CN104140042B - 一种减小塔式起重机载荷摆角的控制方法 - Google Patents

一种减小塔式起重机载荷摆角的控制方法 Download PDF

Info

Publication number
CN104140042B
CN104140042B CN201410322803.9A CN201410322803A CN104140042B CN 104140042 B CN104140042 B CN 104140042B CN 201410322803 A CN201410322803 A CN 201410322803A CN 104140042 B CN104140042 B CN 104140042B
Authority
CN
China
Prior art keywords
load
equation
swinging
tower crane
rightarrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410322803.9A
Other languages
English (en)
Other versions
CN104140042A (zh
Inventor
赵敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Baode Intelligent Technology Co., Ltd
Original Assignee
Bode Energy Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bode Energy Equipment Co Ltd filed Critical Bode Energy Equipment Co Ltd
Priority to CN201410322803.9A priority Critical patent/CN104140042B/zh
Publication of CN104140042A publication Critical patent/CN104140042A/zh
Application granted granted Critical
Publication of CN104140042B publication Critical patent/CN104140042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control And Safety Of Cranes (AREA)

Abstract

本发明提供了一种减小塔式起重机载荷摆角的控制方法,包括以下步骤:1)建立塔式起重机载荷摆动坐标系;2)得到塔式起重机在做变幅和回转运动时载荷的摆动方程;3)控制器实时测量载荷到起升机构的距离L,根据L计算载荷的摆动周期T;4)在控制器中采用基于零点配置的鲁棒最优时滞滤波器得到脉冲序列,抑制由回转机构和变幅机构引起的载荷摇摆。本发明在现有的塔式起重器上只需经过少许改动就可以完成载荷全自动防摇;控制器使用基于零点配置的鲁棒最优时滞滤波器,在回转和变幅运动时,分别使用计算好的速度给定方式,完成减小载荷摆角的目的。

Description

一种减小塔式起重机载荷摆角的控制方法
技术领域
本发明属于起重机变频控制技术领域,尤其涉及一种塔式起重机减小载荷摆角的控制方法。
背景技术
塔式起重机作为主要物料运输机械在建筑也得到广泛应用。随着变频器调速技术的发展,越来越多的塔式起重机上采用变频调速技术。塔式起重机的小车位置采用回转机构和变幅机构控制,而载荷通过钢丝绳与提升机构连接,由于钢丝绳具有较好的柔性,这使得载荷的运动特性表现为非线性的振动的。
由于钢丝绳为柔性连接,使起重机在操作过程中极容易引起载荷的摆动,而一般的起重机没有专门的减小载荷摆动的措施,通常通过机械结构完成减小摆动,机械结构易磨损,维护难度大;或者师傅在操作时根据经验减小载荷摆动,只有经验丰富的师傅才能完成相应消摆动作,对操作师傅的技术要求高,所以这两种方法都有极大的局限性。
发明内容
为了解决背景技术中所存在的技术问题,本发明提供了一种减小塔式起重机载荷摆动的开环控制方法,在现有的塔式起重器上只需经过少许改动就可以完成载荷全自动防摇。控制器使用基于零点配置的鲁棒最优时滞滤波器,在回转和变幅运动时,分别使用计算好的速度给定方式,完成减小载荷摆角的目的。
本发明通过如下技术方案实现:一种减小塔式起重机载荷摆角的控制方法,其特殊之处在于:所述方法包括以下步骤:
1)建立塔式起重机载荷摆动坐标系;
2)得到塔式起重机在做变幅和回转运动时载荷的摆动方程;
3)控制器实时测量载荷到起升机构的距离L,根据L计算载荷的摆动周期T;
4)在控制器中采用基于零点配置的鲁棒最优时滞滤波器得到脉冲序列,抑制由回转机构和变幅机构引起的载荷摇摆。
上述步骤1)的具体步骤是:
1.1)建立质量为m的载荷在惯性坐标系(x,y,z)中的运动模型;回转机构绕Z轴旋转;
1.2)建立非惯性笛卡尔坐标(x1,y1),并设x1轴与x轴夹角为Ψ,方向符合右手定则,臂长为ρ,则小车坐标为(ρ,Ψ);设绳长为l,则以(ρ,Ψ)为原点建立球面坐标系,载荷的坐标为(l,θ,φ);则在旋转坐标系中重物向量为:
小车的向量为:
r → t = ( ρ , 0 , 0 )
两个向量对时间求导求出小车和重物的速度,设重物质量为m,小车质量为M,整个系统转动惯量为J,则系统的动能为:
T = 1 2 m ( d r → l d t · d r → l d t ) + 1 2 M ( d r → t d t · d r → t d t ) 2 + 1 2 J ( d d t ψ ) 2
设xoy平面势能为0,则重物势能为:
由Lagrange函数L=T-E,列出方程为:
d d t [ ∂ L ∂ ( d d t q i ) ] - ∂ L ∂ q i = Q i
依据拉格朗日方程可以得到θ和φ微分方程如下:
上面方程为一个相互耦合的非线性方程,需要进行线性化,同时忽略较小项得到摆动方程为:
对上式进行线性化处理并忽略较小项可简化为:
公式(4)为塔式起重机在做变幅和回转运动时载荷的摆动方程。
上述步骤4)的具体实现方式是:已知载荷摆动的周期为:
T = 2 π l g - - - ( 5 )
其中g为重力加速度;
调节器的幅值和时间分别按以下条件给定:
A 1 = C t 1 = 0 A 2 = - 2 C c o s ( w d T ) e - ξw n T t 2 = T A 3 = Ce - 2 ξw n T t 3 = 2 T - - - ( 6 )
其中:A1、A2、A3是三次输入的脉冲幅值;t1、t2、t3是三次输入的脉冲时间。
本发明的有益效果是:可以较好的减小由于回转机构和变幅机构运动引起的载荷摆动,进一步提高了塔式起重机的工作效率、安全性及可靠性,为实现塔式起重机无摇摆运输载荷提供了一套可行的方案。
附图说明
图1是本发明的系统结构示意图;
图2为变幅机构或者回转机构的速度给定曲线;
图3为塔式起重机的示意图;
图4为塔式起重机载荷摆动分析的坐标系统图。
图5为不带消摆算法的系统仿真曲线;
图6为带消摆算法的系统仿真曲线;
具体实施方式
本发明是一种根据塔式起重机的回转机构和变幅机构的动力特性,建立如图4的塔式起重机坐标系,依据拉格朗日方程建立塔式起重机的非线性动力学模型并简化为线性动力学模型。根据载荷的摆动规律,应用基于零点配置的鲁棒最优时滞滤波器减小变幅和回转运动引起的载荷摆动。
建立塔式起重机载荷摆动坐标系,如图4所示,建立质量为m的载荷在惯性坐标系(x,y,z)中的运动模型。回转机构可以绕Z轴旋转,建立非惯性笛卡尔坐标(x1,y1),并设x1轴与x轴夹角为Ψ,方向符合右手定则,臂长为ρ,则小车坐标为(ρ,Ψ);设绳长为l,则以(ρ,Ψ)为原点建立球面坐标系,载荷的坐标为(l,θ,φ)。则在旋转坐标系中重物向量为:
小车的向量为:
r → t = ( ρ , 0 , 0 )
两个向量对时间求导求出小车和重物的速度,设重物质量为m,小车质量为M,整个系统转动惯量为J,则系统的动能为:
T = 1 2 m ( d r → l d t · d r → l d t ) + 1 2 M ( d r → t d t · d r → t d t ) 2 + 1 2 J ( d d t ψ ) 2
设xoy平面势能为0,则重物势能为:
由Lagrange函数L=T-E,列出方程为:
d d t [ ∂ L ∂ ( d d t q i ) ] - ∂ L ∂ q i = Q i
依据拉格朗日方程可以得到θ和φ微分方程如下:
上面方程为一个相互耦合的非线性方程,需要进行线性化,同时忽略较小项得到摆动方程为:
对上式进行线性化处理并忽略较小项可简化为:
公式(4)即为塔式起重机在做变幅和回转运动时载荷的摆动方程。
本次设计提出基于零点配置的鲁棒最优时滞滤波器算法,采用此滤波器可以减小残余振荡,并且具有较好的鲁棒性。已知载荷摆动的周期为:
T = 2 π l g - - - ( 5 )
其中g为重力加速度,序列脉冲幅值和时间如下式所示:
A 1 = C A 2 = - 2 C c o s ( w d T ) e - ξw n T A 3 = Ce - 2 ξw n T
t 1 = 0 t 2 = T t 3 = 2 T - - - ( 6 )
根据塔式起重机回转机构1运行时,载荷4的摆动特性,如图4建立惯性坐标系和非惯性笛卡尔坐标系和非惯性球坐标系,依据拉格朗日方程建立塔式起重机的非线性动力模型,进行线性化处理;在回转运动和变幅运动时采用基于零点配置的鲁棒最优时滞滤波器减小载荷摆动角度,本方法可以直接集成到控制器中,控制器根据变幅机构和回转机构的运行状态实时发送信号给调速器,调速器根据信号控制变幅机构和回转机构的加减速度,起到减小载荷摆角的目的。
当绳长不变的情况下,根据载荷在各种运动时的摆动情况,如图4建立惯性坐标系,非惯性笛卡尔坐标系和球坐标系。依据拉格朗日方程求得载荷在两个方向的摆动方程,最后简化并线性化后得到摆动模型。回转和变幅运动时控制器脉冲采用基于零点配置的鲁棒最优时滞滤波器完成消摆。
时滞滤波器控制下,系统的残留振荡的幅值表达式为:
V ( ω , ξ ) = m 2 ( ω , ξ ) + n 2 ( ω , ξ ) e ξωt n
其中: m ( ω , ξ ) = Σ i = 0 n - 1 A i e ξωt i c o s ( w 1 - ξ 2 t i )
n ( ω , ξ ) = Σ i = 0 n - 1 A i e ξωt i s i n ( w 1 - ξ 2 t i )
最优时滞滤波器表达式如下:
f ( t ) = Σ j = 0 n f j δ ( t - jT 1 )
上式中包含脉冲的幅值和时滞时间,fj为输入滤波器的第j个参数,T1为随机的时滞时间,n为滤波器中的参数个数。
根据时滞滤波器的零点配置方法,在系统频率附近配置零点,表达式为:
w 1 = 1 π ( π - cos - 1 ( 1 - V 1 + V ) ) w n
则相应Z域的零点为:
z 1 = e - ξw 1 T e jw 1 1 - ξ 2 T
z 1 * = e - ξw 1 T e - jw 1 1 - ξ 2 T
在此,采用零点可以提高滤波器的鲁棒性,则时滞滤波器表达式为:
F ( z ) = C z m ( z - z 1 ) m 1 ( z - z 1 * ) m 1
其中:m=2*m1,C为归一化因子,
依据Z反变换得到时域脉冲序列表达式:
f(t)=C(δ(t)+a1δ(t-T)+a2δ(t-2T))
其中:
则:滤波器的脉冲幅值为
令ξ=0,则振荡为0。无论是变幅还是回转,使速度给定按照上式方式给定速度命令,那么就能达到减小载荷摆角的目的。
本控制方法分别控制回转和变幅两个机构,其给定速度曲线可以用图2表示,塔式起重机简化图3。本系统需要实时测量载荷到起升机构的距离,即钢丝绳的长度,根据钢丝绳的长度计算载荷的摆动周期T。
变幅运动的实施方案。在t=0时刻变幅机构2开始加速运动,在完成总加速时间时的A1倍时达到t1,此时按照此时速度运行到t2,根据脉冲输入整形滤波器的设计要求可知t2=T/2;变幅机构2在t2时刻开始第二段加速,加速时间为总加速时间的A2倍,然后在t3时刻开始匀速运行到t4,根据脉冲输入整形滤波器的设计要求可知t4=T;变幅机构2在t4时刻开始第三段加速,加速时间为总加速时间的A3倍,然后在t5时刻达到最终速度开始匀速运行。当变幅机构2需要停止时,同加速过程类似,只是此时总减速时间同总的加速时间。
回转运动的实施方案。同变幅机构2,不再描述。
图5、6为不带消摆功能和带消摆功能的仿真结果,从图中可以看出:带有消摆功能的θ在加速和减速过程中幅值变化不大,在匀速时仍然会叠加塔臂旋转频率,φ在第一个启动和停机脉冲的震荡加大,稳定后减小,可以看出在匀速仍然有震荡,但停车后震荡很小,所以此种方法对停车后震荡有较好的抑制,消摆效果较好。

Claims (3)

1.一种减小塔式起重机载荷摆角的控制方法,其特征在于:所述方法包括以下步骤:
1)建立塔式起重机载荷摆动坐标系;
2)得到塔式起重机在做变幅和回转运动时载荷的摆动方程;
3)控制器实时测量载荷到起升机构的距离L,根据L计算载荷的摆动周期T;
4)在控制器中采用基于零点配置的鲁棒最优时滞滤波器得到脉冲序列,抑制由回转机构和变幅机构引起的载荷摇摆。
2.根据权利要求1所述的减小塔式起重机载荷摆角的控制方法,其特征在于:所述步骤1)的具体步骤是:
1.1)建立质量为m的载荷在惯性坐标系(x,y,z)中的运动模型;回转机构绕Z轴旋转;
1.2)建立非惯性笛卡尔坐标(x1,y1),并设x1轴与x轴夹角为Ψ,方向符合右手定则,臂长为ρ,则小车坐标为(ρ,Ψ);设绳长为l,则以(ρ,Ψ)为原点建立球面坐标系,载荷的坐标为(l,θ,φ);则在旋转坐标系中重物向量为:
小车的向量为:
r → t = ( ρ , 0 , 0 )
两个向量对时间求导求出小车和重物的速度,设重物质量为m,小车质量为M,整个系统转动惯量为J,则系统的动能为:
T = 1 2 m ( d r → l d t · d r → l d t ) + 1 2 M ( d r → t d t · d r → t d t ) 2 + 1 2 J ( d d t ψ ) 2
设xoy平面势能为0,则重物势能为:
由Lagrange函数L=T-E,列出方程为:
d d t [ ∂ L ∂ ( d d t q i ) ] - ∂ L ∂ q i = Q i
依据拉格朗日方程可以得到θ和φ微分方程如下:
上面方程为一个相互耦合的非线性方程,需要进行线性化,同时忽略较小项得到摆动方程为:对上式进行线性化处理并忽略较小项可简化为:
公式(4)为塔式起重机在做变幅和回转运动时载荷的摆动方程。
3.根据权利要求1所述的减小塔式起重机载荷摆角的控制方法,其特征在于:所述步骤4)的具体实现方式是:已知载荷摆动的周期为:
T = 2 π L g - - - ( 5 )
其中g为重力加速度;
调节器的幅值和时间分别按以下条件给定:
A 1 = C t 1 = 0 A 2 = - 2 C c o s ( w d T ) e - ξw n T t 2 = T A 3 = Ce - 2 ξw n T t 3 = 2 T - - - ( 6 )
其中:A1、A2、A3是三次输入的脉冲幅值;t1、t2、t3是三次输入的脉冲时间。
CN201410322803.9A 2014-07-08 2014-07-08 一种减小塔式起重机载荷摆角的控制方法 Active CN104140042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410322803.9A CN104140042B (zh) 2014-07-08 2014-07-08 一种减小塔式起重机载荷摆角的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410322803.9A CN104140042B (zh) 2014-07-08 2014-07-08 一种减小塔式起重机载荷摆角的控制方法

Publications (2)

Publication Number Publication Date
CN104140042A CN104140042A (zh) 2014-11-12
CN104140042B true CN104140042B (zh) 2017-01-18

Family

ID=51849400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410322803.9A Active CN104140042B (zh) 2014-07-08 2014-07-08 一种减小塔式起重机载荷摆角的控制方法

Country Status (1)

Country Link
CN (1) CN104140042B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016002296U1 (de) * 2016-04-08 2017-07-12 Liebherr-Components Biberach Gmbh Baumaschine
CN105905807A (zh) * 2016-06-27 2016-08-31 哈尔滨理工大学 一种基于模糊的桥式起重机的定位和防摆控制方法
CN106829740B (zh) * 2016-12-30 2018-09-07 三一海洋重工有限公司 一种起重机防摇控制方法及系统
CN106865416A (zh) * 2017-04-20 2017-06-20 中南大学 一种桥式起重机行走过程中的自动防摆控制方法
CN107738273B (zh) * 2017-10-16 2021-05-14 华南理工大学 一种基于输入整形器的机器人关节末端残余振动抑制方法
CN108373109B (zh) * 2018-01-03 2019-05-14 南京工业大学 一种塔式起重机防摇运行控制方法
CN117446664B (zh) * 2023-10-26 2024-05-07 渤海大学 一种基于快速有限时间指令滤波器的塔式起重机控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960969A (en) * 1996-01-26 1999-10-05 Habisohn; Chris Xavier Method for damping load oscillations on a crane
CN1505590A (zh) * 2001-03-05 2004-06-16 �¼��¹�����ѧ 在操纵者指令下的起重机抗摇摆控制
CN101384503A (zh) * 2006-02-15 2009-03-11 株式会社安川电机 吊装载荷摆动防止装置
EP2272784A1 (de) * 2009-07-08 2011-01-12 Liebherr-Werk Nenzing GmbH Kran zum Umschlagen einer an einem Lastseil hängenden Last
CN102107819A (zh) * 2010-12-09 2011-06-29 河南科技大学 一种集装箱岸边桥吊防摇控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930530B2 (ja) * 1994-12-22 1999-08-03 日立造船株式会社 クレーン装置における荷物振れ角検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960969A (en) * 1996-01-26 1999-10-05 Habisohn; Chris Xavier Method for damping load oscillations on a crane
CN1505590A (zh) * 2001-03-05 2004-06-16 �¼��¹�����ѧ 在操纵者指令下的起重机抗摇摆控制
CN101384503A (zh) * 2006-02-15 2009-03-11 株式会社安川电机 吊装载荷摆动防止装置
EP2272784A1 (de) * 2009-07-08 2011-01-12 Liebherr-Werk Nenzing GmbH Kran zum Umschlagen einer an einem Lastseil hängenden Last
CN102107819A (zh) * 2010-12-09 2011-06-29 河南科技大学 一种集装箱岸边桥吊防摇控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
回转起重机载荷摆动建模误差及不确定性定量分析;董明晓等;《应用基础与工程科学学报》;中国自然资源学会;20050331;第13卷(第1期);第75-80页 *
有限冲击最优时滞滤波器抑制起重机载荷残留摆动;董明晓等;《机械工程学报》;中国机械工程学会;20070430;第43卷(第4期);第7-11,20页 *

Also Published As

Publication number Publication date
CN104140042A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
CN104140042B (zh) 一种减小塔式起重机载荷摆角的控制方法
CN105600683B (zh) 带初始负载摆角及台车位移的桥式吊车误差跟踪器及方法
CN105152020B (zh) 带有跟踪误差约束的桥式吊车自适应跟踪控制器及方法
Wu et al. Improved time optimal anti-swing control system based on low-pass filter for double pendulum crane system with distributed mass beam
CN106348172B (zh) 一族基于正反posicast输入整形法的起重机防摇控制方法
CN104129713B (zh) 一种离线的桥式吊车轨迹控制方法
CN109896423B (zh) 一种时变非线性小车-吊重防摇控制装置及防摇控制方法
CN106249602A (zh) 桥式吊车有限时间轨迹跟踪控制器及其设计方法
CN110980536B (zh) 一种高温熔融金属转运吊车防外溅控制方法
CN109911773B (zh) 一种单参数调整的欠驱动吊车作业全过程自抗扰控制方法
AU2019101724A4 (en) Active hybrid rotational control system with variable damping functions
CN103075011B (zh) 臂架轨迹优化方法、系统及包含该系统的工程机械
CN103064425B (zh) 提高臂架运动稳定性的方法、系统及工程机械
CN105174061A (zh) 基于伪谱法的双摆吊车全局时间最优轨迹规划方法
CN103466458A (zh) 基于行为的多塔机三维空间防碰撞方法
CN107381352B (zh) 一种加速时间可调的起重机防摇控制方法
CN110294414B (zh) 一种基于开环防摇控制算法的起重机控制方法
CN108008626A (zh) 一种水下机器人在近水面受海浪干扰时使用水平舵进行主动减摇的模糊pid控制方法
CN110407095A (zh) 一种基于在线轨迹规划的桥式起重机定位消摆控制方法
CN104671097A (zh) 一种基于输入整形技术的船用吊车控制器
Li et al. Kinematic coupling‐based trajectory planning for rotary crane system with double‐pendulum effects and output constraints
JP5686404B2 (ja) クレーンの制御方法
CN114967454A (zh) 塔式起重机轨迹规划方法、系统、电子设备及存储介质
CN103395698A (zh) 履带式起重机执行动作的安全控制方法、装置及系统
Miller et al. Dynamics and control of dual-hoist cranes moving triangular payloads

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201215

Address after: 710000 office building, Xifu, Qinling Avenue, Caotang science and technology industrial base, high tech Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an Baode Intelligent Technology Co., Ltd

Address before: No.6, Xifu, Qinling Avenue, Caotang science and technology industrial base, hi tech Zone, Xi'an City, Shaanxi Province

Patentee before: Bode Energy Equipment Co.,Ltd.