CN103987662A - 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途 - Google Patents

稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途 Download PDF

Info

Publication number
CN103987662A
CN103987662A CN201280058960.2A CN201280058960A CN103987662A CN 103987662 A CN103987662 A CN 103987662A CN 201280058960 A CN201280058960 A CN 201280058960A CN 103987662 A CN103987662 A CN 103987662A
Authority
CN
China
Prior art keywords
microporous crystalline
crystalline material
exchange
metal
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280058960.2A
Other languages
English (en)
Other versions
CN103987662B (zh
Inventor
黎鸿昕
W·E·科米尔
B·莫登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ekovist Catalyst Technology Co ltd
Original Assignee
PQ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47358300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103987662(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by PQ Corp filed Critical PQ Corp
Publication of CN103987662A publication Critical patent/CN103987662A/zh
Application granted granted Critical
Publication of CN103987662B publication Critical patent/CN103987662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明公开了开孔为3至5埃的微孔结晶材料,其中材料包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属以及选自铁、铜或其混合物的第二金属,并且所述材料具有3至10的二氧化硅与氧化铝的摩尔比(SAR)。本发明公开的微孔结晶材料可以包含具有双6环(d6r)构造单元和8环开孔的晶体结构,如国际沸石协会结构委员会定义的结构代码为CHA、LEV、AEI、AFT、AFX、EAB、ERI、KFI、SAT、TSC和SAV的骨架类型所示例的。本发明还公开了选择性催化还原废气中的氮氧化物的方法,其包括使废气至少部分接触包含本发明的微孔结晶材料的物体。

Description

稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途
本申请要求2011年12月2日提交的第61/566,106号美国临时申请的优先权,将其全部内容引入本文作为参考。
总体来说,本发明提供了开孔为3至5埃的微孔结晶材料,其中所述材料包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属,以及选自铁和/或铜的第二金属。本发明还涉及制备和使用该微孔结晶材料的方法,其包括选择性催化还原(SCR)废气中的氮氧化物(NOx)。
氮氧化物(NOx)长久以来被认为是污染气体,主要原因在于其腐蚀作用。实际上,它们是造成酸雨的主要原因。NOx污染的主要源头是柴油汽车和固定污染源(如燃煤电厂和汽轮机)的废气中排放的NOx。为了避免这些有害的排放,使用SCR并且SCR涉及采用沸石催化剂将NOx转化为氮和水。
因此,一直存在对这样的改进的微孔结晶材料的需求:所述材料具有强化性能和水热稳定性以使得能够用于选择性催化还原废气中的NOx
发明概述
为了满足该需求,本发明人发现了包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属以及选自铁、铜或其混合物的第二金属的材料,其开孔为3至5埃,并且具有3至10的二氧化硅与氧化铝的摩尔比(SAR)。在一个实施方案中,所述材料通过不使用有机结构导向剂(OSDA)(directing agent)的方法合成。在一个实施方案中,所述材料包含国际沸石协会结构委员会定义的CHA结构。在一个实施方案中,所述材料可以包含具有双6环(d6r)构造单元和8环开孔的晶体结构,如国际沸石协会结构委员会定义的结构代码为LEV、AEI、AFT、AFX、EAB、ERI、KFI、SAT、TSC和SAV的骨架类型所示例的。
本文描述的材料表现出优异的水热稳定性。例如,本发明公开的材料通常在高达10vol%的水蒸气存在下暴露于700-900℃的温度下1-16小时后保持其至少70%的表面积和微孔体积。
本发明还公开了采用所公开的微晶材料选择性催化还原废气中的氮氧化物的方法。在一个实施方案中,该方法包括:
使废气至少部分接触包含开孔为3至5埃的微孔结晶材料的物体,其中所述材料包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属以及选自铁、铜或其混合物的第二金属。
理解的是,本发明所述的材料可以用在物体中,如具有沟槽的或蜂巢状的物体;填充床,如球、卵形物、小球、片、挤出物、其它颗粒或其组合;微球;或构件,如板或管的形式。
如本领域技术人员会理解的,具有沟槽的或蜂巢状的物体或构件是通过将所述结晶材料洗覆到预成型的蜂巢状物体上或通过挤出包含所述结晶材料的混合物来形成的。
除了上文讨论的主题以外,本发明还包括许多其它示例性特征,如下文阐明的那些。要理解的是,上下文的描述都仅是示例性的。
附图的简要说明
附图结合到说明书中并构成该说明书的一部分。所有的NH3-SCR数据都是在以下条件下采集的:500ppm NO;NH3/NO=1.0;5vol%O2;余量的N2;空速=50,000h-1
图1对比了含和不含Ca的Fe-菱沸石在700℃下10%水/空气中蒸汽处理16小时后的SCR数据。
图2对比了含和不含Ca的Cu-菱沸石在700℃下10%水/空气中蒸汽处理16小时后的SCR数据。
图3对比了含和不含Ca的Cu-SAPO-34在900℃下10%水/空气中蒸汽处理1小时后的SCR数据。
发明详述
定义
“水热稳定的”是指具有在暴露于高温和/或高湿条件(相比室温)一定时间段后保留一定百分比的初始表面积和/或微孔体积的能力。例如,在一个实施方案中,其意在表示在暴露于模拟汽车废气的条件下,如高达900℃的温度,包括范围在700至900℃的温度,存在体积百分比(vol%)高达为10%的水蒸气,时间范围从长达1小时,或者甚至长达16小时,如在1至16小时的时间范围内保持其至少70%,如至少80%、至少90%或甚至至少95%的表面积和微孔体积。
“初始表面积”是指在将其暴露于任何老化条件之前新近制备的结晶材料的表面积。
“初始微孔体积”是指在将其暴露于任何老化条件之前新近制备的结晶材料的微孔体积。
“直接合成”(或其任何说法)是指在沸石已经形成后无需掺杂金属的过程的方法,如之后的离子交换或浸渍法。
“国际沸石协会结构委员会定义的”意指包括但不限于Baerlocher等编辑的第六修订版的“Atlas of Zeolite Framework Types”(Elsevier2007)中描述的结构的那些结构,将其全部内容引入本文作为参考。
“双6环(d6r)”是Baerlocher等编辑的第六修订版的“Atlas ofZeolite Framework Types”(Elsevier2007)中描述的结构构造单元,将其全部内容引入本文作为参考。
“选择性催化还原”或“SCR”是指在氧存在下还原NOx(通常用氨)以形成氮和H2O。
“废气”是指任何在工业过程或操作中以及通过内燃机(如来自任何形式的机动车辆)形成的废气。
本文使用的词语“选自(chosen from)”或“选自(selected from)”是指选择单一的组分或两个(或更多)组分的组合。例如,本文描述的大结晶、不含有机物的菱沸石的金属部分可以选自铜和铁,其意味着金属可以包含铜或铁,或者铜和铁的组合。
本发明公开了包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属以及选自铁、铜或其混合物的第二金属的材料。碱土金属是位于元素周期表第2主族的6种元素。可以包含在本发明中作为第一金属使用的碱土金属的非限制性实例包括镁、钙、锶或钡、或其混合物。碱金属是位于元素周期表第1主族的6种元素,不包括氢。可以包含在本发明中作为第一金属使用的碱金属的非限制性实例包括钾、铷、铯或其混合物。
在一个实施方案中,所述材料可以包含具有双6环(d6r)构造单元和8环开孔的晶体结构,如国际沸石协会结构委员会定义的结构代码为CHA、LEV、AEI、AFT、AFX、EAB、ERI、KFI、SAT、TSC和SAV的骨架类型所示例的(Ch.Baerlocher,L.B.McCusker andD.H.Olson,Atlas of Zeolite Framework Types,6th revised edition,Elsevier,Amsterdam,2007)。
例如,微孔结晶材料可以包含微孔硅铝酸盐沸石,如硅铝酸盐菱沸石。
本发明所述的材料通常具有3至10,如5至7的二氧化硅与氧化铝的摩尔比(SAR)。
所述材料可以通过不使用有机结构导向剂(OSDA)的方法来合成。
理解的是,包括例如镁、钙、锶、钡、镧、铈、镨、钕、混合的稀土氧化物、钾、铷、铯或其混合物的第一金属以及例如铜或铁或其混合物的第二金属可以通过液相或固体离子交换、浸渍或直接合成结合来引入。
如本领域技术人员会理解的是,第一和第二金属可以通过液相或固体离子交换、浸渍或直接合成结合引入到材料中。
在一个实施方案中,第一金属的量为材料总重量的至少0.2重量%,在一个实施方案中,第一金属的量为材料总重量的为0.2重量%至5.0重量%。在一个实施方案中,第一金属包含钙,其量为结晶材料总重量的0.2重量%至5.0重量%。
第一金属与铝的原子比可以介于0.05和0.80之间。在一个实施方案中,材料的第一金属为钙,且钙与铝的原子比介于0.05和0.50之间。
如本文所述,第二金属(如铜)的量可以为结晶材料总重量的0.5重量%至10.0重量%。在一个实施方案中,材料的第二金属为铜,且铜与铝的原子比介于0.05和0.20之间。
微孔结晶材料还可以包含其量为结晶材料总重量的0.5重量%至10.0重量%的铁。在一个实施方案中,材料的第二金属为铁,铁与铝的原子比介于0.05和0.30之间。
材料通常包含平均尺寸范围为0.3微米至小于10微米,如0.3微米至5.0微米的晶体。
本文描述的材料显现出优异的水热稳定性。例如,在高达10vol%的水蒸气存在下暴露在700-800℃的温度1-16小时后,本文公开的材料通常保持其至少70%的表面积和微孔体积。
本文公开的材料可以通过以下方法合成,该方法包括:
将钠源、钾源、氧化铝源、二氧化硅源、水和任选的晶种材料混合以形成凝胶,其中所述凝胶具有低于0.5的钾与二氧化硅(K/SiO2)的摩尔比,和低于0.35的氢氧根与二氧化硅(OH/SiO2)的摩尔比;
在范围为80℃至200℃的温度下在容器中加热所述凝胶形成结晶产物;
将所述产物进行铵交换;以及
通过液相或固体离子交换、浸渍或通过直接合成结合来将第一和第二金属引入所述结晶材料中。
在一个实施方案中,本发明的氧化铝源和二氧化硅源包含钾交换的、质子交换的、铵交换的Y型沸石,硅酸钾或其混合物。
本发明还公开了采用本发明的微晶材料选择性催化还原废气中的氮氧化物的方法。在一个实施方案中,该方法包括:
使废气至少部分接触包含开孔为3至5埃的微孔结晶材料的物体,
其中,所述材料包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属,以及选自铁、铜或其混合物的第二金属。
在一个实施方案中,接触步骤可以在氨、脲或产生氨的化合物的存在下进行。
在另一个实施方案中,接触步骤可以在烃类化合物的存在下进行。
如所提及的,所述方法中使用的材料可以包含具有双6环(d6r)构造单元和8环开孔的晶体结构,如国际沸石协会结构委员会定义的结构代码为CHA、LEV、AEI、AFT、AFX、EAB、ERI、KFI、SAT、TSC和SAV的骨架类型所示例的。
在一个实施方案中,本发明的方法中使用的材料包含硅铝磷酸盐(SAPO)分子筛,如具有CHA骨架类型的SAPO-34。本发明的方法中使用的结晶SAPO分子筛的SiO2的量为结晶材料总重量的1重量%至20重量%。
理解的是,包括例如镁、钙、锶、钡、镧、铈、镨、钕、混合的稀土氧化物、钾、铷、铯或其混合物的第一金属,以及例如铜的第二金属可以通过液相或固体离子交换、浸渍或直接合成结合来引入。
在一个实施方案中,第一金属的重为结晶材料总重量的至少0.2重量%。当第一金属包含钙时,其通常的量为结晶材料总重量的0.2重量%至5.0重量%。
当第二金属包含铜时,其通常的量为结晶材料总重量的0.5重量%至10.0重量%。
当第二金属包含铁时,其通常的量也为结晶材料总重量的0.5重量%至10.0重量%。
在一个实施方案中,本发明的方法使用的材料包含尺寸范围为0.3至5微米的晶体。
理解的是,本文所描述的材料可以用在物体中,如具有沟槽的或蜂巢状的物体;填充床,如球、卵形物、小球、片、挤出物、其它颗粒或其组合;微球;或构件,如板或管的形式。
本领域技术人员将理解的是,具有沟槽的或蜂巢状的物体或构件是通过将所述结晶材料洗覆到预成型的蜂巢状物体上或通过挤出包含所述结晶材料的混合物来形成的。
实施例
将通过以下非限制性的实施例进一步阐明本发明,所述实施例意在纯粹示例本发明。
实施例1(大结晶不含有机物的菱沸石的合成)
将去离子水、氢氧化钾溶液(45wt%KOH)和钾交换的Y型沸石粉末混合在一起以形成具有以下组成的凝胶:5.5SiO2:1.0Al2O3:1.09K2O:66H2O。该凝胶组合物的OH/SiO2比为0.05。将凝胶在室温下搅拌约30分钟,然后加入1.5wt%的菱沸石种子并再搅拌30分钟。然后将凝胶装入高压反应釜。将高压反应釜加热至120℃并维持温度达60小时,同时在300rpm下搅拌。冷却后,通过过滤回收产物,并用去离子水洗涤。得到的产物具有菱沸石的XRD图形,SAR为5.5,包含16.5wt%的K2O。将产物用硝酸铵交换四次从而将钾含量降低至0.27wt%K2O。
实施例2(铵交换的菱沸石的Ca-交换)
随后将实施例1得到的样品在80℃下与硝酸钙交换2小时。交换后,过滤材料,用去离子水洗涤,然后干燥。
实施例3(Ca-菱沸石的Fe-交换)
将实施例2得到的钙交换的菱沸石样品在环境温度下与硫酸铁交换3小时。过滤、洗涤并干燥后,样品包含2.5wt%CaO和5.2wt%Fe2O3
对比实施例4(铵交换的菱沸石的Fe-交换)
将实施例1得到的铵交换的菱沸石在环境温度下与硫酸铁交换3小时。过滤、洗涤并干燥后,样品包含3.2wt%Fe2O3
实施例5(Ca-菱沸石的Cu-交换)
将来自实施例2的钙交换的菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含2.7wt%CaO和5.5wt%CuO。
对比实施例6(铵交换的菱沸石的Cu-交换)
将实施例1得到的铵交换的菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含5.0wt%CuO。
实施例7(大结晶不含有机物的菱沸石的合成)
将去离子水、氢氧化钾溶液(45wt%KOH)和钾交换的Y型沸石粉末混合在一起形成具有以下组成的凝胶:5.5SiO2:1.0Al2O3:1.02K2O:66H2O。该凝胶组合物的OH/SiO2比为0.025。将凝胶在室温下搅拌约30分钟,然后加入0.5wt%的菱沸石种子并再搅拌30分钟。然后将凝胶装入高压反应釜。将高压反应釜加热至140℃并维持温度达36小时,同时在300rpm下搅拌。冷却后,通过过滤回收产物,并用去离子水洗涤。得到的产物具有菱沸石的XRD图形,SAR为5.6,包含16.7wt%的K2O。将产物与硝酸铵交换两次从而将钾含量降低至2.0wt%K2O。
实施例8(铵交换的菱沸石的Ca-交换)
随后将实施例7得到的样品在80℃下与硝酸钙交换2小时。交换后,过滤材料,用去离子水洗涤,然后干燥。
实施例9(Ca-菱沸石的Cu-交换)
将实施例8得到的钙交换的菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含2.9wt%CaO和5.4wt%CuO。
实施例10(Ca-菱沸石的Cu-交换)
将实施例8得到的钙交换的菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含3.1wt%CaO和3.2wt%CuO。
实施例11(乙酸铜对钙交换的菱沸石的始润浸渍)
将实施例8得到的钙交换的菱沸石样品在环境温度下用乙酸铜浸渍。浸渍后,将材料在550℃下煅烧2小时。样品包含4.2wt%CaO和2.1wt%CuO。
实施例12(铵交换的菱沸石的Sr-交换)
随后将实施例1得到的样品在80℃下与乙酸锶交换2小时。交换后,过滤材料,用去离子水洗涤,然后干燥。
实施例13(Sr-菱沸石的Cu-交换)
将实施例12得到的锶交换的菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含8.9wt%SrO和5.0wt%CuO。
实施例14(硝酸镧对铵交换的菱沸石的始润浸渍)
将实施例7得到的样品在环境温度下用硝酸镧溶液浸渍。浸渍后,将材料在550℃下煅烧2小时。
实施例15(La-菱沸石的Cu-交换)
随后将实施例14得到的镧-菱沸石样品在60℃下与硝酸铜交换2小时。过滤、洗涤并干燥后,样品包含8.7wt%La2O3和3.0wt%CuO。
样品性能评价
在700、750和/或800℃和10vol%水蒸气存在下持续16小时,对来自实施例3-6和9-15的样品进行蒸汽处理以模拟汽车废气老化条件。
老化前后的材料的表面积按照BET法采用氮吸收来测定。采用Quantachrome Autosorb装置进行这些测定,且在液氮温度下相对压力(P/P0)在0.01和0.05之间收集数据。
采用t-曲线法将同时作为表面积测量值的氮吸收数据也用于计算材料的微孔体积。
采用NH3作为还原剂以流通式反应器测试水热老化的材料在NOx转化方面的活性。挤压粉末沸石样品并筛分至35/70目并装入石英管反应器。用于NH3-SCR的气体组成为500ppm NO、500ppm NH3、5vol%O2、0.6%H2O和余量的N2。空速为50,000h-1。反应器的温度渐变并采用MKS MultiGas2030红外分析仪确定每个温度间隔的NO转化率。
表1对比了在700℃下10%水/空气中蒸汽处理16小时后,采用含和不含Ca的Fe-菱沸石的NH3-SCR期间,表面积的保持率和NO的转化率。
表1
实施例 实施例3 对比实施例4
Fe2O3 wt% 5.2 3.2
CaO wt% 2.5 0
Fe/Al原子比 0.15 0.09
Ca/Al原子比 0.10 0.00
初始表面积 m2/g 640 677
700℃下蒸汽处理后的表面积 m2/g 564 328
表面积保持率 88 49
初始微孔体积 cc/g 0.24 0.26
700℃下蒸汽处理后的微孔体积 cc/g 0.21 0.11
300℃下的NO转化率 90.7 14.9
500℃下的NO转化率 93.4 56.6
表1显示Ca-Fe菱沸石的表面积保持率超过了不含Ca的对比材料的表面积保持率。在该失活模拟暴露之后,本发明的材料的表面积和微孔体积保持率应为至少70%,优选为至少80%。
参考图1中显示的SCR数据,清楚地看到当对在700℃下10%水/空气中进行蒸汽处理16小时的样品进行测试时,额外包含Ca的Fe-菱沸石的NOx转化率超过了不含Ca的Fe-菱沸石的NOx转化率。
表2对比了在700℃下10%水/空气中蒸汽处理16小时后,采用含和不含Ca的Cu-菱沸石的NH3-SCR期间,表面积的保持率和NO的转化率。
表2
实施例 实施例5 对比实施例6
CuO wt% 5.5 5.0
CaO wt% 2.7 0.0
Cu/Al原子比 0.16 0.15
Ca/Al原子比 0.11 0.00
初始表面积 m2/g 642 638
700℃下蒸汽处理后的表面积 m2/g 583 512
表面积保持率 91 80
初始微孔体积 cc/g 0.25 0.24
700℃下蒸汽处理后的微孔体积 cc/g 0.22 0.18
175℃下的NO转化率 99.7 86.1
450℃下的NO转化率 92.2 87.9
表3对比了在750℃下10%水/空气中蒸汽处理16小时后,采用含和不含Ca、Sr或La的Cu-菱沸石的NH3-SCR期间表面积保持率和NO转化率。
表3
表4对比了在800℃下10%水/空气中蒸汽处理16小时后,采用含和不含Ca的Cu-菱沸石的NH3-SCR期间,表面积的保持率和NO的转化率。
表4
表2-4显示Ca-Cu菱沸石的表面积保持率超过了不含Ca的对比材料的表面积保持率。在这些失活模拟暴露,例如在700-800℃下10%水/空气中暴露16小时之后,本发明的材料的表面积和微孔体积保持率应为至少70%,优选为至少80%。
图2对比了在700℃下10%水/空气中蒸汽处理16小时后,采用含和不含Ca的Cu-菱沸石得到的SCR数据。图2的数据显示在200℃至高于400℃的温度范围内改善的NOx活性。
实施例16(SAPO-34的合成)
将拟薄水铝石-氧化铝、磷酸、铵稳定化的二氧化硅溶胶(Nyacol2040NH4)、氢氧化四乙铵(TEAOH)溶液、吗啉和去离子水混合在一起以形成具有以下摩尔组成的凝胶:
0.6SiO2:1.0Al2O3:1.0P2O5:0.85吗啉:0.4TEAOH:32.5H2O
将凝胶在室温下搅拌约30分钟并加入凝胶总无机固体的约1%的量的SAPO-34种子,然后装入高压反应釜。将高压反应釜加热至180℃并保持该温度达24小时。冷却后,通过过滤回收产物并用去离子水洗涤。然后将产物干燥并煅烧以除去有机物。SAPO-34产物包含约12%的SiO2
对比实施例17(SAPO-34的Cu-交换)
将实施例16得到的SAPO-34样品在60℃下与硝酸铜交换3小时。过滤后,洗涤并干燥包含3.0wt%CuO的样品。
实施例18(SAPO-34的Ca-交换)
将实施例16得到的SAPO-34样品在环境温度下与氢氧化钙交换2小时。过滤、洗涤并干燥后,样品包含0.9wt%CaO。
实施例19(Ca-SAPO-34的Cu-交换)
将实施例18得到的Ca-SAPO-34样品在环境温度下与硝酸铜交换4小时。过滤、洗涤并干燥后,样品包含1.9wt%CuO和0.8wt%CaO。
实施例20(SAPO-34的K-交换)
将实施例16得到的SAPO-34样品在80℃下与硝酸钾交换2小时。过滤、洗涤并干燥后,样品包含1.5wt%K2O。
实施例21(K-SAPO-34的Cu-交换)
将实施例20得到的K-SAPO-34样品在环境温度下与硝酸铜交换4小时。过滤、洗涤并干燥后,样品包含3.0wt%CuO和1.5wt%K2O。
实施例22(Ca-SAPO-34的直接合成)
将拟薄水铝石-氧化铝、磷酸、铵稳定化的二氧化硅溶胶(Nyacol2040NH4)、乙酸钙、氢氧化四乙铵(TEAOH)溶液、吗啉和去离子水混合在一起以形成具有以下摩尔组成的凝胶:
0.5SiO2:1.0Al2O3:1.0P2O5:0.1CaO:0.85吗啉:0.4TEAOH:31.5H2O
将凝胶在室温下搅拌约30分钟并加入凝胶总无机固体的约1%的量的SAPO-34种子,然后装入高压反应釜。将高压反应釜加热至180℃并保持该温度达24小时。冷却后,通过过滤回收产物并用去离子水洗涤。然后将产物干燥并煅烧以除去有机物。Ca-SAPO-34产物包含约11%的SiO2和1.7%CaO。
实施例23(直接合成的Ca-SAPO-34的Cu-交换)
将实施例22得到的Ca-SAPO-34样品在60℃下与硝酸铜交换3小时。过滤、洗涤并干燥后,样品包含3.0wt%CuO。
实施例24(SAPO-34的Ca-和Cu-交换)
将实施例16得到的Ca-SAPO-34样品在40℃下与氢氧化钙和硝酸铜交换3小时。过滤、洗涤并干燥后,样品包含3.5wt%CuO和0.60wt%CaO。
热水稳定性测试
通过将4g材料在12g水中制浆来进行水稳定性测试。将浆料置于23mL高压釜(Parr bomb)中,将高压釜置于105℃的烘箱中达24小时。随后,过滤、洗涤并干燥浆料。在水处理前后分析表面积。
蒸汽稳定性测试
还将样品在900℃、10vol%水蒸气存在下进行蒸汽处理1小时以模拟汽车废气老化条件。采用NH3作为还原剂以流通式反应器测试水热老化的材料在NOx转化方面的活性。挤压粉末沸石样品并筛分至35/70目,装入石英管反应器。反应器的温度渐变并采用红外分析仪确定每个温度间隔的NO转化率。
表5对比了在105℃下水处理24小时后各种SAPO-34样品的表面积保持率。
表5
表5显示了将Ca或K加至SAPO-34,如实施例18、19、20、21、23和24那样,使材料对热水处理稳定,而不含Ca或K的材料(实施例16获得的SAPO-34和对比实施例17获得的Cu-SAPO-34)经过水处理基本完全被破坏。经过热水处理后,本发明的SAPO-34材料保持其至少40%和优选至少60%的表面积和微孔体积,这是理想的。
表6对比了在900℃下10%水/空气中蒸汽处理1小时后,实施例17、23和24的NH3-SCR期间的NO转化率。
表6
实施例 对比实施例17 实施例23 实施例24
175℃下的NO转化率 81.7 97.6 96.1
450℃下的NO转化率 77.0 82.0 77.5
表6显示在900℃下蒸汽处理1小时后,本发明的包含Ca的实施例23和24的NH3-SCR活性比不使用Ca的对比实施例17更强,特别是在低温(如175℃)下。
图3对比了对比实施例17和本发明实施例23在900℃下10%水/空气中蒸汽处理1小时后的SCR数据。数据显示包含两种金属(此处为钙)的SAPO-34样品表现出相对于不含Ca的样品改善的NOx转化效率。
除非另外指明,说明书和权利要求中使用的所有表示成分、反应条件等的数量的数字应被理解为在各种情况下均由术语“约”进行修饰。相应地,除非相反地指明,以下说明书和所附的权利要求书中提出的数值参数都是可以根据本发明力图获得的理想性质来变化的近似值。
考虑到说明书和本申请公开的发明的实施,其它的本发明的实施方案对于本领域技术人员是显而易见的。说明书和实施例意在被认为仅是示例性的,本发明真正的范围是由以下的权利要求所示的。

Claims (16)

1.一种开孔为3至5埃的微孔结晶材料,所述材料通过不使用有机结构导向剂(OSDA)的方法合成,其中所述材料具有3至10的二氧化硅与氧化铝的摩尔比(SAR),并且包含选自碱土金属、稀土元素、碱金属或其混合物的第一金属以及选自铜、铁或其混合物的第二金属。
2.根据权利要求1所述的微孔结晶材料,其中所述材料包含具有双6环(d6r)构造单元和8环开孔的晶体结构。
3.根据权利要求1所述的微孔结晶材料,其中所述材料包含CHA结构。
4.根据权利要求2所述的微孔结晶材料,其中所述晶体结构包含LEV、AEI、AFT、AFX、EAB、ERI、KFI、SAT、TSC和SAV的结构代码。
5.根据权利要求1所述的微孔结晶材料,其中所述第一金属包含镁、钙、锶、钡、镧、铈、镨、钕、混合的稀土氧化物、钾、铷、铯或其混合物。
6.根据权利要求1所述的微孔结晶材料,其中所述第一和第二金属通过液相或固体离子交换、浸渍或直接合成结合来引入到所述材料中。
7.根据权利要求1所述的微孔结晶材料,其中所述第一金属与铝的原子比介于0.05和0.80之间。
8.根据权利要求1所述的微孔结晶材料,其中所述材料包含钙,且钙与铝的原子比介于0.05和0.50之间。
9.根据权利要求1所述的微孔结晶材料,其中所述材料包含铜,且铜与铝的原子比介于0.05和0.20之间。
10.根据权利要求1所述的微孔结晶材料,其中所述材料包含铁,且铁与铝的原子比介于0.05和0.30之间。
11.根据权利要求1所述的微孔结晶材料,其中所述材料包含的晶体的平均晶体尺寸为0.3至5微米。
12.根据权利要求1所述的微孔结晶材料,其中所述材料在高达10vol%的水蒸气存在下暴露在700-800℃的温度1-16小时后保持其至少70%的表面积和微孔体积。
13.一种选择性催化还原废气中的氮氧化物的方法,所述方法包括:
使所述废气至少部分地接触包含权利要求1至12所述的微孔结晶材料的物品。
14.根据权利要求13所述的方法,其中所述接触步骤是在氨、脲、产生氨的化合物或烃类化合物存在下进行的。
15.一种制备根据权利要求1至12所述的微孔结晶材料的方法,所述方法包括:
将钠源、钾源、氧化铝源、二氧化硅源、水以及任选的晶种材料混合以形成凝胶,其中所述凝胶具有低于0.5的钾与二氧化硅(K/SiO2)的摩尔比,和低于0.35的氢氧根与二氧化硅(OH/SiO2)的摩尔比;
在容器中将所述凝胶加热至80至200℃的温度以形成结晶产物;
将所述产物进行铵交换;以及
通过液相或固体离子交换、浸渍或直接合成结合来将第一和第二金属引入到所述结晶材料中。
16.根据权利要求15所述的方法,其中所述氧化铝源和二氧化硅源包含钾交换的、质子交换的、铵交换的Y型沸石,硅酸钾或其混合物。
CN201280058960.2A 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途 Active CN103987662B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161566106P 2011-12-02 2011-12-02
US61/566,106 2011-12-02
PCT/US2012/067485 WO2013082560A1 (en) 2011-12-02 2012-11-30 Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox

Publications (2)

Publication Number Publication Date
CN103987662A true CN103987662A (zh) 2014-08-13
CN103987662B CN103987662B (zh) 2018-10-23

Family

ID=47358300

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201280058962.1A Pending CN104039702A (zh) 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途
CN201280058960.2A Active CN103987662B (zh) 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途
CN201810052873.5A Pending CN108249454A (zh) 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280058962.1A Pending CN104039702A (zh) 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810052873.5A Pending CN108249454A (zh) 2011-12-02 2012-11-30 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途

Country Status (7)

Country Link
US (1) US9517458B2 (zh)
EP (2) EP2785643B1 (zh)
JP (3) JP6104270B2 (zh)
KR (2) KR102170639B1 (zh)
CN (3) CN104039702A (zh)
BR (2) BR112014012818A2 (zh)
WO (2) WO2013082550A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530623A (zh) * 2015-03-03 2018-01-02 巴斯夫公司 具有提高的高温和低温性能的贫NOx捕集
CN109070066A (zh) * 2016-05-03 2018-12-21 优美科股份公司及两合公司 活性scr催化剂
CN111252781A (zh) * 2020-02-05 2020-06-09 浙江大学 无有机模板剂晶种法合成高硅kfi沸石分子筛的方法
CN111762795A (zh) * 2020-07-13 2020-10-13 包头稀土研究院 含有稀土元素的分子筛及其生产方法
CN115055206A (zh) * 2021-08-27 2022-09-16 华中科技大学 一种酸性位保护改性的Cu-SAPO-34催化剂及其制备方法和应用

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007089A (ko) * 2009-04-17 2020-01-21 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
EP3103979B1 (de) * 2010-09-13 2018-01-03 Umicore AG & Co. KG Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
EP2659973B1 (en) * 2010-12-28 2018-08-29 Tosoh Corporation Zeolite having copper and alkali earth metal supported thereon
BR112014012818A2 (pt) * 2011-12-02 2017-06-13 Pq Corp material cristalino microporoso estabilizado, o processo de fabricaçãodo mesmo, e o uso para redução catalítica seletiva de nox
US9981256B2 (en) * 2011-12-02 2018-05-29 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
RU2634899C2 (ru) * 2012-04-11 2017-11-08 Джонсон Мэтти Паблик Лимитед Компани Цеолитные катализаторы, содержащие металлы
WO2014062952A1 (en) * 2012-10-19 2014-04-24 Basf Corporation 8-ring small pore molecular sieve with promoter to improve low temperature performance
KR102227793B1 (ko) * 2013-08-30 2021-03-15 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx를 함유하는 배기가스를 처리하기 위한 제올라이트 블렌드 촉매
US9283548B2 (en) 2013-11-19 2016-03-15 Toyota Motor Engineering & Manufacturing North America, Inc. Ceria-supported metal catalysts for the selective reduction of NOx
RU2724261C2 (ru) * 2014-03-24 2020-06-22 Джонсон Мэтти Паблик Лимитед Компани Катализатор для очистки выхлопного газа
US9561469B2 (en) 2014-03-24 2017-02-07 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas
DE102014205783A1 (de) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Katalysator sowie Verfahren zum Herstellen eines Katalysator
JP5740040B1 (ja) * 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
JP5732170B1 (ja) * 2014-07-07 2015-06-10 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
US10807082B2 (en) * 2014-10-13 2020-10-20 Johnson Matthey Public Limited Company Zeolite catalyst containing metals
KR102402475B1 (ko) * 2015-04-09 2022-05-25 에코비스트 카탈리스트 테크놀로지스 엘엘씨 안정화된 미세다공성 결정질 물질, 이를 제조하는 방법, 및 NOx의 선택적 촉매 환원을 위한 용도
US10377638B2 (en) 2015-04-09 2019-08-13 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
JP6599637B2 (ja) 2015-05-13 2019-10-30 イビデン株式会社 ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置
CN104891528A (zh) * 2015-06-12 2015-09-09 杭州回水科技股份有限公司 铜胺络合物作为模板剂固相合成Cu-SAPO-34分子筛的方法
CN108349742A (zh) * 2015-11-27 2018-07-31 三菱化学株式会社 八元氧环沸石和aei型沸石的制造方法
CN109071245B (zh) * 2016-02-01 2022-03-04 优美科股份公司及两合公司 用于直接合成含铁的aei-沸石催化剂的方法
CA3026817C (en) * 2016-06-08 2024-01-16 Basf Corporation Copper-promoted zeolitic materials of the cha framework structure from organotemplate-free synthesis and use thereof in the selective catalytic reduction of nox
WO2018025244A1 (en) * 2016-08-05 2018-02-08 Basf Corporation Selective catalytic reduction articles and systems
CN110997138A (zh) * 2017-06-09 2020-04-10 巴斯夫公司 用于NOx减排的具有受控孔隙率的催化洗涂层
US11192097B2 (en) 2017-07-11 2021-12-07 Shell Oil Company Catalyst and method of use thereof in conversion of NOx and N2O
CN110869123A (zh) 2017-07-11 2020-03-06 国际壳牌研究有限公司 催化剂和其使用方法
CN111867976B (zh) 2018-03-21 2024-03-22 巴斯夫公司 Cha沸石材料和相关合成方法
US11261097B2 (en) * 2018-05-14 2022-03-01 Umicore Ag & Co. Kg Stable small-pore zeolites
WO2019223761A1 (en) * 2018-05-25 2019-11-28 Basf Se Rare earth element containing aluminum-rich zeolitic material
CN113039157A (zh) * 2018-09-11 2021-06-25 巴斯夫公司 制备具有骨架类型aei的沸石材料的方法
CN112585090B (zh) * 2018-10-23 2023-12-15 N.E.化学株式会社 Cu-P共负载沸石的制造方法、能够用于其的催化剂前体组合物及处理液、以及层叠催化剂的制造方法
WO2020085169A1 (ja) * 2018-10-23 2020-04-30 エヌ・イーケムキャット株式会社 Cu-P共担持ゼオライト、並びに、これを用いた選択的還元触媒及び排ガス用触媒
CN109622029A (zh) * 2019-01-21 2019-04-16 黑龙江大学 选择性催化还原氮氧化物的催化剂的制备方法及应用
CN110193378B (zh) * 2019-05-27 2022-02-11 天津大学 一种CuM/SAPO-34分子筛的制备方法及其应用
CN114555525A (zh) * 2019-08-02 2022-05-27 巴斯夫公司 包括有机和无机结构导向剂的菱沸石合成方法和具有片状形态的菱沸石沸石
EP3812034A1 (en) * 2019-10-24 2021-04-28 Dinex A/S Durable copper-scr catalyst
KR20220060316A (ko) * 2020-11-04 2022-05-11 현대자동차주식회사 NOx 저장용 촉매 및 이의 제조 방법
JP7320568B2 (ja) * 2021-08-04 2023-08-03 株式会社キャタラー 排ガス浄化触媒
JP7372302B2 (ja) 2021-12-06 2023-10-31 株式会社キャタラー 排ガス浄化触媒装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215960A (zh) * 2008-11-06 2011-10-12 巴斯夫公司 具有低二氧化硅与氧化铝比率的菱沸石催化剂
WO2012145323A1 (en) * 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676204B2 (ja) * 1988-12-20 1994-09-28 ユニオン・カーバイド・コーポレーション モレキュラーシーブの製造方法
US5026532A (en) * 1989-04-06 1991-06-25 Air Products And Chemicals, Inc. Process for the preparation of an improved chabazite for the purification of bulk gases
US6689709B1 (en) * 2000-11-15 2004-02-10 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
US6793911B2 (en) * 2002-02-05 2004-09-21 Abb Lummus Global Inc. Nanocrystalline inorganic based zeolite and method for making same
KR101017490B1 (ko) * 2007-03-26 2011-02-25 피큐 코포레이션 8-고리 기공 입구 구조를 갖는 분자체 또는 제올라이트를 포함하는 신규한 미세다공성 결정상 물질, 이를 제조하는 방법, 및 이를 이용하는 방법
EP2517776B2 (en) * 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Transition metal/kfi-zeolite scr catalyst
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
KR20200007089A (ko) * 2009-04-17 2020-01-21 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
EP2687284A1 (en) * 2009-06-08 2014-01-22 Basf Se Cu containing silicoaluminophosphate (Cu-SAPO-34)
EP2308596B1 (en) * 2009-10-07 2016-09-21 Ford Global Technologies, LLC Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof
JP5797749B2 (ja) 2010-05-21 2015-10-21 ピーキュー コーポレイション NOx還元のための新規の金属含有ゼオライトベータ
EP3103979B1 (de) * 2010-09-13 2018-01-03 Umicore AG & Co. KG Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
BR112014012818A2 (pt) * 2011-12-02 2017-06-13 Pq Corp material cristalino microporoso estabilizado, o processo de fabricaçãodo mesmo, e o uso para redução catalítica seletiva de nox

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215960A (zh) * 2008-11-06 2011-10-12 巴斯夫公司 具有低二氧化硅与氧化铝比率的菱沸石催化剂
WO2012145323A1 (en) * 2011-04-18 2012-10-26 Pq Corporation Large crystal, organic-free chabazite, methods of making and using the same
CN103561865A (zh) * 2011-04-18 2014-02-05 Pq公司 大晶体、不含有机物的菱沸石以及制造和使用其的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530623A (zh) * 2015-03-03 2018-01-02 巴斯夫公司 具有提高的高温和低温性能的贫NOx捕集
CN109070066A (zh) * 2016-05-03 2018-12-21 优美科股份公司及两合公司 活性scr催化剂
CN109070066B (zh) * 2016-05-03 2022-01-04 优美科股份公司及两合公司 活性scr催化剂
CN111252781A (zh) * 2020-02-05 2020-06-09 浙江大学 无有机模板剂晶种法合成高硅kfi沸石分子筛的方法
CN111252781B (zh) * 2020-02-05 2022-01-07 浙江大学 无有机模板剂晶种法合成高硅kfi沸石分子筛的方法
CN111762795A (zh) * 2020-07-13 2020-10-13 包头稀土研究院 含有稀土元素的分子筛及其生产方法
CN115055206A (zh) * 2021-08-27 2022-09-16 华中科技大学 一种酸性位保护改性的Cu-SAPO-34催化剂及其制备方法和应用

Also Published As

Publication number Publication date
WO2013082560A1 (en) 2013-06-06
KR102170639B1 (ko) 2020-10-27
CN108249454A (zh) 2018-07-06
JP6320298B2 (ja) 2018-05-09
US9517458B2 (en) 2016-12-13
BR112014012818A2 (pt) 2017-06-13
US20130142727A1 (en) 2013-06-06
EP2785644A1 (en) 2014-10-08
BR112014012846A2 (pt) 2017-06-13
KR102078083B1 (ko) 2020-02-20
CN103987662B (zh) 2018-10-23
JP6104270B2 (ja) 2017-03-29
JP2015502909A (ja) 2015-01-29
KR20140107365A (ko) 2014-09-04
EP2785643A1 (en) 2014-10-08
WO2013082550A1 (en) 2013-06-06
CN104039702A (zh) 2014-09-10
BR112014012846B1 (pt) 2021-10-26
EP2785643B1 (en) 2020-07-01
JP6427610B2 (ja) 2018-11-21
EP2785644B1 (en) 2019-05-01
KR20140107366A (ko) 2014-09-04
JP2015505290A (ja) 2015-02-19
JP2017141154A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
CN103987662A (zh) 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途
US9272272B2 (en) Process for the direct synthesis of Cu containing zeolites having CHA structure
JP6169069B2 (ja) 大型結晶で有機を含まないチャバザイトと、同材料の作成方法および使用方法
US9981256B2 (en) Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
WO2017090382A1 (ja) 酸素8員環ゼオライト及びaei型ゼオライトの製造方法
JP2015502909A5 (zh)
CN101674885A (zh) 包含具有8元环开孔结构的分子筛或沸石的新型微孔结晶材料及其制备方法和应用
MX2012007059A (es) Chabazita de silice alto para reduccion catalitica selectiva, metodos de elaboracion usando la misma.
CA2822788A1 (en) Chabazite-type zeolite and method for producing same, copper loaded low-silica zeolite and nox reductive removal catalyst containing the zeolite, and method of nox reductive removal using this catalyst
CN112243427B (zh) 具有高酸度的低二氧化硅菱沸石沸石
CN114206495A (zh) 脱硝催化剂及使用该催化剂的脱硝方法
CN107548380B (zh) 稳定化的微孔晶态材料、其制备方法和用于NOx的选择性催化还原的用途
CN107362824A (zh) 获自无有机模板合成法的含铁和铜的沸石β
US10377638B2 (en) Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220321

Address after: Pennsylvania, America

Patentee after: Ekovist Catalyst Technology Co.,Ltd.

Address before: Pennsylvania USA

Patentee before: PQ Corp.