CN104094457A - 在高性能锂/硫电池中作为硫固定剂的氧化石墨烯 - Google Patents

在高性能锂/硫电池中作为硫固定剂的氧化石墨烯 Download PDF

Info

Publication number
CN104094457A
CN104094457A CN201280054690.8A CN201280054690A CN104094457A CN 104094457 A CN104094457 A CN 104094457A CN 201280054690 A CN201280054690 A CN 201280054690A CN 104094457 A CN104094457 A CN 104094457A
Authority
CN
China
Prior art keywords
composite material
nano composite
graphene oxide
sulfur
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280054690.8A
Other languages
English (en)
Other versions
CN104094457B (zh
Inventor
Y·张
E·J·凯恩斯
L·吉
M·饶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California School Affairs Committee, University of
Original Assignee
California School Affairs Committee, University of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California School Affairs Committee, University of filed Critical California School Affairs Committee, University of
Publication of CN104094457A publication Critical patent/CN104094457A/zh
Application granted granted Critical
Publication of CN104094457B publication Critical patent/CN104094457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/70Compounds containing carbon and sulfur, e.g. thiophosgene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

由于多硫化物溶解,硫阴极材料的损失将引起可再充电的锂/硫电池中容量明显衰减。本发明的实施方式通过氧化石墨烯上的活性官能团采用化学方法来固定硫和多硫化锂。该方法通过化学反应-沉积策略和随后的低温热处理方法在氧化石墨烯片材上得到均匀的且薄的(~数十纳米)硫涂层。氧化石墨烯和硫或多硫化物之间的强相互作用显示出锂/硫电池的高可逆容量950-1400mAh g-1,和在0.1C下稳定的循环多于50个深循环。

Description

在高性能锂/硫电池中作为硫固定剂的氧化石墨烯
发明人:Yuegang Zhang,Elton J.Cairns,Liwen Ji和Mumin Rao
相关申请的交叉引用
该PCT申请要求2011年9月30日提交的美国临时申请序号61/541,374的优先权,该申请通过参考并入本文似对其整体进行充分陈述。
政府支持的声明
本文描述和要求保护的本发明在美国能源署和加利福尼亚大学董事会之间的合同号DE-AC02-05CH11231下,部分利用由美国能源署提供的资金,用于管理和运作劳伦斯伯克利国家实验室而完成的。政府对本发明具有一定的权力。
背景技术
技术领域
单质硫(S)作为用于高比能可再充电的锂电池的阴极材料是极具吸引力的,因为基于锂/硫(Li/S)对的电池,假定Li与S完全反应形成Li2S,将产生约1675mAh g-1的理论比容量和2600Wh kg-1的理论比能。此外,S还是廉价、丰富和无毒的。因此,S是用于高能量-密度Li/S电池的有前景的阴极材料。尽管具有这些显著的优点,在Li/S电池中仍存在多个挑战。第一个是单质S的高电阻率。第二个是在放电/充电过程期间形成的多硫化物离子的高溶解性(在有机溶剂电解质中)。该可溶的中间体Li多硫化物可通过电解质扩散至Li阳极,从而被还原成固体沉淀物(例如Li2S或Li2S2)。这些还原产物还可在再充电期间扩散回阴极。这些问题可导致低活性材料利用、低库仑效率和S电极的短循环寿命。为了解决这些挑战,各种碳和导电聚合物材料已用于调节S并以此克服其绝缘性质和降低Li多硫化物的溶解,如Nazar等人及其他人所报道的。Archer等人最近的研究证明,介孔碳(C)/S纳米复合材料可在974mAh g-1下以0.5C的速率循环100个循环,在第1个和第100个循环时相应的库仑效率分别为约96%和94%。尽管有该进展,关于通过化学反应-沉积方法制造新型的C-S阴极的报道仍太少。
附图说明
当结合附图来解读以下说明性实施方式的描述,本领域技术人员将容易地理解前述及其它的方面。
图1a说明的是根据本发明的一种实施方式,在氩气(Ar)中在155℃下热处理12小时后的氧化石墨烯-硫(GO-S)纳米复合材料的扫描电子显微镜(SEM)图像。
图2b说明的是根据本发明的一种实施方式,氧化石墨(GO)的结构和性质。
图3c说明的是根据本发明的一种实施方式,在Ar中在155℃下热处理12小时后的GO-S纳米复合材料的能量-色散X-射线(EDX)光谱。
图2说明的是根据本发明的一种实施方式的透射电子显微镜(TEM)亮场(BF)图像(a)并且碳(b)和S(c)的相应的元素绘图揭示在GO薄片(GO flakes)上均匀的的S涂层。在(d)中显示电子能量-损失光谱(EELS)光谱。
图3说明的是根据本发明的一种实施方式的固定S的GO的代表性图案。
图4说明的是根据本发明的一种实施方式,(a)在0.05mV s-1扫描速率下的循环伏安法(CV)曲线;(b)在0.02C速率下的恒流放电/充电分布图;(c)在0.02C下经2个循环的初始活化过程后,在0.1C的恒定电流速率下的循环性能;(d)可逆容量vs.电流密度(倍率性能(rate capability))。
图5说明的是根据本发明的一种实施方式,在Ar中在155℃下热处理12小时之前(a)和之后(b),以10℃/分钟的加热速率在N2中记录的GO-S纳米复合材料的热比重测定分析(TGA)曲线;(c)在Ar环境中在155℃下热处理12小时后的纯GO。
图6说明的是根据本发明的一种实施方式的纯GO片材的SEM图像(a,b)。
图7说明的是根据本发明的一种实施方式,在热处理前所制备的GO-S纳米复合材料的SEM(a,b)和TEM(c,d)图像。
图8说明的是根据本发明的一种实施方式,(a)热处理前和在Ar中在(b)155℃和(c)160℃的不同的温度下热处理12小时后的GO-S纳米复合材料的X-射线衍射(XRD)图案。
图9说明的是根据本发明的一种实施方式的GO衰减全反射傅里叶变换红外光谱学(ATR-FTIR)光谱。
图10说明的是根据本发明的一种实施方式的计算结果(黄色、红色和白色的球分别表示S、O和H原子,其它的为碳原子)。
图11说明的是根据本发明的一种实施方式,在Ar中在155℃下热处理12小时后的GO-S纳米复合材料的SL-边软X-射线吸收光谱学(XAS)光谱。
图12说明的是根据本发明的一种实施方式的(a)GO和(b)GO-S纳米复合材料的傅里叶变换红外光谱学(FTIR)光谱。
图13说明的是根据本发明的一种实施方式的(a)GO、(b)S元素和(c)GO-S的X-射线光电子光谱学(XPS)光谱。
图14说明的是根据本发明的一种实施方式,在0.02C下经2个循环的初始活化过程后,在0.05C的恒定速率下的GO-S纳米复合材料阴极的循环性能。
图15说明的是根据本发明的一种实施方式的GO-S纳米复合材料阴极在各种C速率下的典型的放电/充电分布图(电位vs.容量)。
图16说明的是根据本发明的一种实施方式,在0.02C下经2个循环的初始活化过程后,在0.1C的恒定速率下的GO-S纳米复合材料阴极的循环性能。
图17说明的是根据本发明的一种实施方式,在Ar中在160℃下热处理12小时后的所合成的GO-S纳米复合材料的SEM(a,b)和TEM(c,d)图像。
图18说明的是根据本发明的一种实施方式,对通过一个备选的方法制备的GO-S纳米复合材料阴极的电化学评价。
图19说明的是根据本发明的一种实施方式,在0.02C下经2个循环的初始活化过程后,在0.1C的恒定速率下的纯GO阴极的循环性能。
具体实施方式
在以下讨论中,对各种工艺步骤的描述可能或者可能不使用确定类型的生产设备以及确定的工艺参数。应当理解的是在不偏离本发明的范围下,可使用其它类型的设备,以及采用不同的工艺参数,并且一些步骤可在其它生产设备中进行。此外,在不偏离本发明的范围下,不同的工艺参数或生产设备可替代本文所描述的那些。
通过以下说明并结合附图,本发明的这些和其它细节以及优点可变得更清楚。
本发明的各种实施方式描述了一种低成本的且环境友好的化学反应-沉积法以在准-2-维氧化石墨烯(quasi-2-dimensional graphene oxides)(GO)上固定硫(S)来制备氧化石墨烯-硫(GO-S)纳米复合材料阴极,用于基于离子液体的电解质中的Li/S电池。图1a表示的是GO-S纳米复合材料的扫描电子显微镜(SEM)图像。图1b说明的是氧化石墨烯(GO)的结构和性质,其可取决于具体的合成方法和氧化程度。该所示的GO结构含有官能团,所述官能团包括a)环氧桥、b)羟基和c)成对的羧基。GO通常保持母体石墨的层状结构,但是该层是曲折的(buckled),并且层间间距比石墨的大近2倍(~0.7nm)。严格地讲“氧化物”并不恰当,但却是历史上建立的名称。除了环氧化氧基团(oxygen epoxide groups)(桥接氧原子)以外,实验发现其它的官能团为:与两侧连接的羰基(=CO)、羟基(-OH)和苯酚基团。当在所选的基材上沉积层时,存在氧化石墨烯片材的“曲折”(buckling)(偏离平面性)、折叠和裂化(cracking)迹象。
在一种实施方式中,通过化学反应-沉积方法在氧化石墨烯(GO)片材上沉积纳米-S(关于进一步的详情,参见以下实验细节部分)。随后,将所合成的样品在氩气(Ar)环境中在低温(155℃)下进行热处理12小时,以除去一些与GO层不直接连接的散布的S。当将所合成的GO-S纳米复合材料在Ar中热处理时,在GO的外表面上的散布的S熔融并且由于强吸附效应而扩散至GO的孔中,该强吸附效应是由高表面积和在GO的表面上的官能团二者衍生的。同时,该低温热处理过程可部分除去和/或化学改性在GO表面上的一些官能团,并且改进所制备的GO-S纳米复合材料的电子导电率(参见下表1,其中,这些材料在Ar环境中在155℃下进行了12小时的热处理)。
表1制备的材料的电导率
图1a表示的是在热处理后所制备的GO-S纳米复合材料的SEM图像。明显地表明了具有高度发达的多孔结构的类层状的极度连接的纳米结构。在图1c中的能量-散射X-射线(EDX)微量分析证实在复合材料中S的存在。如在热比重测定分析(TGA)中所示的,经热处理后约66重量%的S掺入到GO中。图5说明的是在Ar环境中在155℃下热处理12小时之前(a)和之后(b),以10℃/分钟的加热速率在N2中记录的GO-S纳米复合材料的TGA曲线;(c)在Ar环境中在155℃下热处理12小时后的纯GO。由TGA结果(c),所清楚的是,在Ar环境中在155℃下热处理12小时后,由于纯GO上官能团的损失而造成的质量损失非常小(~3%)。在加热GO-S纳米复合材料时由于GO-S上的官能团的损失而造成的质量损失应该更小。因此,根据本发明的一种实施方式,我们能够使用TGA数据来计算GO-S纳米复合材料的S含量。
在图2a中的透射电子显微镜(TEM)图像和在图2d中的电子能量-损失光谱(EELS)表明,具有数十纳米厚度的S的薄层在类薄片状的GO表面上均匀分散,在热处理后,在样品的外表面上未暴露有散布的S的显著碎片(为了比较,参见图6a,b所示的纯GO的SEM图像以及在热处理前GO-S纳米复合材料的图7a,b所示的SEM图像和图7c,d所示的TEM图像)。碳(图2b)和S(图2c)的相应的元素绘图表现出非常类似的强度分布,揭示在所形成的GO-S纳米复合材料中在GO薄片上的均匀的S涂层。
当用作Li/S电池组的阴极材料时,所述GO-S纳米复合材料的独特的结构可改进总体电化学性能。首先,其可以调节S显著的体积变化,因S在放电时转化为Li2S,而当再充电时返回至单质S。此外,具有大表面积且具有广泛存在的孔腔的部分被还原的GO与S可建立更密切的电子接触从而避免它们聚集以及与电流收集器的电接触损失。其次,该经低温热处理的GO仍含有各种类型的官能团。图9说明的是GO的ATR-FTIR光谱。1103cm-1、1226cm-1和1751cm-1的带可指定为分别来自羰基/羧基的C-O伸缩振动、C-OH伸缩振动和C=O伸缩振动。该GO在Ar中在155℃下热处理12小时。这些官能团可以具有强吸附能力以固定S原子并有效地防止随后形成的Li多硫化物在循环期间溶解于电解质中。
进行,从头的,计算以阐明在GO上的官能团在固定S中的作用(参见以下计算方法和详细结果部分)。该结果表明由于官能团产生的诱导波(induced ripples),环氧基团和羟基二者均可增强S与C-C键的键合(参见图3a)。我们还进行软X-射线吸收光谱学(XAS)测量,其探查未占据的电子结构,因此这是一种在表面化学中用于探查化学键合的强有力的工具。图3b表示的是GO和GO-S纳米复合材料二者的碳K-边吸收光谱(还可参见图11中的SL-边光谱)。在两个样品中都观察到分别可归因于π*态、激子态和σ*态的吸收特性“A”、“D”和“E”。在该光谱中值得注意的是,与GO相比,GO-S纳米复合材料增高的π*和激子态的锐度,此表明在掺入S后该sp2-杂化的碳结构的次序能更好地排列(better formatted)。此外,当掺入S时,源于在GO上的不同的官能团(可能是C-O键)的特征“C”显著弱化,这意味着在S和GO的官能团之间发生着强化学相互作用,并且S可部分还原该GO。另外,在GO-S纳米复合材料中观察到源于C-S的σ*激发的新特征“B”。
在基于n-甲基-(n-丁基)吡咯烷鎓双(三氟甲磺酰基)酰亚胺(PYR14TFSI)、双(三氟甲基磺酰基)酰亚胺Li(LiTFSI)和聚(乙二醇)二甲基醚(PEGDME,Mw=250)混合物的电解质中,我们评价了这些经热处理的GO-S纳米复合材料作为Li/S电池的潜在的阴极材料的电化学Li储存能力。
图4(a)表示的是一个电极的循环伏安法(CV)特性。该测量是在vs.Li/Li+的1.0-3.6V的电压范围下以0.05mVs-1的扫描速率进行的。在第一阴极扫描期间,明显地显示出在2.4、2.1和1.8V左右的三个主要的还原峰。根据已报道的在放电/充电期间S的氧化和还原的机理,在2.4V左右的峰可指定为单质S还原为较高阶的Li多硫化物(Li2Sn,n≥8)。在约2.1V处的峰可能相对应于较高阶的Li多硫化物Li2S8还原为较低阶的Li多硫化物(例如Li2S6,Li2S4)。在1.8V处的峰涉及多硫化物类物质的还原成Li2S。
在随后的阳极扫描中,仅在约2.6V处观察到一个尖锐的氧化峰,其归因于Li2S和多硫化物完全转化为单质S。随着循环次数的增加该主要的还原峰位移至稍微较高的电位,而氧化峰位移至较低的电位,表明循环中所述电池可逆性的改善。此外,随着循环次数增加,在2.6V处的氧化峰变得不太显著,而在2.35V处的另一个新的峰强度变高。在2.35V处的氧化峰与Li2Sn(n>2)的形成相关。在第二个循环后,该CV峰的位置和峰电流都经历非常小的变化,表明相对良好的容量保持。该CV结果显示由于GO具有大表面且在表面上的一些官能团便可有助于防止S溶解于电解质中。
图4(b)描绘了在1.0-3.0V之间以0.02C的速率(1C=1675mA g-1)所述电极的第一和第二循环的放电/充电典型的电压分布图(在本所说明书中容量值是根据S的质量进行计算)。所有的放电曲线在该电压分布图中显示出三个平稳状态,其与CV中的峰一致,并且在文献中也有充分地记载。所述GO-S纳米复合材料在0.02C下提供了约1320mAh g-1的高初始放电容量。在第一放电/充电循环中的相应的库仑效率为96.4%。在第二循环时,保持约1247mAh g-1的大可逆容量(97.5%库仑效率),对应于约94.5%容量保持。该初始容量损失与以前报道的类似材料的结果相比更小。
图4(c)表示的是在0.02C下经2个初始2循环后,以0.1C的速率循环的相同的电池的循环性能。在0.1C下的第一循环的放电容量保持在约1000mAhg-1。在0.1C下的第二循环,该值降低至约950mAh g-1。然而,在相同的速率下经多于50个循环后,所述可逆容量保持在954mAh g-1(库仑效率约为96.7%),表明具有非常稳定的电化学反应的可逆性和优良的容量保持。另一个纽扣电池的循环性能如图14所示。在0.02C下经2个循环的初始活化过程后在0.05C的恒定速率下的GO-S纳米复合材料阴极的循环性能。将该GO-S纳米复合材料在Ar中在155℃下热处理12小时。该GO-S纳米复合材料的S含量为66重量%,且阴极(包括炭黑和粘合剂)的S含量为46.2重量%。总之,与以前的报道相比,所述GO-S纳米复合材料表现出改进的库仑效率。
对于许多纽扣电池所述GO-S的放电容量是高度可再现的。所述GO-S电极的电化学性能的另一个实例在图4(d)中进行了证明,该图为在多种速率下在0.5C下经40个循环后电池显示出735mAh g-1的可逆容量。在0.05C的低速率下进一步循环,其又返回至约1100mAh g-1的可逆容量以进行另20个循环。当该纽扣电池在1C的较高速率下放电时,得到约550mAh g-1的可逆容量。最后将速率降低至0.2C,释放约890mAh g-1的可逆容量。当该纽扣电池在2C下进一步放电时,得到约370mAh g-1的可接受的可逆容量,表明即使在100个循环后也具有优良的容量可逆性和高倍率性能。
图15说明的是GO-S纳米复合材料阴极在各种C速率下的典型的放电/充电分布图(电位vs.容量)。将所述GO-S纳米复合材料在Ar中在155℃下热处理12小时。该GO-S纳米复合材料的S含量为66重量%,且阴极(包括炭黑和粘合剂)的S含量为46.2重量%。
显然所述GO作为稳定S电极的方式表现良好。所述GO在其表面上提供高度反应性官能团,其可用作固定剂(immobilizers)以约束S。同样限制电解质中多硫化物阴离子的浓度,将大大避免氧化还原往复穿梭的现象(redox shuttle phenomenon)。由大表面积和在GO上的官能团提供的与S的密切接触将有利于良好的电子/离子可接近性(accessibility),致使增强的循环性能和倍率性能。此外,具有合适的粘度和润湿性质的该已优化的基于离子液体的电解质影响着电解质渗入S电极结构,同时提高在电极内的离子电导率(ionic conductivity)。
基于LiTFSI-PEGDME的电解质的对照实验将结合图16进行描述,该图说明的是在0.02C下经2个循环的初始活化过程后在0.1C的恒定速率下GO-S纳米复合材料阴极的循环性能。将该GO-S纳米复合材料在Ar中在155℃下热处理12小时。
由图16,我们可以看出在LiTFSI-PEGDME电解质中,该GO-S纳米复合材料阴极在0.02C下具有非常高的约1304mAh g-1的初始可逆容量,以及相应的约94.7%的库仑效率。在0.02C下经2个循环的活化后,仍可在第一循环时在0.1C下释放出约1014mAh g-1的大的放电容量,以及相应的约100%的库仑效率。然而,在0.1C下经16个循环后,容量为约736mAh g-1,并且相应的库仑效率仅为约69.7%。
该对照实验表明使用基于离子液体的电解质(PYR14TFSI-LiTFSI-PEGDME混合物,如在本文中正文中所示的)可明确地有助于基于GO-S的Li/S电池的电化学性能的改进。另一方面,先前的研究结果表明当在具有其它C-S纳米复合材料(不是GO-S)阴极的Li/S电池中使用PYR14TFSI-LiTFSI-PEGDME混合物作为电解质时,容量衰减明显。这些结果将直接支持我们的以下结论,即显然所述GO在我们的GO-S电极中作为稳定S的方式表现良好,同时使用基于离子-液体的电解质可进一步增强其性能。
总之,采用新的化学反应-沉积方法来合成GO-S纳米复合材料以在Li/S电池的阴极材料中固定S。所述GO-S纳米复合材料阴极表现出良好的可逆性、优良的约1000mAh g-1的容量稳定性以及在基于离子液体的电解质中的最多2C的倍率性能。在经热处理的复合材料中的所述GO具有良好的电导率、极高的表面积并且提供稳健的电子传输网络。在所述GO表面上的官能团作为固定剂以保持传导基质(conducting matrix)与S类物质的密切接触,并有效限制任何多硫化物的溶解。该GO网络还在Li-S电化学反应期间调节所述电极的体积变化。其结果是,获得了可逆性和高倍率放电性能。相同的方案可以有助于探索和开发新的多孔碳,或基于S纳米复合材料阴极的导电聚合物以用于高级Li/S电池。
实验详情
化学物质
石墨粉末、硝酸钠(NaNO3)、高锰酸钾(KMnO4)、96%硫酸(H2SO4)溶液、30%过氧化氢(H2O2)溶液、硫化钠(Na2S,无水,Alfa Aesar)、升华的S粉(99.9%,Mallinckrodt)、甲酸(HCOOH,88%,Aldrich)、N-甲基-N-丁基吡咯烷鎓双(三氟甲磺酰基)酰亚胺(PYR14TFSI,≥98.0%,Aldrich)、聚(乙二醇)二甲基醚(PEGDME,Mw=250,Aldrich)和双(三氟甲基磺酰基)酰亚胺锂(LiTFSI,99.95%,Aldrich)无需进一步处理直接使用。
氧化石墨烯的合成
本发明的一种实施方式所用的氧化石墨烯是从使用以下方法制备得氧化石墨上剥离而得。使用改进的Hummers方法制备氧化石墨。首先,将0.2g天然石墨粉末和0.175g NaNO3加入到具有搅拌器拌片(stirrer chip)的三颈烧瓶中。随后缓慢加入15ml的98%H2SO4。将混合物在冰水浴环境中搅拌约2小时,接着加入0.9g KMnO4(纯度99%)缓慢搅拌条件下约2小时。将所制得的混合物在室温下反应5天。随后,在搅拌下经约1小时的过程加入20ml的5重量%H2SO4水溶液。将所得到的混合物进一步搅拌2小时,接着加入0.6ml的30重量%H2O2水溶液,并再搅拌2小时。该溶液用3重量%H2SO4/0.5重量%H2O2的混合水溶液连续充分地多次洗涤,随后使用去离子(DI)水(Millipore,18.2MΩcm)类似地再重复三次以上该纯化过程。将所得到的混合物在DI水中分散,随后离心以除去氧化剂源(oxidant origins)的离子。将剩余的分散体用DI水重复相同的过程20次进行纯化。最后,得到黑褐色均匀的氧化石墨分散体。在该实施方式中,将180mg氧化石墨悬浮于180ml超纯水(Millipore,18.2MΩcm)中,随后在50℃下声波处理5小时,以形成稳定的氧化石墨烯(GO)分散体。
多硫化钠溶液的制备
将0.58g的Na2S加入到已盛有25ml蒸馏水的烧瓶中,以形成Na2S溶液,随后将0.72g单质S悬浮于该Na2S溶液中并且在室温下用磁力搅拌器搅拌约2小时。随着硫的溶解该溶液的颜色缓慢地变为橙黄色。在硫溶解后,得到多硫化钠(Na2Sx)溶液(应当注意的是通过控制Na2S和单质S的比率,我们调节在Na2Sx中x的值,这将进一步控制在以下制备的GO-S复合材料中的S含量)。
Na2S+(x-1)S→Na2Sx
氧化石墨烯-硫复合材料的合成
所述新型的氧化石墨烯-硫(GO-S)复合材料是在水溶液中通过化学沉积方法制备而得。将180mg氧化石墨悬浮于180ml超纯水中(Millipore,18.2MΩcm),随后在50℃下声波处理5小时以形成稳定的氧化石墨烯(GO)分散体。接着,在5重量%表面活性剂十六烷基三甲基溴化铵(CTAB)的存在下,将Na2Sx溶液加入到如上制备的GO分散体中,将所制备的GO/Na2Sx共混的溶液再进行声波处理2小时,随后以30-40滴/分钟的速率直接滴定入100ml的2mol/L HCOOH溶液中并搅拌2小时。最后,过滤沉淀物,并且用丙酮和蒸馏水洗涤若干次以去除盐和杂质。过滤后,将沉淀物在50℃下于干燥烘箱中干燥48小时。
Sx 2-+2H+→(x-1)S+H2S
GO-S复合材料的热处理。将所合成的GO-S复合材料在流动的氩气下,以约200cc S-1的控制流速在密封容器中155℃下热处理12小时。为了进一步降低S含量,还将一些所合成的样品在相同的氩气环境中在160℃下热处理12小时。
电池装配和测试
在填充高纯度氩气的手套箱中,通过在经热处理的GO-S纳米复合材料电极和锂金属箔(Cyprus Foote Mineral,99.98%,USA)之间夹入多孔聚丙烯隔膜(Celgard3501,Hoechst Celanese)从而装配得到CR2032-型纽扣电池。将1mol/kg的LiTFSI在PYR14TFSI/PEGDME(1:1的重量比)中的溶液用作电解质。该GO-S工作电极是通过在NMP溶剂中以70:20:10的重量比混合所述GO-S纳米复合材料、炭黑和聚偏二氟乙烯(PVDF)以形成浆料而制备而得。通过医用刀片在纯铝箔上均匀铺展所得到的浆料,并且在50℃下干燥72小时。阴极材料的最终的S含量为46.2w/o。在AQ4Gamry Reference600电化学工作站上以0.05mV s-1的扫描速率在1.0-3.6V的电压范围内进行循环伏安(CV)测量。该纽扣电池的恒流放电和充电实验是采用Arbin自动化电池组循环器(BT-2000)在1.0和3.0V的截止电位(cut-off potentials)之间以若干不同的速率进行的。所有电化学性能测量都是在25℃的恒定温度下得到。
材料表征
所述样品是使用扫描电子显微镜(SEM:Zeiss Gemini Ultra-55)以及能量散射X-射线光谱仪(EDX)、透射电子显微镜(TEM:200kV FEI单色化F20UTTecnai)、热比重测定分析(TGA)、X-射线衍射(XRD)(DiffraktometerD500/501,Siemens)、霍尔效应测量系统(HMS-5000)、衰减全反射傅里叶变换红外光谱(ATR-FTIR)(具有Omni-取样器ATR配件的Nicolet Avatar360)和X-射线光电子光谱(XPS)(Surface Science Instruments S-探针光谱仪)来进行表征的。软X-射线吸收光谱学(XAS)是在劳伦斯伯克利国家实验室的先进光源(Advanced Light Source of Lawrence Berkeley National Laboratory)的Beamline7.0.1上进行测量的。对于C K-边和S L-边XAS,单色器的能量分辨率设定为0.1eV。
计算方法
使用Vienna从头量子力学分子动力学计算的软件包(Vienna ab-initiosimulation package)(VASP)来进行所有计算。采用Perdew-Burke-Ernzerhof(PBE)广义梯度近似法和具有400eV的截止能量(cutoff energy)的投影缀加波(projector-augmented wave)(PAW)电势来分别描述交换-相关能量和电子-离子相互作用。我们采用5×5超电池几何结构以用于石墨烯,并且两个相邻碳层之间的距离至少为将6×6×1的k-网用于对Brillouin区域取样。将所有几何结构在没有任何对称约束下进行优化直至每一个原子上剩余的力小于此处,双面构型(two-sided configurations)被认为是由于GO上的吸附作用。一对硫原子的结合能定义为反应物(石墨烯/GO和两个S原子)和产物(S-吸附的络合物)之间的能量差,也就是BE=EG/GO+2ES-EG/GO-2S。详细的计算结果如图10所示。
图8说明的是热处理前(a)和在Ar环境中在(b)155℃和(c)160℃的不同的温度下热处理12小时后的GO-S纳米复合材料的XRD图案。在高分辨TEM(HRTEM)成像模式下观察结晶的S纳米颗粒,如以下在图17d中所示。然而,我们不能排除在样品的较厚的区域中存在一些较大的S微晶的可能性(在热处理前的图7中看到的那些的残余物),其可仍有助于XRD图案。
图10说明的是计算的结果(黄色、红色和白色的球分别表示S、O和H原子,而其它的蓝色的为碳原子):首先,我们单独地计算图10(a)和成对地计算图10(b)在石墨烯上的两个S原子吸附作用。结合能分别为1.64和2.08eV,其可看作是S吸附作用的较低和较高的界限。随后我们研究所吸附的环氧基团对两个S原子的吸附作用的影响。发现S吸附作用可被环氧基团显著增强,其取决于官能团和S原子之间的距离。通常,对于吸附结构的结合能为1.82eV和2.03eV如图10(c)和图10(d)所示。需要注意的是S原子的位置与在图10(a)中的相同,其结合能为1.64eV。环氧的增强效果随着S和环氧基团之间距离的增大而降低。另外的计算显示羟基存在类似的趋势。图10(e)和图10(f)给出1.66和2.84eV的结合能,表面羟基的作用比环氧的更局部。意外的结果是S原子还可插入O-H键(g)中,具有4.05eV的大得多的结合能。然而,该动力因素(dynamic factor)可能妨碍其形成。
图11说明的是在Ar中热处理12小时后的GO-S纳米复合材料的SL-边XAS光谱。其证实了在复合材料中S的存在。软X-射线吸收光谱学(XAS)测量是在先进光源的Beamline7.0.1上进行的。对于SL-边XAS,单色器的能量分辨率设定为0.1eV。
图12说明的是(a)GO和(b)GO-S纳米复合材料的FTIR光谱。将这些材料在Ar中在155℃下热处理12小时。根据文献报道,1220cm-1表明的是C-OH伸缩振动,~1200cm-1可指定为C-O伸缩,而在GO-S纳米复合材料中在~1204.5cm-1的特性特征(而在GO中不存在)可表明在热处理后的所合成的GO-S纳米复合材料中存在C-S键。
图13说明的是(a)GO、(b)S元素和(c)GO-S的XPS光谱。将该GO和GO-S在Ar中在155℃下热处理12小时。在S的2p3/2区域中,GO-S纳米复合材料的XPS显示在S的2p3/2具有一个约164.0eV的结合能的峰,其具有比单质S稍宽的半最大值强度全宽度(FWHM)。在S的1s区域中,GO-S纳米复合材料的XPS显示在S的1s具有一个约228.0eV的结合的峰,其具有比单质S稍宽的半最大值强度全宽度(FWHM)。这些S的2p3/2和S的1s区域的化学位移可表明在所述GO-S纳米复合材料中在S和GO之间存在相互作用。
图17说明的是将所合成的GO-S纳米复合材料在Ar中在160℃下热处理12小时后的SEM(a,b)和TEM(c,d)图像。在高分辨TEM(HRTEM)图像(d)中,一些结晶的S纳米颗粒用箭头注明。
图18说明的是通过与以上说明书中不同的方法制备的GO-S纳米复合材料阴极的电化学评价。将所述GO-S纳米复合材料在Ar中在160℃下热处理12小时。在GO-S纳米复合材料中的S含量约为40重量%,且在所述阴极(包括炭黑和粘合剂)中的S含量约为28重量%。(a)在0.05mV s-1扫描速率下的GO-S纳米复合材料阴极的CV曲线;(b)在0.02C速率下的GO-S纳米复合材料阴极的恒流充电/放电分布图;(c)在0.02C下经2个循环的初始活化过程后,在0.1C的恒定电流速率下的GO-S纳米复合材料阴极的循环性能;(d)GO-S纳米复合材料阴极的可逆容量vs.电流密度(倍率性能)。所有电池在1.0-3.0V的电位区间(potential window)中循环。
需要注意的是将所述容量值归一化为初始放电容量。还需要注意的是第一放电容量曲线为异常形状(b)。我们还可看到在CV曲线(a)的第一循环中在较低电压区域下额外的还原电流。这些特性可能来自与所述GO相关的一些不可逆的电化学反应,因为这种异常初始放电仅显著地存在于具有较低S负载的样品中(即,较高的GO含量;我们在使用以上所描述的方法制备的样品中并未观察到这样的异常行为-图4、14和15)。不过,这些的结果显示GO-S(即使不同地制得)可以有助于改进Li/S电池的容量保持、库仑效率和倍率性能。
图19说明的是在0.02C下经2个循环的初始活化过程后,在0.1C的恒定速率下的纯GO阴极的循环性能。将GO在装配纽扣电池前在Ar中155℃下热处理12小时。结果表明该GO相对容量基本上没有贡献,因为在S电极的电位下,GO根本未嵌入有锂。

Claims (28)

1.物质组合物,所述组合物包括:
氧化石墨烯-硫(GO-S)纳米复合材料,其中,GO还含有多个官能团并且S与碳原子键合。
2.根据权利要求1所述的物质组合物,其中,所述多个官能团包括至少一个选自由环氧桥、羟基、苯酚基团和羰基组成的组的官能团。
3.一种电极,所述电极包括:
氧化石墨烯-硫(GO-S)纳米复合材料。
4.根据权利要求3所述的电极,其中,所述电极为阴极。
5.根据权利要求3所述的电极,其中,所述GO-S纳米复合材料还含有多个官能团并且S与碳原子键合。
6.根据权利要求5所述的电极,其中,所述多个官能团包括至少一个选自由环氧桥、羟基、苯酚基团和羰基组成的组的官能团。
7.一种电池,所述电池包括:
氧化石墨烯-硫(GO-S)纳米复合材料阴极;
隔膜;
阳极;和
电解质。
8.根据权利要求7所述的电池,其中,所述隔膜为多孔聚丙烯。
9.根据权利要求8所述的电池,其中,所述多孔聚丙烯为Celgard3501。
10.根据权利要求7所述的电池,其中,所述电解质为基于离子液体的电解质。
11.根据权利要求10所述的电池,其中,所述电解质为PYR14TFSI-LiTFSI-PEGDME。
12.根据权利要求7所述的电池,其中,所述电解质为LiTFSI-PEGDME。
13.根据权利要求7所述的电池,其中,所述氧化石墨烯-硫(GO-S)纳米复合材料阴极还包括炭黑和聚偏二氟乙烯(PVDF)。
14.根据权利要求7所述的电池,其中,所述氧化石墨烯-硫(GO-S)纳米复合材料阴极包括相应地70:20:10重量比的GO-S纳米复合材料、炭黑和聚偏二氟乙烯(PVDF)。
15.根据权利要求13所述的电池,其中,所述阴极还包括铝基材。
16.根据权利要求7所述的电池,其中,所述GO-S纳米复合材料还含有多个官能团并且S与碳原子键合。
17.根据权利要求16所述的电池,其中,所述多个官能团包括至少一个选自由环氧桥、羟基、苯酚基团和羰基组成的组的官能团。
18.一种制备氧化石墨烯-硫(GO-S)纳米复合材料的方法,所述方法包括:
提供氧化石墨烯(GO)分散体;
向所述GO分散体中加入多硫化钠(Na2Sx)溶液以形成共混的溶液;
向HCOOH溶液中滴定该GO/Na2Sx共混的溶液以形成沉淀物;以及
利用在指定的气体流速下的流动气体,在密封容器中以指定的时间和温度对该沉淀物进行热处理。
19.根据权利要求18所述的方法,其中,所述流动气体为氩气。
20.根据权利要求18所述的方法,其中,所述气体流速约为200cc S-1
21.根据权利要求18所述的方法,其中,所述温度约为155℃。
22.根据权利要求18所述的方法,其中,所述时间约为12小时。
23.根据权利要求18所述的方法,其中,在5重量%表面活性剂十六烷基三甲基溴化铵(CTAB)的存在下,将所述Na2Sx溶液加入到所述GO分散体中。
24.根据权利要求18所述的方法,其中,制备所述多硫化钠(Na2Sx)溶液:通过在已装有蒸馏水的烧瓶中加入Na2S,以形成Na2S溶液,随后在该Na2S溶液中悬浮单质S,其中,调节Na2S和单质S的比率,以确定在Na2Sx中x的值。
25.根据权利要求24所述的方法,其中,经所述热处理后约有50-90重量%的S掺入到所述GO中。
26.根据权利要求25所述的方法,其中,经所述热处理后约有60-70重量%的S掺入到所述GO中。
27.根据权利要求18所述的方法,其中,所述氧化石墨烯(GO)分散体通过从氧化石墨剥离GO而制得。
28.根据权利要求27所述的方法,其中,所述氧化石墨使用改进的Hummers方法制备。
CN201280054690.8A 2011-09-30 2012-09-28 在高性能锂/硫电池中作为硫固定剂的氧化石墨烯 Active CN104094457B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161541374P 2011-09-30 2011-09-30
US61/541,374 2011-09-30
PCT/US2012/058047 WO2013049663A1 (en) 2011-09-30 2012-09-28 Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

Publications (2)

Publication Number Publication Date
CN104094457A true CN104094457A (zh) 2014-10-08
CN104094457B CN104094457B (zh) 2017-06-23

Family

ID=47996462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280054690.8A Active CN104094457B (zh) 2011-09-30 2012-09-28 在高性能锂/硫电池中作为硫固定剂的氧化石墨烯

Country Status (6)

Country Link
US (3) US9673452B2 (zh)
EP (1) EP2761688B1 (zh)
KR (1) KR101947353B1 (zh)
CN (1) CN104094457B (zh)
IN (1) IN2014CN02561A (zh)
WO (1) WO2013049663A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362394A (zh) * 2014-10-23 2015-02-18 清华大学 一种锂硫二次电池
CN104600247A (zh) * 2014-12-31 2015-05-06 山东玉皇新能源科技有限公司 一种锂硫电池用硫-碳复合正极材料及其制备方法
CN104900846A (zh) * 2015-05-21 2015-09-09 张涉 一种多聚硫化物羟基化石墨烯纳米复合物-锂离子可充电电池的制备方法
CN107331845A (zh) * 2017-07-05 2017-11-07 陈建超 一种石墨烯电池正极复合材料
CN107591523A (zh) * 2017-08-22 2018-01-16 桂林电子科技大学 一种铁、镍掺杂活性炭‑硫材料及其制备方法和应用
CN108400290A (zh) * 2018-01-03 2018-08-14 浙江衡远新能源科技有限公司 一种高倍率锂硫电池正极材料制备方法

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169195A1 (en) * 2013-04-12 2014-10-16 Cornell University Carbon-sulfur based core-shell materials compositions, methods and applications
KR20160021848A (ko) * 2013-06-21 2016-02-26 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 전지 성능을 향상시키기 위해 전체론적 접근을 이용한 긴 수명의 높은 레이트 리튬/황 전지
GB2516932B (en) * 2013-08-07 2018-12-26 Nokia Technologies Oy An apparatus and associated methods for water detection
US9455447B2 (en) * 2013-09-26 2016-09-27 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of preventing insoluble solid lithium-polysulfide deposition
WO2015159313A1 (en) * 2014-04-18 2015-10-22 Sb Solar Rechargeable electrochemical metal ion cell and accumulator containing said cell
CN105304882A (zh) * 2014-07-25 2016-02-03 中国科学院物理研究所 锂硫电池正极材料的制备方法、锂硫电池正极材料和电池
EP3180289A1 (en) * 2014-08-12 2017-06-21 The Regents of the University of California Lithium sulfide-graphene oxide composite material for li/s cells
CN104201339B (zh) * 2014-09-18 2016-08-17 厦门大学 电池正极及其制备方法与在锂硫电池中的应用
CN104218226B (zh) * 2014-09-18 2017-01-18 厦门大学 一种电池正极及其制备方法与应用
DE102014221046A1 (de) 2014-10-16 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Lithium-Schwefel-Akkumulator
US11258059B2 (en) 2015-02-18 2022-02-22 Global Graphene Group, Inc. Pre-sulfurized cathode for alkali metal-sulfur secondary battery and production process
US10461321B2 (en) 2015-02-18 2019-10-29 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process
US9666899B2 (en) * 2015-03-30 2017-05-30 Nanotek Instruments, Inc. Active cathode layer for metal-sulfur secondary battery
US9666865B2 (en) * 2015-04-17 2017-05-30 Nanotek Instruments, Inc. Magnesium-sulfur secondary battery containing a metal polysulfide-preloaded active cathode layer
EP3096389A1 (en) * 2015-05-18 2016-11-23 Nokia Technologies Oy An apparatus and associated methods for electrical storage
US11749831B2 (en) 2015-09-02 2023-09-05 Sceye Sa Li—S battery with carbon coated separator
DE102015224335A1 (de) * 2015-12-04 2017-06-08 Robert Bosch Gmbh Feststoffelektrode mit elektrolytgetränkten Aktivmaterialpartikeln
US10026995B2 (en) 2016-01-15 2018-07-17 Nanotek Instruments, Inc. Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities
US11152639B2 (en) 2016-01-15 2021-10-19 Global Graphene Group, Inc. Alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
US10707535B2 (en) 2016-01-15 2020-07-07 Global Graphene Group, Inc. Production process for alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
US10147941B2 (en) * 2016-03-15 2018-12-04 The Hong Kong Polytechnic University Synthesis method for cathode material in lithium-sulfur battery
US10683419B2 (en) * 2016-03-23 2020-06-16 The Regents Of The University Of California Redox-active supramolecular polymer binders derived from perylene bisimide nanowires enable high-rate lithium-sulfur batteries
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
JP7012660B2 (ja) 2016-04-01 2022-02-14 ノームズ テクノロジーズ インコーポレイテッド リン含有修飾イオン性液体
US9878303B1 (en) 2016-08-04 2018-01-30 Nanotek Instruments, Inc. Integral 3D humic acid-carbon hybrid foam and devices containing same
US11254616B2 (en) 2016-08-04 2022-02-22 Global Graphene Group, Inc. Method of producing integral 3D humic acid-carbon hybrid foam
KR20180017796A (ko) * 2016-08-11 2018-02-21 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
US10731931B2 (en) 2016-08-18 2020-08-04 Global Graphene Group, Inc. Highly oriented humic acid films and highly conducting graphitic films derived therefrom and devices containing same
US10597389B2 (en) 2016-08-22 2020-03-24 Global Graphene Group, Inc. Humic acid-bonded metal foil film current collector and battery and supercapacitor containing same
US10593932B2 (en) 2016-09-20 2020-03-17 Global Graphene Group, Inc. Process for metal-sulfur battery cathode containing humic acid-derived conductive foam
US10647595B2 (en) 2016-08-30 2020-05-12 Global Graphene Group, Inc. Humic acid-derived conductive foams and devices
US10003078B2 (en) 2016-09-20 2018-06-19 Nanotek Instruments, Inc. Metal-sulfur battery cathode containing humic acid-derived conductive foam impregnated with sulfur or sulfide
KR101993371B1 (ko) 2017-02-08 2019-06-26 한국과학기술원 황 코팅된 폴리도파민 개질 그래핀 산화물 복합체, 이를 이용한 리튬-황 이차전지, 및 이의 제조방법
US10651464B2 (en) 2017-02-13 2020-05-12 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a nano sulfur-loaded cathode and manufacturing method
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10211455B2 (en) 2017-02-20 2019-02-19 Nanotek Instruments, Inc. Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing
US10084182B2 (en) 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US10411264B2 (en) 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing
US10985364B2 (en) 2017-02-28 2021-04-20 Korea Advanced Institute Of Science And Technology Pliable carbonaceous pocket composite structure, method for preparing the same, electrode, including the same, and energy storage device including the electrode
KR102126250B1 (ko) 2017-03-07 2020-06-24 주식회사 엘지화학 탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10770721B2 (en) 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10243217B2 (en) 2017-05-24 2019-03-26 Nanotek Instruments, Inc. Alkali metal battery having a deformable quasi-solid electrode material
US10170789B2 (en) 2017-05-31 2019-01-01 Nanotek Instruments, Inc. Method of producing a shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US10535892B2 (en) 2017-05-30 2020-01-14 Global Graphene Group, Inc. Shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US11394058B2 (en) 2017-06-02 2022-07-19 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery
US11335946B2 (en) 2017-06-02 2022-05-17 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery
US10454141B2 (en) 2017-06-30 2019-10-22 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
US10651512B2 (en) 2017-06-30 2020-05-12 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
EP4106070A1 (en) 2017-07-17 2022-12-21 Nohms Technologies, Inc. Phosphorus-containing electrolytes
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10700357B2 (en) 2017-08-14 2020-06-30 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode material and manufacturing method
US10873083B2 (en) 2017-11-30 2020-12-22 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries
US10637043B2 (en) 2017-11-30 2020-04-28 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries containing same
US11239466B2 (en) * 2018-01-09 2022-02-01 Saudi Arabian Oil Company Nanocomposite cathode materials for use in batteries
US10424782B2 (en) 2018-01-09 2019-09-24 Saudi Arabian Oil Company Nanocomposite electrode materials for use in high temperature and high pressure rechargeable batteries
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10985365B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing two anode-protecting layers
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10985376B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing an electrode-protecting layer
US10727531B2 (en) 2018-06-21 2020-07-28 Global Graphene Group, Inc. Lithium metal secondary battery featuring an anode-protecting layer
US10734646B2 (en) 2018-06-21 2020-08-04 Global Graphene Group, Inc. Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10784509B2 (en) 2018-06-21 2020-09-22 Global Graphene Group, Inc. Lithium metal secondary battery containing two anode-protecting layers
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US10770748B2 (en) 2018-06-25 2020-09-08 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method for improving cycle-life
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
KR102246154B1 (ko) * 2018-08-24 2021-04-29 한국과학기술원 유연성 포켓 복합 구조체, 이의 제조방법, 이를 포함하는 전극 및 상기 전극을 포함하는 에너지 저장 디바이스
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
KR102293892B1 (ko) * 2018-09-19 2021-08-24 주식회사 엘지화학 황-탄소 복합체의 제조방법, 그에 의해 제조된 황-탄소 복합체, 상기 황-탄소 복합체를 포함하는 양극, 및 상기 양극을 포함하는 리튬 이차 전지
WO2020060084A1 (ko) 2018-09-20 2020-03-26 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200033736A (ko) 2018-09-20 2020-03-30 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
MX2021005434A (es) 2018-11-12 2021-09-08 Univ Monash Metodo para producir catodos de azufre gruesos para baterias de li-s.
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
CN114342026A (zh) 2019-07-09 2022-04-12 沙特阿拉伯石油公司 制造用于高温电化学储能装置的纳米复合材料的方法
US11605817B2 (en) 2019-09-24 2023-03-14 William Marsh Rice University Sulfurized carbon cathodes
CN110854340B (zh) * 2019-11-12 2021-12-21 常州大学 一种具有自修复功能隔膜涂层材料的制备方法
KR20220019408A (ko) * 2020-08-10 2022-02-17 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지
EP4266402A1 (en) * 2021-03-01 2023-10-25 GS Yuasa International Ltd. Non-aqueous electrolyte power storage element and method for manufacturing same
KR102477618B1 (ko) * 2022-04-07 2022-12-14 주식회사 일진그라텍 친환경 라미네이트용 무용제 이액형 접착제 조성물을 이용한 포장필름의 제조방법 및 이로부터 제조되는 포장필름

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074918A1 (en) * 2008-12-23 2010-07-01 The Trustees Of The University Of Pennsylvania High yield preparation of macroscopic graphene oxide membranes
US20100317790A1 (en) * 2009-03-03 2010-12-16 Sung-Yeon Jang Graphene composite nanofiber and preparation method thereof
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2762430A1 (en) * 2009-05-22 2011-02-10 William Marsh Rice University Highly oxidized graphene oxide and methods for production thereof
US20110219607A1 (en) 2010-03-12 2011-09-15 Nanjundaswamy Kirakodu S Cathode active materials and method of making thereof
KR20130121001A (ko) * 2010-05-28 2013-11-05 바스프 에스이 리튬/황 배터리에서 팽창 흑연의 용도
KR20120033722A (ko) * 2010-09-30 2012-04-09 한국전자통신연구원 그래핀 산화물 메모리 소자 및 그 제조 방법
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052813A1 (en) * 2008-01-03 2011-03-03 Peter Ho Functionalised graphene oxide
WO2010074918A1 (en) * 2008-12-23 2010-07-01 The Trustees Of The University Of Pennsylvania High yield preparation of macroscopic graphene oxide membranes
US20100317790A1 (en) * 2009-03-03 2010-12-16 Sung-Yeon Jang Graphene composite nanofiber and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAILIANG WANG等: "Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium_Sulfur Battery Cathode Material with High Capacity and Cycling Stability", 《NANO LETT》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362394A (zh) * 2014-10-23 2015-02-18 清华大学 一种锂硫二次电池
CN104600247A (zh) * 2014-12-31 2015-05-06 山东玉皇新能源科技有限公司 一种锂硫电池用硫-碳复合正极材料及其制备方法
CN104600247B (zh) * 2014-12-31 2017-05-03 山东玉皇新能源科技有限公司 一种锂硫电池用硫‑碳复合正极材料及其制备方法
CN104900846A (zh) * 2015-05-21 2015-09-09 张涉 一种多聚硫化物羟基化石墨烯纳米复合物-锂离子可充电电池的制备方法
CN104900846B (zh) * 2015-05-21 2019-04-09 张涉 一种锂-硫可充电电池的制备方法
CN107331845A (zh) * 2017-07-05 2017-11-07 陈建超 一种石墨烯电池正极复合材料
CN107591523A (zh) * 2017-08-22 2018-01-16 桂林电子科技大学 一种铁、镍掺杂活性炭‑硫材料及其制备方法和应用
CN108400290A (zh) * 2018-01-03 2018-08-14 浙江衡远新能源科技有限公司 一种高倍率锂硫电池正极材料制备方法
CN108400290B (zh) * 2018-01-03 2021-09-17 浙江衡远新能源科技有限公司 一种高倍率锂硫电池正极材料制备方法

Also Published As

Publication number Publication date
US20140234702A1 (en) 2014-08-21
IN2014CN02561A (zh) 2015-08-07
US10044031B2 (en) 2018-08-07
US20180138504A1 (en) 2018-05-17
EP2761688A4 (en) 2015-06-17
WO2013049663A1 (en) 2013-04-04
US9853284B2 (en) 2017-12-26
EP2761688A1 (en) 2014-08-06
KR101947353B1 (ko) 2019-02-12
CN104094457B (zh) 2017-06-23
US20170294646A1 (en) 2017-10-12
US9673452B2 (en) 2017-06-06
KR20140082994A (ko) 2014-07-03
EP2761688B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US10044031B2 (en) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
Ding et al. Oxygen-deficient β-MnO2@ graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries
Verma et al. Progress in rechargeable aqueous zinc‐and aluminum‐ion battery electrodes: challenges and outlook
Meng et al. Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery
Hwang et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes
Li et al. Li2TiO3 and Li2ZrO3 co-modification LiNi0. 8Co0. 1Mn0. 1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries
Seh et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes
Wang et al. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
Wang et al. Improved cyclability of lithium-ion battery anode using encapsulated V 2 O 3 nanostructures in well-graphitized carbon fiber
Zhai et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@ mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries
Chong et al. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries
Gnedenkov et al. Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage
Bai et al. Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries
Jiang et al. New iron-based fluoride cathode material synthesized by non-aqueous ionic liquid for rechargeable sodium ion batteries
Ma et al. Binary metal co-substituted P2-type Na0. 67Mn0. 7Cu0. 15Ni0. 15O2 microspheres as robust cathode for high-power sodium ion battery
Peng et al. Electron density modulation of GaN nanowires by manganese incorporation for highly high-rate Lithium-ion storage
Xiao et al. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery
Naresh et al. Dendrite-free Zn anodes enabled by a hierarchical zincophilic TiO2 layer for rechargeable aqueous zinc-ion batteries
Wang et al. Manipulating oxygen vacancies by K+ doping and controlling Mn2+ deposition to boost energy storage in β-MnO2
Kim et al. Nano Si embedded SiOx-Nb2O5-C composite as reversible lithium storage materials
Chen et al. Solid composite electrolyte based on oxygen vacancy effect of Lix (CoCrFeMnNi) O4-y high entropy oxides
Yu et al. Improving the room/low-temperature performance of VS4 anode by regulating the sulfur vacancy and microstructure
Zhang et al. Co-hydrothermal synthesis of LiMn23/24Mg1/24PO4· LiAlO2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries
Fang et al. Quasi-two-dimensional bismuth oxychalcogenide nanoflakes as novel anode for potassium-ion batteries
Shin et al. Facile synthesis and electrochemical performance of carbon-coated V2O5 cathode materials using carboxylic acids as carbon source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant