18cm,氩气通量为10-20sccm,溅射1-2h。
7)沉积金属电极。将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发设备蒸镀金属电极,完成电极沉积。
基于柔性衬底的P-I-N结太阳能电池及制备方法不但可以制得高效稳定的器件,还解决了无机钙钛矿材料CsSnX3使用过程中的氧化问题,与其氧化产物结合起来应用,提高了材料界面之间的晶格匹配率。

Claims (10)

1.一种基于柔性衬底的P-I-N结太阳能电池,其特征在于,
依次由柔性衬底、超薄复合电极AZO/Ag/AZO、掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层、CuAlO2空穴传输层、超薄金属金电极组成;X为I、Br和Cl中的一种或几种;
所述的柔性衬底是柔性白云母薄片、PI、PET、PEN中的一种。
2.根据权利要求1所述的一种基于柔性衬底的P-I-N结太阳能电池,其特征在于,超薄复合电极AZO/Ag/AZO的厚度为80~100nm;所述掺杂F的钙钛矿CsSnX3薄膜、氧化的钙钛矿CsSnX3、铜铟镓硒吸收层的总厚度为300~1000nm;CuAlO2空穴传输层的厚度为50~100nm;超薄金属金电极的厚度小于20~50nm。
3.一种根据权利要求1或2所述的基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,包括如下步骤:
1)对柔性衬底进行前处理;
2)在前处理后的柔性衬底表面使用PLD设备生长超薄复合电极AZO/Ag/AZO;
3)利用真空蒸发镀膜设备,在超薄复合电极AZO/Ag/AZO上蒸发掺杂F的钙钛矿CsSnX3薄膜,作为吸收层中n型材料;
4)利用真空蒸发镀膜设备,在掺杂F的钙钛矿CsSnX3薄膜上蒸发CsSnX3薄膜,并在氧气中氧化,形成氧化的钙钛矿CsSnX3,作为吸收层中本征半导体材料;
5)利用真空蒸发镀膜设备及快速热处理设备,在氧化的钙钛矿CsSnX3上蒸发铜铟镓薄膜,并在快速热处理设备中快速硒化,形成铜铟镓硒吸收层,作为吸收层中p型材料;
6)在铜铟镓硒吸收层上磁控溅射CuAlO2作为太阳能电池空穴传输层;
7)将步骤6)制备的器件烘干,完成阳极金属电极的沉积,得到叠层太阳能电池。
4.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤1)中所述前处理为:
步骤1)中所述前处理为:①将柔性衬底用湿无尘纸沾清洗液擦洗一遍,冲洗干净,除去表面灰尘;②将柔性衬底垂直放置于清洗架内,用去离子水加入洗洁精超声20min以上;③去离子水超声20min以上,取出去离子水冲洗,检查柔性衬底表面是否干净整洁,有污点用棉签沾湿擦拭表面,再冲洗,直到干净为止;重复一次;④柔性衬底在丙酮中超声20min以上,取出,用乙醇冲洗;最后将柔性衬底放入臭氧清洗机干燥处理。
5.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤2)中制备超薄复合电极AZO/Ag/AZO方法为:先打开机械泵预抽真空,当真空度低于1Pa时,打开分子泵,将前处理后的柔性衬底置于真空腔内,待真空度达到10-4Pa以后,对柔性衬底升温到200℃,均匀保温1小时以上;通入氧气,调节氧分压为0.8~2.0Pa,激光能量150-200mJ/p,激光频率5Hz,靶距为4-6cm,保温1-2小时后,室温空冷。
6.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤2)中制备超薄复合电极AZO/Ag/AZO时,将柔性衬底先行遮挡,对靶材进行激光预打3-5min,以去除靶材表面的氧化物和杂质,保证靶材表面成分的一致性。
7.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤3)、4)中利用真空蒸发镀膜设备制备薄膜的过程是:将柔性衬底体固定在真空腔内,正面朝下与蒸发源相对;与蒸发源的垂直距离为13~18cm;两种蒸发源分别为CsI、SnI2,共同蒸发。
8.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤3)中掺杂F的钙钛矿CsSnX3薄膜中掺杂F所占摩尔比为11%。
9.根据权利要求2所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤5)中铜铟镓硒吸收层的制备方法为:真空度抽至本底真空度2×10-3Pa,先蒸发Cu、In、Ga沉积到步骤4)所得衬底上形成金属预制膜,即CuInGa叠层预制膜;在快速热处理炉中,氩气环境下利用Se蒸汽进行硒化,与金属预制膜反应形成铜铟镓硒吸收层。
10.根据权利要求3所述的一种基于柔性衬底的P-I-N结太阳能电池的制备方法,其特征在于,步骤6)中磁控溅射CuAlO2作为太阳能电池空穴传输层的方法为:将步骤5)所得衬底置于射频磁控溅射真空腔内,镀膜前真空度抽至本底真空度3×10-3Pa,随后充入高纯氩气,工作压强0.3Pa;射频溅射功率为100-120W,靶距为13-18cm,氩气通量为10-20sccm,溅射1-2h;
步骤7)中将器件放置在臭氧清洗机中干燥,然后使用电阻蒸发设备蒸镀金属电极,完成电极沉积。
CN201910460505.9A 2019-05-30 2019-05-30 一种基于柔性衬底的p-i-n结太阳能电池及制备方法 Active CN110137297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910460505.9A CN110137297B (zh) 2019-05-30 2019-05-30 一种基于柔性衬底的p-i-n结太阳能电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910460505.9A CN110137297B (zh) 2019-05-30 2019-05-30 一种基于柔性衬底的p-i-n结太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN110137297A CN110137297A (zh) 2019-08-16
CN110137297B true CN110137297B (zh) 2020-09-22

Family

ID=67582967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910460505.9A Active CN110137297B (zh) 2019-05-30 2019-05-30 一种基于柔性衬底的p-i-n结太阳能电池及制备方法

Country Status (1)

Country Link
CN (1) CN110137297B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002777A (zh) * 2020-08-21 2020-11-27 理天光电科技(苏州)有限公司 一种柔性钙钛矿薄膜太阳能电池及其制备方法
CN112044428A (zh) * 2020-09-04 2020-12-08 辽宁科技大学 一种VO2填充的TiO2纳米管复合材料及其制备方法
CN113488594A (zh) * 2021-07-05 2021-10-08 清华大学 基于低成本金属和透明导电氧化物的复合薄膜电极及其在钙钛矿光电器件中的应用
CN113707817B (zh) * 2021-08-26 2024-07-16 浙江浙能技术研究院有限公司 一种钙钛矿太阳能电池的无机空穴传输层的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091889A (zh) * 2014-07-24 2014-10-08 华中科技大学 半导体钙钛矿太阳能电池及其制备方法
JP2015185836A (ja) * 2014-03-26 2015-10-22 株式会社豊田中央研究所 複合自立膜、太陽電池、複合自立膜の製造方法
CN106653875A (zh) * 2017-02-20 2017-05-10 江苏欧耐尔新型材料股份有限公司 一种纳米吸光复合材料及其制备方法和涂膜制备方法
CN107742661A (zh) * 2017-10-19 2018-02-27 辽宁科技大学 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法
KR101863866B1 (ko) * 2017-03-24 2018-06-01 한국화학연구원 우수한 광안정성을 가지는 페로브스카이트 태양전지 및 이의 제조방법
CN109390473A (zh) * 2018-10-17 2019-02-26 华中科技大学 基于双官能团单分子修饰层的钙钛矿电池及其制备方法
CN109473554A (zh) * 2018-11-16 2019-03-15 常州大学 一种全无机钙钛矿太阳电池及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185836A (ja) * 2014-03-26 2015-10-22 株式会社豊田中央研究所 複合自立膜、太陽電池、複合自立膜の製造方法
CN104091889A (zh) * 2014-07-24 2014-10-08 华中科技大学 半导体钙钛矿太阳能电池及其制备方法
CN106653875A (zh) * 2017-02-20 2017-05-10 江苏欧耐尔新型材料股份有限公司 一种纳米吸光复合材料及其制备方法和涂膜制备方法
KR101863866B1 (ko) * 2017-03-24 2018-06-01 한국화학연구원 우수한 광안정성을 가지는 페로브스카이트 태양전지 및 이의 제조방법
CN107742661A (zh) * 2017-10-19 2018-02-27 辽宁科技大学 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法
CN109390473A (zh) * 2018-10-17 2019-02-26 华中科技大学 基于双官能团单分子修饰层的钙钛矿电池及其制备方法
CN109473554A (zh) * 2018-11-16 2019-03-15 常州大学 一种全无机钙钛矿太阳电池及其制备方法

Also Published As

Publication number Publication date
CN110137297A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110137297B (zh) 一种基于柔性衬底的p-i-n结太阳能电池及制备方法
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
TW201203576A (en) Single junction CIGS/CIS solar module
CN108447936B (zh) 一种锑基双结叠层太阳电池的制备方法
CN113206123A (zh) 一种钙钛矿/晶硅叠层电池及其制备方法
CN207282509U (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池
WO2021047673A1 (zh) 碲化镉太阳能电池及其制备方法
CN105826425A (zh) 一种铜锌锡硫薄膜太阳电池的制备方法
CN103367465A (zh) 一种有金属反射镜的多结太阳能电池及其制备方法
CN114093862A (zh) 一种半透明钙钛矿/柔性cigs四端叠层太阳电池及其制备方法
EP3001461A1 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
CN106449795A (zh) 一种具有ITO/Pd双层结构复合电极的MoS2/Si光伏器件及其制备方法
CN114335348A (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
WO2020000599A1 (zh) Cigs太阳能电池及其制备方法
CN102723384B (zh) 一种CdTe太阳能电池及其制作方法
CN115440891A (zh) 一种钙钛矿基太阳电池
CN115188891A (zh) 一种钙钛矿太阳能电池及其制备方法
CN103594536A (zh) 多结多叠层硅基薄膜太阳能电池及其制造工艺
Abid et al. Solar Cell Efficiency Energy Materials
Petti et al. Thin Films in Photovoltaics
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN114744052A (zh) 太阳能电池及光伏组件
CN102412335B (zh) 太阳能晶片及其制备方法
CN105226125A (zh) 一种Pd-MoS2异质结光伏太阳能电池器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant