CN103979617B - LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法 - Google Patents

LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法 Download PDF

Info

Publication number
CN103979617B
CN103979617B CN201410045429.2A CN201410045429A CN103979617B CN 103979617 B CN103979617 B CN 103979617B CN 201410045429 A CN201410045429 A CN 201410045429A CN 103979617 B CN103979617 B CN 103979617B
Authority
CN
China
Prior art keywords
lanio
film
composition
presoma
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410045429.2A
Other languages
English (en)
Other versions
CN103979617A (zh
Inventor
藤井顺
樱井英章
曽山信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN103979617A publication Critical patent/CN103979617A/zh
Application granted granted Critical
Publication of CN103979617B publication Critical patent/CN103979617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Paints Or Removers (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

本发明提供一种LaNiO3薄膜形成用组合物、及使用该组合物的LaNiO3薄膜形成方法,其课题在于形成一种极少产生空隙的均匀的LaNiO3薄膜。本发明的LaNiO3薄膜形成用组合物包含:LaNiO3前驱体;第1有机溶剂,选自羧酸、醇、酯、酮类、醚类、环烷类、芳香族系及四氢呋喃中的一种或两种以上;稳定剂,选自β‑二酮、β‑酮类、β‑酮酯类、含氧酸类、二醇、三醇、羧酸、烷醇胺及多元胺中的一种或两种以上;及第2有机溶剂,沸点为150~300℃且具有20~50dyn/cm的表面张力,其中,组合物100质量%中的LaNiO3前驱体的比例以氧化物换算为1~20质量%,稳定剂的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过0且为10摩尔以下,组合物100质量%中的第2有机溶剂的比例为5~20质量%。

Description

LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形 成方法
技术领域
本发明涉及一种用于通过化学溶液沉积法(Chemical Solution Deposition、CSD法)形成用于薄膜电容器、铁电随机存取存储器(Ferroelectric Random Access Memory,FeRAM)用电容器、压电元件或热释电型红外线检测元件等的电极中的LaNiO3薄膜的组合物、及使用该组合物的LaNiO3薄膜的形成方法。更详细而言,涉及一种极少产生空隙且能够均匀成膜的LaNiO3薄膜形成用组合物、及使用该组合物的LaNiO3薄膜的形成方法。
背景技术
众所周知,LaNiO3(LNO)为具有高导电性等的电性优异且在(100)面持有较强的自取向性的物质。而且,LaNiO3(LNO)薄膜具有准立方晶的钙钛矿型结构,因此与钙钛矿型铁电薄膜的相容性良好且晶格常数的失配小,因此被用作在薄膜电容器等中形成向(100)面优先取向的铁电薄膜时的结晶取向性控制层。并且,LaNiO3(LNO)薄膜的膜自身的电阻较低,与在电极中使用Pt等金属时相比,铁电膜的极化反转疲劳特性也优异,因此还能够将其自身利用于铁电随机存取存储器用电容器和压电元件等的电极膜中。而且,由于具有透光性,因此还能够利用于热释电型红外线检测元件等的电极膜等中。通常,LaNiO3薄膜除了通过溅射法等真空蒸镀法形成外,还能够通过如下溶胶凝胶法等CSD法形成:涂布在溶剂中溶解有LaNiO3前驱体的溶胶凝胶液(组合物)来形成涂膜,并以预定温度对该涂膜进行烧成来使其结晶化(例如参考专利文献1)。
专利文献1:日本特许第3079262号(权利要求3,[0013]段)
然而,基于溶胶凝胶法等CSD法的LaNiO3薄膜的形成方法还不能说已充分确立,例如有时会因组合物中所含的溶剂的种类和烧成温度等的成膜条件的不同而发生各种不良情况。上述现有的专利文献1中所示的制造方法中,有时存在在烧成后的薄膜中产生大量空隙而无法均匀地成膜的不良情况。可以认为,这主要是由于在所使用的组合物中含有表面张力较大的水溶性成分作为溶剂所致。由于空隙的产生而膜厚变得不均匀时,产生膜的电阻率增大等问题。鉴于这种情况,本发明人在通过溶胶凝胶法形 成LaNiO3薄膜时,尤其从组合物中所含的材料的选择等观点出发而进行了改良,其结果,完成了能够大幅抑制空隙的产生并进行均匀成膜的本发明。
发明内容
本发明的目的在于提供一种极少产生空隙且能够均匀成膜的LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法。
本发明的第1观点为一种用于形成LaNiO3薄膜的组合物,其中,该组合物含有:LaNiO3前驱体;第1有机溶剂,选自羧酸、醇、酯、酮类、醚类、环烷类、芳香族系及四氢呋喃中的一种或两种以上;稳定剂,选自β-二酮、β-酮类、β-酮酯类、含氧酸类、二醇、三醇、羧酸、烷醇胺及多元胺中的一种或两种以上;及第2有机溶剂,沸点为150~300℃且具有20~50dyn/cm的表面张力,组合物100质量%中的LaNiO3前驱体的比例以氧化物换算为1~20质量%,稳定剂的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过0且为10摩尔以下,组合物100质量%中的第2有机溶剂的比例为5~20质量%。
本发明的第2观点为基于第1观点的发明,其中,LaNiO3前驱体为金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。
本发明的第3观点为基于第2观点的发明,其中,进一步LaNiO3前驱体中,成为La源的LaNiO3前驱体或成为Ni源的LaNiO3前驱体中的至少一个为醋酸盐、硝酸盐或辛酸盐。
本发明的第4观点为基于第1至第3观点的发明,其中,第2有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基甲酰胺、4-丁内酯、N-甲基吡咯烷酮、及碳酸丙烯酯中的至少一种。
本发明的第5观点为使用第1至第4观点的LaNiO3薄膜形成用组合物的LaNiO3薄膜的形成方法。
本发明的第6观点为一种LaNiO3薄膜的形成方法,其中,将第1至4观点的LaNiO3薄膜形成用组合物涂布于耐热性基板上来形成涂膜,将具有该涂膜的基板在大气压的氧化气氛或含水蒸气气氛中预烧后,或者反复进行两次以上从所述涂膜的形成至预烧的过程直至成为所希望的厚度以后,以结晶温度以上的温度进行烧成。
本发明的第7观点为一种制造方法,该制造方法制造具有通过第5或第6观点的方法形成的LaNiO3薄膜的薄膜电容器、电容器、集成无源器件、DRAM存储器用电容器、层叠电容器、铁电随机存取存储器用电容器、热释电型红外线检测元件、压电 元件、电光元件、驱动器、谐振器、超声波马达、电器开关、光学开关或LC噪声滤波器元件的复合电子组件的各电极、及用于所述复合电子组件的介质层的结晶取向性控制层。
本发明的第1观点的组合物包含:LaNiO3前驱体;第1有机溶剂,选自羧酸、醇、酯、酮类、醚类、环烷类、芳香族系及四氢呋喃中的一种或两种以上;稳定剂,选自β-二酮、β-酮类、β-酮酯类、含氧酸类、二醇、三醇、羧酸、烷醇胺及多元胺中的一种或两种以上;及第2有机溶剂,沸点为150~300℃且具有20~50dyn/cm的表面张力。并且,组合物100质量%中的LaNiO3前驱体的比例以氧化物换算为1~20质量%,稳定剂的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过0且为10摩尔以下,组合物100质量%中的第2有机溶剂的比例为5~20质量%。如此,本发明的组合物中,不会如以往那样作为溶剂使用水溶性成分,特别地,除了上述第1有机溶剂外,还以预定比例含有具有预定范围的沸点及表面张力的第2有机溶剂,由此在烧成后,能够大幅抑制在膜中产生的空隙来均匀地成膜。并且,通过以预定比例含有上述稳定剂,能够提高保存稳定性。
本发明的第2观点的LaNiO3薄膜形成用组合物中,作为上述LaNiO3前驱体,含有金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。由此,能够进一步提高组合物的组成均匀性。
本发明的第3观点的LaNiO3薄膜形成用组合物中,在上述LaNiO3前驱体中成为La源的LaNiO3前驱体或成为Ni源的LaNiO3前驱体中的至少一个中含有醋酸盐、硝酸盐或辛酸盐。作为LaNiO3前驱体,尤其通过使用醋酸盐、硝酸盐或辛酸盐,在制备浓度比较高的组合物时也能够进一步提高保存稳定性。
本发明的第4观点的LaNiO3薄膜形成用组合物中,作为上述第2有机溶剂,含有N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基甲酰胺、4-丁内酯、N-甲基吡咯烷酮、及碳酸丙烯酯中的至少一种。作为具有预定范围的沸点及表面张力的第2有机溶剂,通过使用这些可进一步提高减少空隙的效果。并且,能够提高涂膜性。
本发明的第5或第6观点的LaNiO3薄膜的形成方法中,使用上述本发明的LaNiO3薄膜形成用组合物来形成LaNiO3薄膜,因此能够形成极少产生空隙且膜厚均匀的LaNiO3薄膜。
本发明的第7观点的制造方法中,在制造例如铁电随机存取存储器和压电元件等时,将通过上述本发明的形成方法得到的极少产生空隙且均匀的薄膜使用于铁电随机存取存储器的电容器电极和压电体电极中,从而能够获得疲劳特性优异的设备。并且, 通过上述本发明的形成方法得到的膜具有透光性,因此还能够利用于热释电型红外线检测元件的电极膜。并且,LaNiO3薄膜在(100)面具有自取向性,因此尤其在制造薄膜电容器和压电元件等时,还能够利用于用于控制介质层的结晶取向性的结晶取向性控制层的制造。
附图说明
图1是以SEM(Scanning Electron Microscope,扫描电子显微镜)观察通过实施例1~4得到的LaNiO3薄膜的表面时的照片图。
图2是以SEM观察通过比较例1得到的LaNiO3薄膜的表面时的照片图。
具体实施方式
以下,对用于实施本发明的方式进行说明。
本发明的组合物为用于形成LaNiO3薄膜的组合物的改良组合物,其特征性的构成在于,组合物中除了LaNiO3前驱体、后述的第1有机溶剂以及稳定剂以外,还含有沸点为150~300℃且具有20~50dyn/cm的表面张力的第2有机溶剂,组合物100质量%中的LaNiO3前驱体的比例以氧化物换算为1~20质量%,稳定剂的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过0且为10摩尔以下,组合物100质量%中的第2有机溶剂的比例为5~20质量%。
组合物中所含的上述LaNiO3前驱体是用于在形成后的LaNiO3薄膜中构成复合金属氧化物(LaNiO3)的原料,可举出La或Ni的各金属元素的金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。具体而言,作为成为La源的LaNiO3前驱体,可举出醋酸镧、辛酸镧、2-乙基己酸镧等金属羧酸盐;硝酸镧等金属硝酸盐;异丙醇镧等金属醇盐;乙酰丙酮合镧等金属β-二酮络合物等。并且,作为成为Ni源的LaNiO3前驱体,可举出醋酸镍、辛酸镍、2-乙基己酸镍等金属羧酸盐;硝酸镍等金属硝酸盐;乙酰丙酮镍等金属β-二酮络合物等。其中,从溶解于溶剂中的溶解度的高低及保存稳定性等方面来看,LaNiO3前驱体中,优选成为La源的LaNiO3前驱体或成为Ni源的LaNiO3前驱体中的至少一个为醋酸盐、硝酸盐或辛酸盐。另外,当La源、Ni源为水合物时,可以预先通过加热等手段来进行脱水之后使用,也可以在前驱体的合成中通过蒸馏等手段来进行脱水。
将组合物100质量%中所占的上述LaNiO3前驱体(La源与Ni源的总计)的比例以氧化物换算限定于上述范围的原因在于,LaNiO3前驱体的比例小于下限值时,涂布膜的膜厚变得过薄,因此发生在膜中产生龟裂的不良情况,另一方面,若超过上限值,则有产生沉淀等的保存稳定性变差的不良情况发生。其中,组合物100质量%中所含的上述LaNiO3前驱体的比例优选设为以氧化物换算为3~15质量%。另外,以氧化物换算的比例是指,假设组合物中所含的金属元素全部成为氧化物时在组合物100质量%中所占的金属氧化物的比例。并且,成为La源的LaNiO3前驱体或成为Ni源的LaNiO3前驱体的混合比优选设为如La元素与Ni元素的金属原子比(La/Ni)成为1:1的比例。
上述第1有机溶剂使用羧酸、醇(例如乙醇、1-丁醇、除二醇以外的多元醇)、酯、酮类(例如丙酮、丁酮)、醚类(例如甲醚、乙醚)、环烷类(例如环己烷、环己醇)、芳香族系(例如苯、甲苯、二甲苯)以及四氢呋喃等或它们的两种以上的混合溶剂。第1有机溶剂占据组合物中的其他构成成分以外的剩余部分,通过含有上述第1有机溶剂,能够调整组合物中所占的其他构成成分的浓度和比例等。
作为羧酸,具体而言优选使用正丁酸、α-甲基丁酸、异戊酸、2-乙基丁酸、2,2-二甲基丁酸、3,3-二甲基丁酸、2,3-二甲基丁酸、3-甲基戊酸、4-甲基戊酸、2-乙基戊酸、3-乙基戊酸、2,2-二甲基戊酸、3,3-二甲基戊酸、2,3-二甲基戊酸、2-乙基己酸及3-乙基己酸。
并且,作为酯,优选使用醋酸乙酯、醋酸丙酯、醋酸正丁酯、醋酸仲丁酯、醋酸叔丁酯、醋酸异丁酯、醋酸正戊酯、醋酸仲戊酯、醋酸叔戊酯及醋酸异戊酯;作为醇,使用1-丙醇、2-丙醇、1-丁醇、2-丁醇、异丁醇、1-戊醇、2-戊醇、2-甲基-2-戊醇及2-甲氧基乙醇比较合适。
作为上述稳定剂,使用选自β-二酮类(例如乙酰丙酮、七氟丁酰基新戊酰基甲烷、二新戊酰基甲烷、三氟乙酰丙酮、苯甲酰丙酮等)、β-酮酸类(例如乙酰醋酸、丙酰醋酸、苯甲酰醋酸等)、β-酮酯类(例如上述酮酸的甲酯、丙酯、丁酯等低级烷基酯类)、含氧酸类(例如乳酸、羟基乙酸、α-羟基丁酸、水杨酸等)、二醇、三醇、羧酸、烷醇胺类(例如二乙醇胺、三乙醇胺、单乙醇胺)及多元胺中的一种或两种以上。通过添加这些稳定剂,能够提高组合物的保存稳定性。其中,尤其从提高保存稳定性的效果较高的观点来看,优选二乙醇胺等烷醇胺类。将稳定剂的比例限定为相对于组合物中的上述LaNiO3前驱体的总量1摩尔超过0且在10摩尔以下的原因在于,若稳定剂的比例超过上限值则稳定剂的热分解变慢, 发生在膜中残留空隙的不良情况。其中,稳定剂的比例优选设为相对于上述LaNiO3前驱体的总量1摩尔为2~8摩尔。作为稳定剂优选的羧酸,可举出醋酸、辛酸或2-乙基己酸等。其中,将与第1有机溶剂相同的羧酸用作稳定剂时,上述稳定剂的比例的上限表示作为稳定剂的羧酸的比例,超过该上限的组合物中的剩余部分表示作为第1有机溶剂的羧酸的比例。
上述第2有机溶剂为具有上述预定范围的沸点及表面张力的有机溶剂,通过添加该第2有机溶剂,尤其在烧成后可得到大幅抑制在膜中产生的空隙的效果。可认为其技术性的原因在于,由于组合物分解而产生的气体成分易通过在烧成等高温工艺中由第2有机溶剂形成的膜中的微细的空穴而脱离。在此,将第2有机溶剂限定为沸点在150~300℃的范围的原因在于,即使添加沸点低于下限值的有机溶剂作为第2有机溶剂也不会产生上述微细的空穴,因此气体成分不充分脱离而会残留于膜中并成为产生空隙的原因。另一方面,若添加沸点超过上限值的有机溶剂作为第2有机溶剂,则第2有机溶剂本身的分解变慢而成为残留于膜中并产生空隙的原因。并且,限定为表面张力在20~50dyn/cm的范围内的有机溶剂的原因在于,添加表面张力低于下限值的有机溶剂作为第2有机溶剂时,组合物的表面张力变得过小,涂布膜的膜厚变得过薄。另一方面,添加表面张力超过上限值的有机溶剂作为第2溶剂时,组合物的表面张力变得过大而成为产生龟裂的原因。其中,优选将沸点在150~250℃的范围内且表面张力在30~50dyn/cm的范围内的有机溶剂用作第2有机溶剂。作为第2有机溶剂,具体而言可举出N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基甲酰胺、4-丁内酯、N-甲基吡咯烷酮、及碳酸丙烯酯中的至少一种。将组合物100质量%中所占的第2有机溶剂的比例限定于5~20质量%的原因在于,第2有机溶剂的比例低于下限值时抑制空隙的效果不充分,另一方面,若超过上限值则组合物的表面张力偏离适当值,涂膜的均匀性下降,无法充分获得抑制空隙的效果。其中,第2有机溶剂的比例优选设为在组合物100质量%中为5~15质量%。
为了得到本发明的LaNiO3薄膜形成用组合物,首先,分别准备上述成为La源的LaNiO3前驱体和成为Ni源的LaNiO3前驱体,并以成为赋予上述所希望的金属原子比的比例进行称量。并且,准备上述稳定剂,并以相对于上述LaNiO3前驱体(成为La源的LaNiO3前驱体和成为Ni源的LaNiO3前驱体的总量)1摩尔成为上述预定比例的方式进行称量。接着,将成为Ni源的LaNiO3前驱体、上述第1有机溶剂及上述稳定剂投入到反应容器内进行混合。另外,Ni源为水合物时,可进行用于脱水的蒸馏。在此,添加成为La源的LaNiO3前驱体,且优选在惰性气 体气氛中以80~200℃的温度加热而反应30分钟~2小时,从而制备合成液。另外,La源为水合物时,可进行用于脱水的蒸馏。之后,进一步添加上述第1有机溶剂来稀释至上述前驱体浓度成为上述所希望的范围。并且,将上述第2有机溶剂以成为上述预定比例的方式投入到反应容器内并进行搅拌来得到组合物。另外,在制备后,为了抑制组合物随时间而变化,优选在惰性气体气氛中以80~200℃的温度加热30分钟~2小时。
本发明中,优选通过对上述所制备的组合物进行过滤处理等来去除颗粒而使粒径0.5μm以上(尤其0.3μm以上,0.2μm则更好)的颗粒的个数在每1毫升溶液内为50个/毫升以下。另外,组合物中的颗粒的个数的测定中使用光散射式颗粒计数器。
若组合物中的粒径0.5μm以上的颗粒的个数超过50个/毫升,则长期保存稳定性差。该组合物的粒径0.5μm以上的颗粒的个数越少越优选,尤其优选为30个/毫升以下。
为了成为上述颗粒个数而对制备后的组合物进行处理的方法无特别限定,例如可举出如下方法。作为第1方法,为使用市售的0.2μm孔径的膜滤器并用注射器进行加压输送的过滤法。作为第2方法,为组合了市售的0.05μm孔径的膜滤器和加压罐的加压过滤法。作为第3方法,为组合了上述第2方法中使用的过滤器和溶液循环槽的循环过滤法。
在任一种方法中均因溶液加压输送压力而使通过过滤器的颗粒捕捉率不同。通常已知压力越低捕捉率越高,特别是第1方法、第2方法,为了实现将粒径0.5μm以上的颗粒的个数设为50个/毫升以下的条件,优选以低压使溶液非常缓慢地通过过滤器。
接着,对本发明的LaNiO3薄膜的形成方法进行说明。首先,在基板上涂布上述LaNiO3薄膜形成用组合物来形成具有所希望的厚度的涂膜。关于涂布法没有特别限定,可举出旋涂法、浸涂法、液态源雾化化学沉积(LSMCD,Liquid Source Misted ChemicalDeposition)法或静电喷涂法等。形成LaNiO3薄膜的基板根据其用途等而不同,例如用作薄膜电容器等的结晶取向性控制层时,使用形成有下部电极的硅基板或蓝宝石基板等耐热性基板。作为形成于基板上的下部电极,使用Pt、Ir和Ru等具有导电性且不与LaNiO3薄膜发生反应的材料。并且,能够使用在基板上隔着粘附层和绝缘体膜等形成有下部电极的基板等。具体而言,可举出具有Pt/Ti/SiO2/Si、Pt/TiO2/SiO2/Si、Pt/IrO/Ir/SiO2/Si、Pt/TiN/SiO2/Si、Pt/Ta/SiO2/Si、Pt/Ir/SiO2/Si的层叠结构(下部电极/粘附层/绝缘体膜/基板)的基板等。另一方面, 利用于铁电随机存取存储器用电容器、压电元件、热释电型红外线检测元件等的电极时,能够使用硅基板、SiO2/Si基板、蓝宝石基板等耐热性基板。
在基板上形成涂膜后,对涂膜进行预烧再进行烧成而使其结晶化。预烧使用加热板或RTA等在预定条件下进行。预烧是为了去除溶剂并且使金属化合物通过热分解或水解来转化成复合氧化物而进行,因此优选在空气中、氧化气氛中、或含水蒸气气氛中进行。即使为空气中的加热,也能够通过空气中的湿气确保水解中所需的水分。另外,预烧前,特别地,为了去除低沸点成分和吸附的水分子,可利用加热板等以60~120℃的温度进行1~5分钟的低温加热。预烧优选以150~550℃的温度进行1~10分钟。关于组合物的从涂布至预烧的工序,以一次的涂布便获得所希望的膜厚时,进行一次从涂布至预烧的工序后,进行烧成。或者,也能够反复进行多次从涂布至预烧的工序并在最后统一进行烧成以达到所希望的膜厚。
烧成是用于以结晶化温度以上的温度对预烧后的涂膜进行烧成而使其结晶化的工序,由此可得到LaNiO3薄膜。该结晶化工序的烧成气氛优选为O2、N2、Ar2、N2O、H2等或它们的混合气体等。烧成优选以450~900℃保持1~60分钟来进行。烧成可以通过快速加热处理(RTA处理)来进行。从室温至上述烧成温度为止的升温速度优选设为10~100℃/秒。
通过以上工序可得到LaNiO3薄膜。如此形成的LaNiO3薄膜的表面电阻率低、导电性等优异且具有透光性,因此能够使用于铁电随机存取存储器用电容器的电极膜和压电元件等的电极膜、及热释电型红外线检测元件的电极膜等中。而且,LaNiO3薄膜在(100)面具有自取向性,因此能够在薄膜电容器等中很好地用作用于使介质层的结晶取向性向(100)面优先取向的结晶取向性控制层。并且,尤其当为压电元件时,能够提高压电特性。
[实施例]
以下,结合比较例对本发明的实施例进行详细说明。
<实施例1-1>
首先,作为LaNiO3前驱体,准备醋酸镍四水合物(Ni源)和辛酸镧(La源),并以La与Ni的金属原子比成为1:1的方式进行称量。并且,作为稳定剂,准备相对于上述前驱体的总量1摩尔成为5摩尔的量的二乙醇胺。
将上述醋酸镍四水合物、作为第1有机溶剂的1-丁醇、及作为稳定剂的二乙醇胺投入到反应容器内进行混合后,进行蒸馏。进一步添加上述辛酸镧和作为第1溶剂的醋酸异戊酯,在惰性气体气氛中以140℃的温度加热1小时,从而制备出合 成液(酯混合溶液)。之后,再添加1-丁醇来稀释至预定浓度。并且,将作为第2有机溶剂的N,N-二甲基甲酰胺以在制备后的组合物100质量%中所占的比例成为10质量%的方式投入到反应容器内并进行搅拌,从而制备出上述前驱体的浓度以氧化物换算为5质量%的组合物。制备后,通过组合了膜滤器和加压罐的加压过滤法进行过滤。
接着,将上述所得到的组合物滴加到安装于旋转涂布机上且晶面向(100)轴向取向的SiO2/Si基板上,并以2000rpm的转速进行20秒的旋涂,从而在上述基板上形成涂膜。接着,在进行预烧及烧成之前,利用加热板将形成有涂膜的上述基板在大气气氛中以75℃的温度保持1分钟,以此来去除低沸点成分和吸附的水分子。接着,利用加热板将形成于上述基板上的涂膜以400℃的温度保持5分钟,以此来进行预烧。之后,利用RTA,在氧气氛中以升温速度10℃/秒升温至800℃,并以该温度保持5分钟,以此来进行烧成。由此,在上述基板上形成LaNiO3薄膜。另外,上述从涂膜的形成至预烧为止的工序只进行一次而不反复,之后进行一次烧成来形成为所希望的总厚度。
<实施例1-2~1-6,比较例1>
除了代替N,N-二甲基甲酰胺而使用沸点及表面张力不同的以下表1所示的溶剂来作为第2有机溶剂以外,与实施例1-1相同地制备组合物并形成LaNiO3薄膜。
<实施例1-7>
除了反复进行五次从涂膜的形成至预烧为止的工序后进行一次烧成来形成为所希望的总厚度以外,与实施例1-4相同地制备组合物并形成LaNiO3薄膜。
<实施例2-1~2-3,比较例2-1、2-2>
如以下表1所示,除了调整各成分的比例来改变组合物中的以氧化物换算的前驱体的浓度以外,与实施例1-4相同地制备组合物并形成LaNiO3薄膜。
<实施例3-1~3-2,比较例3-1、3-2>
如以下表1所示,除了改变稳定剂相对于前驱体1摩尔的比例以外,与实施例1-4相同地制备组合物并形成LaNiO3薄膜。另外,比较例3-1中,制备成稳定剂相对于前驱体1摩尔的比例为0摩尔,即不添加稳定剂而制备组合物。
<实施例4-1~4-3,比较例4-1~4-3>
如以下表1所示,除了改变第2有机溶剂即4-丁内酯在组合物100质量%中所占的比例以外,与实施例1-4相同地制备组合物并形成LaNiO3薄膜。另外,比较例4-1中,制备成第2有机溶剂在组合物100质量%中所占的比例为0质量%,即不添加第2有机溶剂而制备组合物。
<比较试验及评价>
评价在实施例1-1~实施例4-3及比较例1~比较例4-3中得到的LaNiO3薄膜的膜厚及空隙的个数。将这些结果示于以下表1。
(1)膜厚:对于所形成的LaNiO3薄膜的截面的厚度,利用SEM(Scanning ElectronMicroscope,扫描型电子显微镜,Hitachi S-4300SE)拍摄截面图像并测量其膜厚。
(2)空隙数:利用上述SEM拍摄LaNiO3薄膜的膜表面,并对存在于每单位面积(25μm2)的空隙直径为0.3μm以上的空隙数进行计数。另外,空隙的形状为圆形时其直径即为空隙直径,若为非圆形时,则空隙直径为长径与短径(与上述长径垂直的最大直径)的平均值。将此时拍摄的实施例1-4、比较例1的膜表面的照片图作为代表图来分别示于图1、图2。
[表1]
如从表1明确可知,对实施例1-1~1-7与比较例1进行比较时,添加甲酰胺来作为第2有机溶剂的比较例1中,在成膜后的膜表面产生了非常多的空隙。可认为这是由于添加表面张力大于预定值的甲酰胺而导致组合物的表面张力变得过大而无法均匀地形成涂膜。相对于此,添加N,N-二甲基甲酰胺等具有预定沸点及 表面张力的溶剂作为第2有机溶剂的实施例1-1~1-7中,能够大幅抑制空隙的产生来均匀地成膜。
并且,对实施例2-1~2-3和比较例2-1、2-2进行比较时,组合物100质量%中的前驱体浓度以氧化物换算时不足1质量%的比较例2-1中,在所形成的LaNiO3薄膜中产生能够以肉眼观察到的程度的空隙,无法形成均匀的膜,从而无法对膜进行评价。并且,前驱体浓度超过20质量%的比较例2-2中,由于在组合物中产生沉淀,因此无法形成LaNiO3薄膜。相对于此,将前驱体浓度设为1~20质量%的范围的实施例2-1~2-3中,能够大幅抑制空隙的产生来均匀地成膜。
并且,对实施例3-1、3-2和比较例3-1、3-2进行比较时,未添加稳定剂的比较例3-1、稳定剂的比例相对于组合物中的LaNiO3前驱体的总量1摩尔超过10摩尔的比较例3-2中,产生了比实施例3-1、3-2更多的空隙。可认为其原因在于,比较例3-1中因未添加稳定剂而在组合物中产生了颗粒,而比较例3-2中稳定剂的热分解变慢。相对于此,相对于LaNiO3前驱体的总量1摩尔添加了10摩尔以下的稳定剂的实施例3-1、3-2中,能够大幅抑制空隙的产生来均匀地成膜。
并且,对实施例4-1~4-3和比较例4-1~4-3进行比较,未添加第2有机溶剂的比较例4-1中,无法获得添加该溶剂所带来的效果,在成膜后的膜表面上产生了非常多的空隙。并且,组合物100质量%中的第2有机溶剂的比例不足5质量%的比较例4-2、及超过20质量%的比较例4-3中,多少可得到抑制空隙的效果,但得不到实施例4-1~4-3的程度的抑制效果。可认为其原因在于,比较例4-2中由于第2有机溶剂不充分而无法得到其添加所带来的充分的效果,而比较例4-3中因添加过多的第2有机溶剂而使组合物的表面张力偏离适当的值,涂膜的均匀性下降。相对于此,将第2有机溶剂的比例设为5~20质量%的实施例4-1~4-3中,能够大幅抑制空隙的产生来均匀地成膜。
产业上的可利用性
本发明能够利用于薄膜电容器、电容器、集成无源器件、DRAM存储器用电容器、层叠电容器、铁电随机存取存储器用电容器、热释电型红外线检测元件、压电元件、电光元件、驱动器、谐振器、超声波马达、电器开关、光学开关或LC噪声滤波器元件的复合电子组件中的各电极、及用于所述复合电子组件的介质层的结晶取向性控制层等的制造。

Claims (10)

1.一种LaNiO3薄膜形成用组合物,其为用于形成LaNiO3薄膜的组合物,所述LaNiO3薄膜形成用组合物的特征在于,
所述组合物包含:LaNiO3前驱体;第1有机溶剂,选自羧酸、醇、酯、酮类、醚类、环烷类、芳香族系及四氢呋喃中的一种或两种以上;作为稳定剂的烷醇胺;及第2有机溶剂,沸点为150~300℃且具有20~50dyn/cm的表面张力,
所述组合物100质量%中的所述LaNiO3前驱体的比例以氧化物换算为1~20质量%,
所述稳定剂的比例相对于所述组合物中的LaNiO3前驱体的总量1摩尔超过0且为10摩尔以下,
所述组合物100质量%中的所述第2有机溶剂的比例为5~20质量%。
2.根据权利要求1所述的LaNiO3薄膜形成用组合物,其中,
所述LaNiO3前驱体为金属羧酸盐、金属硝酸盐、金属醇盐、金属二醇络合物、金属三醇络合物、金属β-二酮络合物、金属β-二酮酯络合物、金属β-亚氨基酮络合物或金属氨基络合物。
3.根据权利要求2所述的LaNiO3薄膜形成用组合物,其中,
所述LaNiO3前驱体中,成为La源的LaNiO3前驱体或成为Ni源的LaNiO3前驱体中的至少一个为醋酸盐、硝酸盐或辛酸盐。
4.根据权利要求1至3中任一项所述的LaNiO3薄膜形成用组合物,其中,
所述第2有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基甲酰胺、4-丁内酯、N-甲基吡咯烷酮及碳酸丙烯酯中的至少一种。
5.一种LaNiO3薄膜的形成方法,其中,
所述LaNiO3薄膜的形成方法使用权利要求1至4中任一项所述的LaNiO3薄膜形成用组合物。
6.一种LaNiO3薄膜的形成方法,其中,
将权利要求1至4中任一项所述的LaNiO3薄膜形成用组合物涂布于耐热性基板上来形成涂膜,将具有所述涂膜的基板在大气压的氧化气氛或含水蒸气气氛中预烧后,或者反复进行两次以上从所述涂膜的形成至预烧的过程直至成为所希望的厚度以后,以结晶温度以上的温度进行烧成。
7.一种制造具有通过权利要求5或6所述的方法形成的LaNiO3薄膜的复合电子组件的各电极的方法,其中,所述复合电子组件包括电容器、集成无源器件、热释电型红外线检测元件、压电元件、电光元件、驱动器、谐振器、超声波马达、电器开关、光学开关或LC噪声滤波器元件。
8.根据权利要求7所述的方法,其中,所述电容器为薄膜电容器、DRAM存储器用电容器、层叠电容器或铁电随机存取存储器用电容器。
9.一种制造用于复合电子组件的介质层的结晶取向性控制层的方法,该复合电子组件具有通过权利要求5或6所述的方法形成的LaNiO3薄膜,其中,所述复合电子组件包括电容器、集成无源器件、热释电型红外线检测元件、压电元件、电光元件、驱动器、谐振器、超声波马达、电器开关、光学开关或LC噪声滤波器元件。
10.根据权利要求9所述的方法,其中,所述电容器为薄膜电容器、DRAM存储器用电容器、层叠电容器或铁电随机存取存储器用电容器。
CN201410045429.2A 2013-02-13 2014-02-08 LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法 Active CN103979617B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-025671 2013-02-13
JP2013025671A JP6024502B2 (ja) 2013-02-13 2013-02-13 LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法

Publications (2)

Publication Number Publication Date
CN103979617A CN103979617A (zh) 2014-08-13
CN103979617B true CN103979617B (zh) 2017-11-14

Family

ID=50033420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410045429.2A Active CN103979617B (zh) 2013-02-13 2014-02-08 LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法

Country Status (5)

Country Link
US (1) US9412485B2 (zh)
EP (1) EP2767613B1 (zh)
JP (1) JP6024502B2 (zh)
CN (1) CN103979617B (zh)
TW (2) TWI601707B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365294B2 (ja) * 2014-03-25 2018-08-01 三菱マテリアル株式会社 LaNiO3薄膜の形成方法
JP2017111954A (ja) * 2015-12-16 2017-06-22 セイコーエプソン株式会社 金属酸化物成膜用組成物、正極複合体、正極複合体の製造方法、電池、および電池の製造方法
KR102038050B1 (ko) * 2018-01-17 2019-11-26 국방과학연구소 박막 커패시터 및 그 제조방법
CN110415985B (zh) * 2019-06-26 2020-12-01 武汉理工大学 一种正极活性材料、其制备方法及正极片、超级电容器
CN113012939B (zh) * 2021-02-22 2022-09-09 四川大学 高耐电压低损耗硅基薄膜电容器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362749A (zh) * 2001-12-07 2002-08-07 中国科学院上海技术物理研究所 镍酸镧导电金属氧化物薄膜材料的制备方法
CN101178954A (zh) * 2007-09-05 2008-05-14 西北有色金属研究院 一种导电型阻隔层LaNiO3的制备方法
CN101863679A (zh) * 2009-04-14 2010-10-20 中国科学院合肥物质科学研究院 镍酸镧薄膜材料的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079262B2 (ja) 1999-02-03 2000-08-21 工業技術院長 透明導電性薄膜及びその製造方法
US6895120B2 (en) * 2001-03-30 2005-05-17 Ricoh Co., Ltd. 5,3 wavelet filter having three high pair and low pair filter elements with two pairs of cascaded delays
US6876536B2 (en) * 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
JP4734823B2 (ja) * 2003-06-11 2011-07-27 富士通株式会社 膜多層構造体及びこれを用いるアクチュエータ素子、容量素子、フィルタ素子
KR100576849B1 (ko) * 2003-09-19 2006-05-10 삼성전기주식회사 발광소자 및 그 제조방법
KR101233702B1 (ko) * 2005-09-06 2013-02-15 도레이 카부시키가이샤 페이스트 조성물, 유전체 조성물, 커패시터 및 페이스트조성물의 제조방법
TWI296162B (en) * 2006-03-14 2008-04-21 Nat Univ Tsing Hua Capacitor comprising a ferroelectric layer of bismuth ferrite and preparation thereof
JP5495512B2 (ja) * 2007-05-30 2014-05-21 キヤノン株式会社 圧電素子の製造方法
CN102077376B (zh) * 2008-06-27 2015-04-22 松下电器产业株式会社 压电体元件和其制造方法
GB0817519D0 (en) 2008-09-24 2008-10-29 Cambridge Entpr Ltd Microtube arrays
KR101265093B1 (ko) * 2008-12-26 2013-05-16 한국과학기술연구원 나노 분말, 나노 잉크 및 마이크로 로드와 그 제조 방법
JP2012018944A (ja) * 2010-07-06 2012-01-26 Panasonic Corp 強誘電体膜の製造方法とそれを用いた強誘電体素子
KR101257842B1 (ko) 2010-08-30 2013-04-24 주식회사 아모그린텍 P-type가스센서용 산화물 나노섬유 및 그 제조방법
JP2012089600A (ja) * 2010-10-18 2012-05-10 Seiko Epson Corp 圧電素子、液滴噴射ヘッドおよび液滴噴射装置ならびに圧電素子の製造方法
JP5716380B2 (ja) * 2010-12-20 2015-05-13 株式会社リコー 電気機械変換素子、電気機械変換素子の製造方法、液滴吐出ヘッド、及び液滴吐出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362749A (zh) * 2001-12-07 2002-08-07 中国科学院上海技术物理研究所 镍酸镧导电金属氧化物薄膜材料的制备方法
CN101178954A (zh) * 2007-09-05 2008-05-14 西北有色金属研究院 一种导电型阻隔层LaNiO3的制备方法
CN101863679A (zh) * 2009-04-14 2010-10-20 中国科学院合肥物质科学研究院 镍酸镧薄膜材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Characterization of Sn-doped BST thin films on LaNiO3-coated Si substrate;Hu Wencheng et al.;《Journal of Materials Science:Mater Electron》;20070313;第19卷;第61页右栏第4段-第62页左栏第2段 *
Preparation of Lanthanum Nickel Oxide-Coated Ni Sheet Anodes and Their Application to Electrolytic Production of (CF3)3N in (CH3)4NF•4.0HF Melt;Yoshio Shodai et al.;《Journal of Rare Earths》;20020228;第24卷(第1期);第2页左栏第3段-右栏第1段及第1.2节 *

Also Published As

Publication number Publication date
EP2767613A3 (en) 2015-06-17
US9412485B2 (en) 2016-08-09
JP6024502B2 (ja) 2016-11-16
EP2767613A2 (en) 2014-08-20
TWI639576B (zh) 2018-11-01
TW201808860A (zh) 2018-03-16
CN103979617A (zh) 2014-08-13
EP2767613B1 (en) 2019-04-10
TWI601707B (zh) 2017-10-11
US20140227433A1 (en) 2014-08-14
TW201446702A (zh) 2014-12-16
JP2014154825A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
CN102790169B (zh) 铁电薄膜的制造方法
CN102787356B (zh) 铁电薄膜的制造方法
CN103979617B (zh) LaNiO3薄膜形成用组合物及使用该组合物的LaNiO3薄膜的形成方法
EP2431986B1 (en) Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
TWI601161B (zh) 用於形成鈦酸鋇鍶(BST)介電薄膜之形成介電薄膜用的組成物,形成介電薄膜的方法,藉此方法形成的含有Cu及Mn之BST介電薄膜以及具有此介電薄膜的複合電子組件
TWI669839B (zh) 摻雜Mn及Nb之PZT系壓電體膜形成用組成物
CN104072132B (zh) Pzt系铁电薄膜形成用组合物及其制法和pzt系铁电薄膜形成法
CN103664169B (zh) 铁电薄膜形成用组合物、铁电薄膜及其形成法和复合电子组件
US20140212576A1 (en) Dielectric thin film-forming composition and method of forming dielectric thin film using the same
CN104072134B (zh) Pzt系铁电薄膜形成用组合物及其制法和pzt系铁电薄膜形成法
JP2015038956A (ja) Pzt系強誘電体薄膜及びその形成方法
TWI564268B (zh) LaNiO 3 A film-forming composition, and LaNiO using the composition 3 The formation of thin films
US20140287136A1 (en) LaNiO3 THIN FILM-FORMING COMPOSITION AND METHOD OF FORMING LaNiO3 THIN FILM USING THE SAME
CN105934282A (zh) LaNiO3薄膜的形成方法
CN106133932A (zh) 掺杂Ce的PZT系压电膜形成用组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant