CN103990392B - 一种荷电聚酰胺复合纳滤膜及其制备方法 - Google Patents

一种荷电聚酰胺复合纳滤膜及其制备方法 Download PDF

Info

Publication number
CN103990392B
CN103990392B CN201410212712.XA CN201410212712A CN103990392B CN 103990392 B CN103990392 B CN 103990392B CN 201410212712 A CN201410212712 A CN 201410212712A CN 103990392 B CN103990392 B CN 103990392B
Authority
CN
China
Prior art keywords
charged
nanofiltration membrane
polyamide composite
modified
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410212712.XA
Other languages
English (en)
Other versions
CN103990392A (zh
Inventor
薛立新
朱丽静
刘富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201410212712.XA priority Critical patent/CN103990392B/zh
Publication of CN103990392A publication Critical patent/CN103990392A/zh
Application granted granted Critical
Publication of CN103990392B publication Critical patent/CN103990392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开一种荷电聚酰胺复合纳滤膜及其制备方法。该方法通过活性/可控自由基聚合,将荷电聚合物接枝在二氧化硅纳米粒子表面,制备得到荷电聚合物修饰的二氧化硅纳米粒子;将荷电聚合物修饰的二氧化硅纳米粒子、胺类单体分散在水中,配制成水相胺类单体溶液;将酰氯单体溶解在有机溶剂中,配制成油相酰氯单体溶液;将聚合物超滤膜浸入到水相胺类单体溶液中,再浸入到油相酰氯单体溶液中,得到分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。本发明的制膜方法简单、易行,生产成本地,改性效果显著、稳定、持久,具有良好的工业化应用前景。

Description

一种荷电聚酰胺复合纳滤膜及其制备方法
技术领域
本发明属于过滤膜分离技术领域,涉及一种荷电聚酰胺复合纳滤膜及其制备方法,具体是分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜及其制备方法。
背景技术
膜分离技术是迅速崛起的一门新型高效的分离技术,已经成为解决水资源、能源、环境等领域重大问题的共性技术之一。纳滤是已经工业化的膜分离技术之一,是上世纪80年代后发展起来的一种介于反渗透和超滤之间的压力驱动的膜分离技术,在分离过程中,无相变,无化学反应,不破坏生物活性等优点,因而,广泛的用于废水处理、海水淡化、饮用水净化、染料的浓缩和脱盐等领域。
纳滤膜是纳滤分离技术的核心,纳滤膜的结构、材料与性能直接决定了纳滤分离技术的优劣。最常见的纳滤膜是由支撑层和分离层组成的复合纳滤膜,其优点在于:可以分别选用适当的分离层和支撑层使之在选择性、渗透性、化学和热稳定性等方面的性能得到优化。绝大多数复合纳滤膜是由聚合物膜材料制备的聚合物纳滤膜,聚合物纳滤膜具有原料来源广泛、易加工、成本低、柔韧性好等优点。尽管如此,聚合物纳滤膜仍然存在不耐高温、不耐有机溶剂和化学腐蚀、寿命较短等缺点。并且,大多数聚合物膜材料疏水性较强,蛋白质、细菌和腐殖酸等物质易通过疏水相互作用吸附/沉积在聚合物膜表面,造成膜污染,渗透通量、破坏膜的选择性、缩短膜的使用寿命。因此,常常需要对聚合物纳滤膜进行改性,提高其亲水性和抗污染性能。与聚合物纳滤膜相对应的是无机纳滤膜,无机纳滤膜一般有很好的化学和热稳定性,可以在任意的pH值和任何的有机溶下使用、便于清洗、使用寿命长,但是,无机纳滤膜性脆、易碎、生产过程复杂、成本高,只有氧化锆及氧化钛等少数几个品种。将无机纳米材料引入到复合纳滤膜的分离层中制备新型复合纳滤膜(J.Membr.Sci.,428(2013):341-348;Polymer,53(2012):5295-5303;J.Membr.Sci.,423-424(2012):238-246;J.Membr.Sci.,428(2013)425-433),既具有聚合物膜的柔韧性、易加工性等优点,又表面出无机纳米材料的耐溶剂、高强度、亲水性、抗污染和抗菌性等优势,受到了日益广泛的关注,正逐步发展成为复合纳滤膜领域的研究热点。
然而,界面聚合法制备的含有无机纳米材料的聚酰胺复合纳滤膜也面临着几个重大问题:无机纳米材料由于具有高的表面能和大的比表面积容易团聚,难以均匀分散在界面聚合的水相或者油相溶液中,在聚酰胺膜中易形成缺陷,严重影响膜的结构与性能;由于聚酰胺和无机纳米材料之间固有的差异使得有机-无机两相间的相容性较差、相互作用力较弱,容易导致无机纳米材料在膜服役过程中流失,这样不仅破坏膜的性能还会造成二次污染,这些问题成为分离层中含有无机纳米材料的聚酰胺纳滤膜进一步发展应用的主要障碍。
为解决上述问题制备高通量、高选择性、高抗污染、低操作压力的复合纳滤膜,本发明在二氧化硅纳米粒子表面接枝荷电聚合物,生成荷电聚合物修饰的二氧化硅纳米粒子,再通过界面聚合法制备分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的新型复合纳滤膜。
发明内容
本发明的目的是克服现有技术的不足,提供一种荷电聚酰胺复合纳滤膜及其制备方法。
本发明方法包括如下步骤:
步骤(1).通过活性/可控自由基聚合,将荷电聚合物接枝在二氧化硅纳米粒子表面,制备得到荷电聚合物修饰的二氧化硅纳米粒子,荷电聚合物的数均分子量为6,000~400,000克/摩尔;
活性/可控自由基聚合是原子转移自由基聚合(ATRP)或者可逆加成-断裂链转移(RAFT)聚合;
所述的荷电聚合物为聚甲基丙烯酸、聚丙烯酸、聚苯乙烯磺酸、聚甲基丙烯酸二甲氨基乙酯、聚甲基丙烯酸二乙氨基乙酯或者聚丙烯酰胺;
所述的二氧化硅纳米粒子的直径为30~180纳米;
步骤(2).将上述步骤(1)制备的荷电聚合物修饰的二氧化硅纳米粒子、胺类单体分散在水中,配制成含有荷电聚合物修饰的二氧化硅纳米粒子的水相胺类单体溶液,调节溶液的pH值至7~12;水相胺类单体溶液中胺类单体的质量含量为0.5~10﹪,荷电聚合物修饰的二氧化硅纳米粒子的质量含量为0.1~10﹪;
所述的胺类单体为间苯二胺、邻苯二胺、对苯二胺、哌嗪或乙二胺;
步骤(3).将酰氯单体溶解在有机溶剂中,配制成油相酰氯单体溶液;油相酰氯单体溶液中酰氯单体的质量含量为0.5~10﹪;
所述的酰氯单体为间苯二甲酰氯、对苯二甲酰氯、邻苯二甲酰氯或均苯三甲酰氯;
所述的有机溶剂为正己烷或环己烷;
步骤(4).将聚合物超滤膜浸入到步骤(2)调节pH值后的水相胺类单体溶液中0.5~15分钟,取出,擦除膜表面多余的水相胺类单体溶液;再浸入到步骤(3)油相酰氯单体溶液中0.5~15分钟,取出,并用去离子水漂洗3~8次后,30~120℃下热处理0.5~10小时,得到分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜;
所述的聚合物超滤膜为聚砜超滤膜、聚醚砜超滤膜、聚丙烯腈超滤膜或聚偏氟乙烯超滤膜。
本发明的有益效果:将荷电聚合物通过可逆加成-断裂链转移(RAFT)聚合方法接枝在二氧化硅纳米粒子表面,生成荷电聚合物修饰的二氧化硅纳米粒子,将其用于聚酰胺纳滤膜的制备与改性,能够有效地抑制二氧化硅纳米粒子的团聚行为,促进其在聚酰胺中的分散性,增加有机-无机两相的相互作用,提高二氧化硅纳米粒子在聚酰胺中的稳定性。并且,通过调整纳米粒子的化学结构和界面聚合的条件,能够显著的调控聚酰胺纳滤膜的亲水性、抗污染性、渗透选择性、水通量等性能。本发明的制膜方法简单、易行,生产成本地,改性效果显著、稳定、持久,具有良好的工业化应用前景。
具体实施方式
下面将结合实施例对本发明做更详细的描述,但所述实施例不构成对本发明的限制。从本发明公开的内容联想到或导出的所有变形,均认为是本发明的保护范围。
本发明方法首先将荷电聚合物接枝在二氧化硅纳米粒子表面,生成荷电聚合物修饰的二氧化硅纳米粒子,再将其均匀分散在合成聚酰胺分离膜的水相胺类单体溶液中,通过界面聚合制备分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。
实施例1.
通过可逆加成-断裂链转移(RAFT)聚合,将聚甲基丙烯酸接枝在直径为30纳米的二氧化硅纳米粒子上得到聚甲基丙烯酸修饰的二氧化硅纳米粒子,聚甲基丙烯酸的数均分子量为6,000克/摩尔;将0.1g聚甲基丙烯酸修饰的二氧化硅纳米粒子、0.5g乙二胺分散在99.4g水中,配制成100g含聚甲基丙烯酸修饰的二氧化硅纳米粒子的水相乙二胺溶液,并调节水相乙二胺溶液pH值至7;将聚醚砜超滤膜浸入调节pH值后的水相乙二胺溶液中,15分钟后将膜取出,擦除膜表面多余的水相溶液;再浸入含质量百分含量为10﹪均苯三甲酰氯的正己烷溶液中,0.5分钟后取出,去离子水漂洗3次,30℃下热处理10小时,得到含聚甲基丙烯酸修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。实施例1所制备的聚酰胺复合纳滤膜的水通量和截留率见附表1。
实施例2.
通过可逆加成-断裂链转移(RAFT)聚合,将聚丙烯酸接枝在直径为180纳米的二氧化硅纳米粒子上得到聚丙烯酸修饰的二氧化硅纳米粒子,聚丙烯酸的数均分子量为400,000克/摩尔;将10g聚丙烯酸修饰的二氧化硅纳米粒子、10g间苯二胺分散在80g水中,配制成100g含聚丙烯酸修饰的二氧化硅纳米粒子的水相间苯二胺溶液,并调节水相间苯二胺溶液pH值至12;将聚砜超滤膜浸入到调节pH值后的水相间苯二胺溶液中,0.5分钟后将膜取出,擦除膜表面多余的水机相溶液;再浸入含质量百分含量为0.5﹪间苯二甲酰氯的环己烷修改的对,我写的时候疏忽了溶液中,15分钟后取出,去离子水漂洗8次,在120℃下热处理0.5小时,得到含聚丙烯酸修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。实施例2所制备的聚酰胺复合纳滤膜的水通量和截留率见附表1。
实施例3.
通过原子转移自由基聚合(ATRP),将聚苯乙烯磺酸接枝在直径为90纳米的二氧化硅纳米粒子上得到聚苯乙烯磺酸修饰的二氧化硅纳米粒子,聚苯乙烯磺酸的数均分子量为30,000克/摩尔;将5g聚苯乙烯磺酸修饰的二氧化硅纳米粒子、2g对苯二胺分散在93g水中,配制成100g含聚苯乙烯磺酸修饰的二氧化硅纳米粒子的水相对苯二胺溶液,并调节水相对苯二胺溶液pH值至9;将聚丙烯腈超滤膜浸入到调节pH值后的水相对苯二胺溶液中5分钟,将膜取出,擦除膜表面多余的水相溶液;再浸入含质量百分含量为4﹪对苯二甲酰氯的环己烷溶液中,5分钟后取出,去离子水漂洗5次,在80℃下热处理3小时,得到含聚苯乙烯磺酸修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。实施例3所制备的聚酰胺复合纳滤膜的水通量和截留率见附表1。
实施例4.
通过原子转移自由基聚合(ATRP),将聚甲基丙烯酸二甲氨基乙酯接枝在直径为120纳米的二氧化硅纳米粒子上得到聚甲基丙烯酸二甲氨基乙酯修饰的二氧化硅纳米粒子,聚甲基丙烯酸二甲氨基乙酯的数均分子量为150,000克/摩尔;将2g聚甲基丙烯酸二甲氨基乙酯修饰的二氧化硅纳米粒子、7g哌嗪分散在99g水中,配制成100g含聚甲基丙烯酸二甲氨基乙酯修饰的二氧化硅纳米粒子的水相哌嗪溶液,并调节水相哌嗪溶液pH值至9;将聚偏氟乙烯超滤膜浸入到调节pH值后的水相哌嗪溶液中3分钟,将膜取出,擦除表面多余的水相溶液;再浸入到含质量百分含量为6﹪邻苯二甲酰氯的正己烷溶液中,8分钟后取出,去离子水漂洗8次,在100℃下热处理0.5小时,得到含聚甲基丙烯酸二甲氨基乙酯修饰的二氧化硅的聚酰胺复合纳滤膜。实施例4所制备的聚酰胺复合纳滤膜的水通量和截留率见附表1。
实施例5.
通过可逆加成-断裂链转移聚合(RAFT),将聚丙烯酰胺接枝在直径为150纳米的二氧化硅纳米粒子上得到聚丙烯酰胺修饰的二氧化硅纳米粒子,聚丙烯酰胺的数均分子量为370,000克/摩尔;将8g聚丙烯酰胺修饰的二氧化硅纳米粒子、3g邻苯二胺分散在89g水中,配制成100g含聚丙烯酰胺修饰的二氧化硅纳米粒子的水相邻苯二胺溶液,并调节水相邻苯二胺溶液pH值至11;将聚醚砜超滤膜浸入再浸入到调节pH值后的水相邻苯二胺溶液中8分钟,将膜取出,擦除膜表面多余的水相溶液;再浸入到含质量百分含量为1﹪均苯三甲酰氯的正己烷溶液中,7分钟后取出,去除去离子水漂洗6次,在60℃下热处理6小时,得到含聚丙烯酰胺修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。实施例5所制备的聚酰胺复合纳滤膜的水通量和截留率见附表1。
表1 实施例1~5聚酰胺复合纳滤膜的水通量和截留率
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (8)

1.一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于该方法包括以下步骤:
步骤(1).通过活性/可控自由基聚合,将荷电聚合物接枝在二氧化硅纳米粒子表面,制备得到荷电聚合物修饰的二氧化硅纳米粒子;
步骤(2).将上述步骤(1)制备的荷电聚合物修饰的二氧化硅纳米粒子、胺类单体分散在水中,配制成含有荷电聚合物修饰的二氧化硅纳米粒子的水相胺类单体溶液,调节溶液的pH值至7~12;水相胺类单体溶液中胺类单体的质量含量为0.5~10﹪,荷电聚合物修饰的二氧化硅纳米粒子的质量含量为0.1~10﹪;
步骤(3).将酰氯单体溶解在有机溶剂中,配制成油相酰氯单体溶液;油相酰氯单体溶液中酰氯单体的质量含量为0.5~10﹪;
步骤(4).将聚合物超滤膜浸入到步骤(2)调节pH值后的水相胺类单体溶液中0.5~15分钟,取出,擦除膜表面多余的水相胺类单体溶液;再浸入到步骤(3)油相酰氯单体溶液中0.5~15分钟,取出,并用去离子水漂洗3~8次后,30~120℃下热处理0.5~10小时,得到分离层中含有荷电聚合物修饰的二氧化硅纳米粒子的聚酰胺复合纳滤膜。
2.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(1)活性/可控自由基聚合为原子转移自由基聚合或者可逆加成-断裂链转移聚合。
3.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(1)荷电聚合物为聚甲基丙烯酸、聚丙烯酸、聚苯乙烯磺酸、聚甲基丙烯酸二甲氨基乙酯、聚甲基丙烯酸二乙氨基乙酯或者聚丙烯酰胺,荷电聚合物的数均分子量为6,000~400,000克/摩尔。
4.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(1)二氧化硅纳米粒子的直径为30~180纳米。
5.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(2)胺类单体为间苯二胺、邻苯二胺、对苯二胺、哌嗪或乙二胺。
6.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(3)酰氯单体为间苯二甲酰氯、对苯二甲酰氯、邻苯二甲酰氯或均苯三甲酰氯。
7.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(3)有机溶剂为正己烷或环己烷。
8.如权利要求1所述的一种荷电聚酰胺复合纳滤膜及其制备方法,其特征在于步骤(4)聚合物超滤膜为聚砜超滤膜、聚醚砜超滤膜、聚丙烯腈超滤膜或聚偏氟乙烯超滤膜。
CN201410212712.XA 2014-05-20 2014-05-20 一种荷电聚酰胺复合纳滤膜及其制备方法 Active CN103990392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410212712.XA CN103990392B (zh) 2014-05-20 2014-05-20 一种荷电聚酰胺复合纳滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410212712.XA CN103990392B (zh) 2014-05-20 2014-05-20 一种荷电聚酰胺复合纳滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN103990392A CN103990392A (zh) 2014-08-20
CN103990392B true CN103990392B (zh) 2016-09-07

Family

ID=51304872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410212712.XA Active CN103990392B (zh) 2014-05-20 2014-05-20 一种荷电聚酰胺复合纳滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103990392B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226128B (zh) * 2014-09-12 2016-02-24 浙江大学 一种在分离膜表面构造两性离子结构的方法及分离膜
CN107126849B (zh) * 2017-06-22 2020-07-24 曲靖师范学院 一种亲水化聚偏氟乙烯杂化膜的制备方法
CN108176232A (zh) * 2017-12-30 2018-06-19 孙祎 一种抗污染型荷电膜材料的制备方法
CN110548416B (zh) * 2018-06-04 2021-11-12 宁波蓝盾新材料科技有限公司 一种荷负电杂化正渗透中空纤维膜及其制备方法
CN110548415B (zh) * 2018-06-04 2021-11-16 宁波蓝盾新材料科技有限公司 一种大通量荷正电聚酰胺杂化正渗透膜及其制备方法
CN108927020B (zh) * 2018-07-26 2020-11-10 中国科学院青岛生物能源与过程研究所 一种含有介孔聚合物的纤维素基复合电纳滤膜及其制备方法
CN109012232B (zh) * 2018-09-02 2020-07-03 上海鲁聚聚合物技术有限公司 一种抗收缩聚四氟乙烯复合纳滤膜的制备方法
CN109224864B (zh) * 2018-09-12 2021-02-19 广东产品质量监督检验研究院 一种深色纺织品和皮革萃取液脱色预处理新工艺
CN110479119B (zh) * 2019-07-29 2022-03-25 武汉纺织大学 一种聚酰胺复合反渗透膜的制备方法
CN110917906B (zh) * 2019-12-11 2021-07-30 南京大学 一种铁电纳滤膜材料、制备方法及应用
CN111467970A (zh) * 2020-04-30 2020-07-31 郑州轻工业大学 一种基于新型荷电疏松纳滤膜的制备方法
CN112604507B (zh) * 2020-12-07 2022-08-05 四川华造宏材科技有限公司 高通量染料分离纳滤膜的制备方法
CN116143233A (zh) * 2021-11-22 2023-05-23 沃顿科技股份有限公司 一种脱硼海水淡化反渗透膜的制备方法和由其制备的反渗透膜
CN114377556B (zh) * 2022-01-19 2022-10-14 西南石油大学 一种耐温复合水处理膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006223564A1 (en) * 2005-03-09 2006-09-21 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
CN101700473B (zh) * 2009-10-30 2011-06-29 北京工业大学 一种无机纳米粒子杂化有机膜的自组装方法
CN101837228B (zh) * 2010-06-11 2012-06-06 苏州信望膜技术有限公司 一种混合基质膜及其制备方法
CN102151490A (zh) * 2011-01-30 2011-08-17 哈尔滨工业大学 树状聚酰胺-胺包埋无机纳米粒子制备纳滤膜的方法
CN102921314B (zh) * 2012-10-25 2016-02-03 贵阳时代沃顿科技有限公司 一种具有互穿网络脱盐层的复合反渗透膜及其制备方法

Also Published As

Publication number Publication date
CN103990392A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
CN103990392B (zh) 一种荷电聚酰胺复合纳滤膜及其制备方法
CN103990385B (zh) 一种新型聚酰胺复合分离膜的制备方法
CN106076132B (zh) 一种氧化石墨烯改性聚酰胺复合纳滤膜及其制备方法
Kang et al. Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review
Duong et al. Interfacial polymerization of zwitterionic building blocks for high-flux nanofiltration membranes
CN109126463B (zh) 一种含微孔中间层高通量纳滤膜的制备方法
Zhang et al. Capsaicin mimic-polyethyleneimine crosslinked antifouling loose nanofiltration membrane for effective dye/salt wastewater treatment
CN105435653B (zh) 一种对二价离子脱除具有高选择性的复合纳滤膜及其制备方法
TWI453062B (zh) 脫鹽過濾材料
CN104548952B (zh) 一种抗菌复合纳滤膜的制备方法
CN109789377A (zh) 具有高生产量和水消毒性能的手提式重力驱动的水过滤器的制备
Wang et al. Preparation and properties of polyamide/titania composite nanofiltration membrane by interfacial polymerization
JP6534607B2 (ja) 逆浸透膜又はナノフィルトレーション膜及びそれらの製造方法
CN102553460A (zh) 一种耐污染低压反渗透膜的制备方法
CN103691328A (zh) 一种耐污染的复合反渗透膜的制备方法
CN104028120B (zh) 羧甲基纤维素钠复合物填充聚酰胺纳滤膜的制备方法
CN103285752B (zh) 一种含磺酸甜菜碱型胶体纳米粒子的聚酰胺纳滤膜及其制备方法
Asatekin et al. Self-assembled polymer nanostructures for liquid filtration membranes: A review
CN105148750A (zh) 一种聚酰胺复合膜表面改性的方法
CN102258949A (zh) 一种调节聚酰胺反渗透复合膜界面结构的方法
CN105561814A (zh) 一种抗菌反渗透复合膜及其制备方法
CN102101020B (zh) 高效能反渗透/纳滤复合分离膜材料、其制备方法及用途
Wan et al. Seven-bore hollow fiber membrane (HFM) for ultrafiltration (UF)
Cheng et al. Electrospun nanofibers for water treatment
CN101912741A (zh) 含纳米材料的聚酰胺复合反渗透膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant