CN104037066B - 定义多晶硅生长方向的方法 - Google Patents

定义多晶硅生长方向的方法 Download PDF

Info

Publication number
CN104037066B
CN104037066B CN201410294517.6A CN201410294517A CN104037066B CN 104037066 B CN104037066 B CN 104037066B CN 201410294517 A CN201410294517 A CN 201410294517A CN 104037066 B CN104037066 B CN 104037066B
Authority
CN
China
Prior art keywords
array
polycrystalline silicon
graphene layer
growth direction
cushion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410294517.6A
Other languages
English (en)
Other versions
CN104037066A (zh
Inventor
余威
王烨文
李泳锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to CN201410294517.6A priority Critical patent/CN104037066B/zh
Priority to PCT/CN2014/082132 priority patent/WO2015196521A1/zh
Priority to US14/381,933 priority patent/US20160240377A1/en
Publication of CN104037066A publication Critical patent/CN104037066A/zh
Application granted granted Critical
Publication of CN104037066B publication Critical patent/CN104037066B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种定义多晶硅生长方向的方法,包括:步骤1、提供一玻璃基板(1);步骤2、在玻璃基板(1)上形成一缓冲层(3);步骤3、在缓冲层(3)上形成一金属膜层(5);步骤4、对金属膜层(5)进行蚀刻,形成金属膜阵列(51);步骤5、在缓冲层(3)上覆盖一层高纯度的石英掩膜(7);步骤6、在高纯度石英掩膜(7)与金属膜阵列(51)上形成一石墨烯层(9);步骤7、对石墨烯层(9)进行蚀刻,形成石墨烯层阵列(91);步骤8、在缓冲层(3)上生长非晶硅薄膜(2);步骤9、对非晶硅薄膜(2)进行高温去氢处理;步骤10、对非晶硅薄膜(2)进行ELA准分子激光退火处理;步骤11、熔化后的非晶硅进行重结晶。

Description

定义多晶硅生长方向的方法
技术领域
本发明涉及显示技术领域,尤其涉及一种定义多晶硅生长方向的方法。
背景技术
随着平板显示的发展,高分辨率,低能耗的面板需求不断被提出。低温多晶硅(LowTemperature Poly-Silicon,LTPS)由于具有较高的电子迁移率,而在液晶显示器(LiquidCrystal Display,LCD)与有机发光二极管显示器Organic Light Emitting Diode,OLED)技术中得到了业界的重视,被视为实现低成本全彩平板显示的重要材料。对平板显示而言,采用低温多晶硅材料具有高分辨率、反应速度快、高亮度、高开口率、低能耗等优点,而且低温多晶硅可在低温下制作,并可用于制作C-MOS(Complementary Metal OxideSemiconductor,互补金属氧化物半导体)电路,因而被广泛研究,用以达到面板高分辨率,低能耗的需求。
低温多晶硅是多晶硅技术的一个分支。多晶硅的分子结构在一颗晶粒中的排列状态是整齐而有方向性的,因此电子迁移率比排列杂乱的非晶硅(a-Si)快了200-300倍,极大的提高了平板显示的反应速度。在多晶硅技术发展的初期,为了将玻璃基板从非晶硅结构转变为多晶硅结构,就必须借助一道激光退火(Laser Anneal)的高温氧化工序,制得高温多晶硅(High Temperature Poly-Silicon,HTPS),此时玻璃基板的温度将超过摄氏1000度。与传统的高温多晶硅相比,低温多晶硅虽然也需要激光照射,但它采用的是准分子激光作为热源,激光经过透射系统后,会产生能量均匀分布的激光束并被投射于非晶硅结构的玻璃基板上,当非晶硅结构的玻璃基板吸收准分子激光的能量后,就会转变成为多晶硅结构。由于整个处理过程基本是在摄氏600度以下完成,一般普通的玻璃基板均可承受,这就大大降低了制造成本。而除了制造成本降低外,低温多晶硅的优点还体现在:电子迁移速率更快、稳定性更高。
目前制作低温多晶硅的方法主要有:固相结晶(Solid Phase Crystallization,SPC)、金属诱导结晶(Metal-Induced Crystallization,MIC)、与准分子激光退火(ExcimerLaser Annealing,ELA)等多种制作方法。,其中,ELA是目前使用最为广泛、相对成熟的制作低温多晶硅的方法。该方法的主要过程为:首先在玻璃基板上形成缓冲层,然后在缓冲层上形成非晶硅层,高温去氢,再利用ELA激光束扫描非晶硅进行准分子激光退火,非晶硅吸收激光的能量,在极短的时间内达到高温并变成熔融状态,最后经冷却重结晶形成多晶硅。
低温多晶硅的晶粒尺寸(Grain size)对其电学性能有重要影响。在ELA制程中,非晶硅受到高温后变成完全熔融状态,然后经重结晶形成多晶硅。在非晶硅重结晶的过程中,会按照低能量向高能量方向、低温向高温方向结晶。现有技术中,非晶硅层直接形成于缓冲层上,在准分子激光退火的过程中,非晶硅层各个区域的受热情况趋于一致,不存在温度梯度,所以重结晶的起点与晶粒的生长方向是凌乱的,导致重结晶后的低温多晶硅晶粒尺寸偏小,晶粒间晶界偏多,影响多晶硅的电子迁移率,进而影响平板显示的反应速度。
发明内容
本发明的目的在于提供一种定义多晶硅生长方向的方法,能够定义、控制多晶硅形成时的生长方向,增大多晶硅的晶粒尺寸,从而进一步提高多晶硅的电子迁移率,提高平板显示的反应速度。
为实现上述目的,本发明供一种定义多晶硅生长方向的方法,包括以下步骤:
步骤1、提供一玻璃基板,并将该玻璃基板清洗干净;
步骤2、在玻璃基板上形成一缓冲层;
步骤3、在缓冲层上形成一金属膜层;
步骤4、使用酸性液体对金属膜层进行蚀刻,形成金属膜阵列;
步骤5、在缓冲层上除金属膜阵列以外的区域覆盖一层高纯度的石英掩膜,露出金属膜阵列;
步骤6、在高纯度石英掩膜与金属膜阵列上形成一石墨烯层;
步骤7、对石墨烯层进行蚀刻,形成与步骤4中金属膜阵列重合的石墨烯层阵列;
步骤8、在具有有金属膜阵列和石墨烯层阵列的缓冲层上生长非晶硅薄膜;
步骤9、对非晶硅薄膜进行高温去氢处理;
步骤10、对非晶硅薄膜进行ELA准分子激光退火处理,非晶硅薄膜吸收激光的能量后温度升高直至熔融状态;
步骤11、熔化后的非晶硅进行重结晶,以金属膜阵列与石墨烯层阵列构成的低温区为起点向四周高温区域生长变大形成多晶硅。
所述步骤2中的缓冲层由两部分组成,靠近玻璃基板的部分为非晶氮化硅SiNx,相对远离玻璃基板的部分为硅氧化物SiOx,即所述SiOx位于SiNx上。
所述步骤3中使用PVD物理气相沉积法镀金属形成金属膜层。
所述步骤3中的金属膜层的厚度为10-500nm。
所述金属膜层的材料为铜Cu、镍Ni、金Au、铂金Pt、铁Fe、钼Mo,铝Al中的一种或多种,纯度≥99.9%。
所述步骤6中,石墨烯层的厚度为0.35-20nm。
所述步骤6中,采用低温CVD化学气相沉积法,以烃类为碳源镀石墨烯,形成石墨烯层。
所述CVD化学气相沉积法的工艺条件为:压强5Pa-5kPa,温度400-680℃。
所述步骤7中使用激光蚀刻或干法蚀刻对石墨烯层进行蚀刻。
所述金属膜阵列与石墨烯层阵列的位置设置在沟道附近。
本发明的有益效果:本发明的一种定义多晶硅生长方向的方法,在ELA过程中,设置金属膜阵列与石墨烯层阵列,由于金属膜与石墨烯层具有优良的导热作用,使得金属膜阵列与石墨烯层阵列所在的区域温度较低,从而非晶硅重结晶时各个区域之间存在温度梯度,非晶硅以金属膜阵列与石墨烯层阵列构成的低温区为起点向四周高温区域生长变大形成多晶硅。该方法可操作性强,能够定义、控制多晶硅形成时的生长方向,增大多晶硅的晶粒尺寸,并能进一步提高多晶硅的电子迁移率,提高平板显示的反应速度。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明定义多晶硅生长方向的方法的流程图;
图2为本发明定义多晶硅生长方向的方法的步骤3的示意图;
图3为本发明定义多晶硅生长方向的方法的步骤4的示意图;
图4为本发明定义多晶硅生长方向的方法的步骤5的示意图;
图5为本发明定义多晶硅生长方向的方法的步骤6的示意图;
图6为本发明定义多晶硅生长方向的方法的步骤7的示意图;
图7为本发明定义多晶硅生长方向的方法的步骤10的示意图;
图8为本发明定义多晶硅生长方向的方法的步骤11的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1至图8,本发明提供一种定义多晶硅生长方向的方法,包括以下步骤:
步骤1、提供一玻璃基板1,并将该玻璃基板1清洗干净。
步骤2、在玻璃基板1上形成一缓冲层3。
具体的,所述缓冲层3由两部分组成,靠近玻璃基板1的部分为非晶氮化硅SiNx,相对远离玻璃基板1的部分为硅氧化物SiOx,即所述SiOx位于SiNx上。
步骤3、如图2所示,在缓冲层3上形成一金属膜层5。
具体的,在该步骤3中,以纯度≥99.9%的铜Cu、镍Ni、金Au、铂金Pt、铁Fe、钼Mo,铝Al中的一种或多种金属为材料,优选的,以铜Cu为材料,使用PVD物理气相沉积法镀金属以形成金属膜层5,所述金属膜层5的厚度为10-500nm。
步骤4、如图3所示,使用酸性液体对金属膜层5进行蚀刻,形成金属膜阵列51。
优选的,使用铜酸对铜膜层5进行蚀刻。
步骤5、如图4所示,在缓冲层3上除金属膜阵列51以外的区域覆盖一层高纯度的石英掩膜7,露出金属膜阵列51。
步骤6、如图5所示,在高纯度石英掩膜7与金属膜阵列51上形成一石墨烯层9。
具体的,在该步骤6中,以烃类为碳源,采用低温CVD化学气相沉积法在压强5Pa-5kPa,温度400-680℃的工艺条件下来镀石墨烯,以形成石墨烯层9。石墨烯是一种由碳原子构成的单层片状结构的新材料,具有优良的导热性能,导热系数高达5300W/m·K。所述石墨烯层9的厚度为0.35-20nm。
步骤7、如图6所示,对石墨烯层9进行蚀刻,形成与步骤4中金属膜阵列51重合的石墨烯层阵列91。
具体的,在该步骤7中,使用激光蚀刻或干法蚀刻对石墨烯层9进行蚀刻,同时蚀刻掉覆盖在缓冲层3上的除金属膜阵列51以外区域的石英掩膜7,以露出所述缓冲层3。
步骤8、在具有有金属膜阵列51和石墨烯层阵列91的缓冲层3上生长非晶硅薄膜2。
步骤9、对非晶硅薄膜2进行高温去氢处理。
步骤10、如图7所示,对非晶硅薄膜2进行ELA准分子激光退火处理,非晶硅薄膜2吸收激光的能量后温度升高直至熔融状态。
具体的,在该步骤10中,高功率的激光束投射在非晶硅薄膜2的表面,在极短的时间内使得非晶硅薄膜2达到高温而变成熔融状态。
步骤11、如图8所示,熔化后的非晶硅进行重结晶,以金属膜阵列51与石墨烯层阵列91构成的低温区为起点向四周高温区域生长变大形成多晶硅。
由于金属膜与石墨烯层具有优良的导热作用,金属膜阵列51与石墨烯层阵列91所在的区域相对于金属膜阵列51与石墨烯层阵列91的区域散热快、温度较低,从而非晶硅薄膜2重结晶时各个区域之间存在温度梯度,会按照低能量向高能量方向、低温向高温方向结晶,且重接晶后的低温多晶硅晶粒尺寸得以增大。
值得一提的是,所述金属膜阵列51与石墨烯层阵列91的位置设置在沟道附近。沟道是指由于外加电场引起的沿长度方向的导电层,将所述金属膜阵列51与石墨烯层阵列91放置在其附近,能够使其尽量被一颗晶粒覆盖,有助于提高低温多晶硅的电子迁移率。
综上所述,本发明的定义多晶硅生长方向的方法,在ELA过程中,设置金属膜阵列与石墨烯层阵列,由于金属膜与石墨烯层具有优良的导热作用,使得金属膜阵列与石墨烯层阵列所在的区域温度较低,从而非晶硅重结晶时各个区域之间存在温度梯度,非晶硅以金属膜阵列与石墨烯层阵列构成的低温区为起点向四周高温区域生长变大形成多晶硅。该方法可操作性强,能够定义、控制多晶硅形成时的生长方向,增大多晶硅的晶粒尺寸,并能进一步提高多晶硅的电子迁移率,提高平板显示的反应速度。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (9)

1.一种定义多晶硅生长方向的方法,其特征在于,包括以下步骤:
步骤1、提供一玻璃基板(1),并将该玻璃基板(1)清洗干净;
步骤2、在玻璃基板(1)上形成一缓冲层(3);
步骤3、在缓冲层(3)上形成一金属膜层(5);
步骤4、使用酸性液体对金属膜层(5)进行蚀刻,形成金属膜阵列(51);
步骤5、在缓冲层(3)上除金属膜阵列(51)以外的区域覆盖一层高纯度的石英掩膜(7),露出金属膜阵列(51);
步骤6、在高纯度石英掩膜(7)与金属膜阵列(51)上形成一完全覆盖所述石英掩膜(7)和金属膜阵列(51)的石墨烯层(9);
步骤7、对石墨烯层(9)进行蚀刻,同时蚀刻掉覆盖在所述缓冲层(3)上的石英掩膜(7),形成与步骤4中金属膜阵列(51)重合的石墨烯层阵列(91);
步骤8、在具有有金属膜阵列(51)和石墨烯层阵列(91)的缓冲层(3)上生长非晶硅薄膜(2);
步骤9、对非晶硅薄膜(2)进行高温去氢处理;
步骤10、对非晶硅薄膜(2)进行ELA准分子激光退火处理,非晶硅薄膜(2)吸收激光的能量后温度升高直至熔融状态;
步骤11、熔化后的非晶硅进行重结晶,以金属膜阵列(51)与石墨烯层阵列(91)构成的低温区为起点向四周高温区域生长变大形成多晶硅;
所述金属膜阵列(51)与石墨烯层阵列(91)的位置设置在沟道附近。
2.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤2中的缓冲层(3)由两部分组成,靠近玻璃基板(1)的部分为非晶氮化硅SiNx,相对远离玻璃基板(1)的部分为硅氧化物SiOx,即所述SiOx位于SiNx上。
3.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤3中使用物理气相沉积法镀金属形成金属膜层(5)。
4.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤3中的金属膜层(5)的厚度为10-500nm。
5.如权利要求4所述的定义多晶硅生长方向的方法,其特征在于,所述金属膜层(5)的材料为铜Cu、镍Ni、金Au、铂金Pt、铁Fe、钼Mo,铝Al中的一种或多种,纯度≥99.9%。
6.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤6中,石墨烯层(9)的厚度为0.35-20nm。
7.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤6中,采用低温化学气相沉积法,以烃类为碳源镀石墨烯,形成石墨烯层(9)。
8.如权利要求7所述的定义多晶硅生长方向的方法,其特征在于,所述化学气相沉积法的工艺条件为:压强5Pa-5kPa,温度400-680℃。
9.如权利要求1所述的定义多晶硅生长方向的方法,其特征在于,所述步骤7中使用激光蚀刻或干法蚀刻对石墨烯层(9)进行蚀刻。
CN201410294517.6A 2014-06-25 2014-06-25 定义多晶硅生长方向的方法 Expired - Fee Related CN104037066B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410294517.6A CN104037066B (zh) 2014-06-25 2014-06-25 定义多晶硅生长方向的方法
PCT/CN2014/082132 WO2015196521A1 (zh) 2014-06-25 2014-07-14 定义多晶硅生长方向的方法
US14/381,933 US20160240377A1 (en) 2014-06-25 2014-07-14 Method of defining poly-silicon growth direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410294517.6A CN104037066B (zh) 2014-06-25 2014-06-25 定义多晶硅生长方向的方法

Publications (2)

Publication Number Publication Date
CN104037066A CN104037066A (zh) 2014-09-10
CN104037066B true CN104037066B (zh) 2017-05-31

Family

ID=51467795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410294517.6A Expired - Fee Related CN104037066B (zh) 2014-06-25 2014-06-25 定义多晶硅生长方向的方法

Country Status (3)

Country Link
US (1) US20160240377A1 (zh)
CN (1) CN104037066B (zh)
WO (1) WO2015196521A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966663B (zh) * 2015-05-22 2020-01-14 信利(惠州)智能显示有限公司 低温多晶硅薄膜及其制备方法、以及薄膜晶体管
CN105097667B (zh) * 2015-06-24 2018-03-30 深圳市华星光电技术有限公司 低温多晶硅tft基板结构的制作方法及低温多晶硅tft基板结构
CN105088336B (zh) * 2015-07-24 2018-05-18 深圳市华星光电技术有限公司 一种多晶硅制备装置及方法
KR102492733B1 (ko) 2017-09-29 2023-01-27 삼성디스플레이 주식회사 구리 플라즈마 식각 방법 및 디스플레이 패널 제조 방법
CN114300551A (zh) * 2021-12-03 2022-04-08 中国电子科技集团公司第四十八研究所 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856173A (zh) * 2012-09-29 2013-01-02 京东方科技集团股份有限公司 一种多晶硅薄膜及其制备方法、阵列基板、显示装置
CN103730336A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 定义多晶硅生长方向的方法
CN103745829A (zh) * 2013-12-30 2014-04-23 深圳市华星光电技术有限公司 石墨烯复合电极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569350B (en) * 2002-10-31 2004-01-01 Au Optronics Corp Method for fabricating a polysilicon layer
TWI243482B (en) * 2004-05-04 2005-11-11 Toppoly Optoelectronics Corp Poly-silicon annealing structure and method for application of highly efficient thin film transistor
TWI311213B (en) * 2004-12-24 2009-06-21 Au Optronics Corp Crystallizing method for forming poly-si films and thin film transistors using same
CN103606535B (zh) * 2013-11-26 2016-01-06 深圳市华星光电技术有限公司 软性显示器组件的制作方法及其制作的软性显示器组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856173A (zh) * 2012-09-29 2013-01-02 京东方科技集团股份有限公司 一种多晶硅薄膜及其制备方法、阵列基板、显示装置
CN103730336A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 定义多晶硅生长方向的方法
CN103745829A (zh) * 2013-12-30 2014-04-23 深圳市华星光电技术有限公司 石墨烯复合电极材料的制备方法

Also Published As

Publication number Publication date
WO2015196521A1 (zh) 2015-12-30
US20160240377A1 (en) 2016-08-18
CN104037066A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
CN104037066B (zh) 定义多晶硅生长方向的方法
US7192818B1 (en) Polysilicon thin film fabrication method
CN102945789B (zh) 低温多晶硅薄膜制备方法、薄膜晶体管及其制备方法
CN102969250B (zh) Ltps薄膜及薄膜晶体管的制备方法,阵列基板及显示装置
CN105070724A (zh) Tft基板的制作方法及制得的tft基板
JP2010206201A (ja) 多結晶シリコン層の製造方法
JP2009528696A (ja) 非晶質シリコンのジュール加熱結晶化方法(MethodforCrystallizationofAmorphousSiliconbyJouleHeating)
CN105374882A (zh) 一种低温多晶硅薄膜晶体管及其制备方法
WO2017031937A1 (zh) 氧化物半导体薄膜的制备方法和薄膜晶体管的制备方法
CN103730336B (zh) 定义多晶硅生长方向的方法
JP5309387B2 (ja) 半導体層とこの半導体層を用いた半導体装置および表示装置
CN104465319B (zh) 低温多晶硅的制作方法及tft基板的制作方法
CN104078621B (zh) 低温多晶硅薄膜晶体管、其制备方法及阵列基板与显示装置
JP2007184562A (ja) 多結晶シリコンフィルムの製造方法及びそれを適用した薄膜トランジスタの製造方法
CN106784412B (zh) 柔性有机发光二极管显示器及其制作方法
CN104966663B (zh) 低温多晶硅薄膜及其制备方法、以及薄膜晶体管
CN106128940B (zh) 一种低温多晶硅薄膜的制备方法
JP2011109075A (ja) 多結晶シリコン層の製造方法、薄膜トランジスタ、それを含む有機電界発光表示装置及びその製造方法
CN103745916A (zh) 定义多晶硅生长方向的方法
CN106847675A (zh) 低温多晶硅薄膜及其制备方法、薄膜晶体管和显示面板
CN107887275B (zh) 低温多晶硅薄膜及晶体管的制造方法
JP2013161963A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、及び表示装置
CN105514035A (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
CN107833835B (zh) 低温多晶硅薄膜及晶体管的制造方法
CN107611140A (zh) 低温多晶硅阵列基板及制作方法、显示面板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Yu Wei

Inventor after: Wang Yewen

Inventor after: Li Yongrui

Inventor before: Yu Wei

Inventor before: Wang Yewen

Inventor before: Li Guanzheng

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: YU WEI WANG YEWEN LI GUANZHENG TO: YU WEI WANG YEWEN LI YONGRUI

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170531