CN103904344B - 一种质子交换膜及其制备方法 - Google Patents

一种质子交换膜及其制备方法 Download PDF

Info

Publication number
CN103904344B
CN103904344B CN201410165369.8A CN201410165369A CN103904344B CN 103904344 B CN103904344 B CN 103904344B CN 201410165369 A CN201410165369 A CN 201410165369A CN 103904344 B CN103904344 B CN 103904344B
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
preparation
oxide
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410165369.8A
Other languages
English (en)
Other versions
CN103904344A (zh
Inventor
管国全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Nine Valley Tiancheng Technology Co ltd
Hubei Laidou Energy Storage Technology Co ltd
Original Assignee
BEIJING JIUGU CHAOWEI TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING JIUGU CHAOWEI TECHNOLOGY Co Ltd filed Critical BEIJING JIUGU CHAOWEI TECHNOLOGY Co Ltd
Priority to CN201410165369.8A priority Critical patent/CN103904344B/zh
Publication of CN103904344A publication Critical patent/CN103904344A/zh
Application granted granted Critical
Publication of CN103904344B publication Critical patent/CN103904344B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及燃料电池领域,具体而言,涉及一种质子交换膜及其制备方法。该方法,包括以下步骤:(A)将质子交换膜树脂溶解在有机溶剂中得到质量浓度为1-20%的混合溶液;(B)将纳米金属氧化物、表面活性剂依次加入所述混合溶液中,搅拌均匀得到质子交换膜溶液;其中所述纳米金属氧化物与所述质子交换膜树脂的质量比为0.1:1-0.1:100,所述表面活性剂的加入量为所述纳米金属氧化物与所述质子交换膜树脂的质量之和的0.1-5%;(C)将质子交换膜溶液流延成膜或者将质子交换膜溶液浇铸到多孔薄膜内形成均匀的质子交换复合膜。本发明提供的质子交换膜及其制备方法,提高了制备的质子交换膜的均匀性以及自湿能力。

Description

一种质子交换膜及其制备方法
技术领域
本发明涉及燃料电池领域,具体而言,涉及一种质子交换膜及其制备方法。
背景技术
质子交换膜燃料电池由于其具有高能量密度、高能量转化效率、易操作以及对环境友好等优点受到了广泛关注。作为其重要的组成部分质子交换膜,必须在有一定水分存在的条件下,才能保证燃料电池工作,因此需要质子交换膜必须具有一定的保湿能力。
现在普遍采用的保湿方式按与电堆的集成紧密程度可分为外增湿和内增湿两类:外增湿是将增湿子系统与电池分开,在反应气体进入电池之前增湿;内增湿是将增湿子系统与电池集成为一体,在反应气体进入电池之后进行增湿。
自增湿的燃料电池在结构上省去了复杂的增湿系统,结构简单、体积小、重量轻,这类燃料电池较适用于移动电子设备电源、便携式应急电源和低速运输工具等方面,更易实现产业化,因此燃料电池多采用自增湿方式。
为了增强具有自增湿能力的质子交换膜的自湿能力,目前主要的研究工作集中在了对质子交换膜进行改性,如纳米级的SiO2、TiO2或他们的混合物掺杂在质子交换膜溶液中重铸成膜,但是,由于纳米金属氧化物的颗粒直径小,比表面积大,表面能较高,颗粒之间容易在溶液中团聚成高达微米级的团聚体,且所形成的的团聚体也不能被有效的分散开,纳米金属氧化物的分散不均匀性一方面会影响溶液的稳定性和流变性能,另一方面也使得制备出的质子交换膜的电导率分散不均匀,电导率变化大,影响了生成的化学合成水在质子交换膜表面的分布,从而对电池的一致性及电化学性能都有较严重的影响。
发明内容
本发明的目的在于提供一种质子交换膜及其制备方法,以解决上述的问题。
本发明实施例提供了一种质子交换膜的制备方法,包括以下步骤:
(A)将质子交换膜树脂溶解在有机溶剂中得到质量浓度为1-20%的混合溶液;
(B)将纳米金属氧化物、表面活性剂依次加入所述混合溶液中,搅拌均匀得到质子交换膜溶液;其中所述纳米金属氧化物与所述质子交换膜树脂的质量比为0.1:1-0.1:100,所述表面活性剂的加入量为所述纳米金属氧化物与所述质子交换膜树脂的质量之和的0.1-5%;
(C)将质子交换膜溶液流延成膜或者将质子交换膜溶液浇铸到多孔薄膜内形成均匀的质子交换复合膜。
本发明实施例采用的质子交换膜的制备方法,加入了具有保水能力的金属氧化物,并通过添加表面活性剂有效的防止了纳米颗粒团聚,制备出的质子交换膜更加均匀,且由于使纳米金属颗粒分散性更好进而增强了质子交换膜的保水能力,自湿能力提高,由其组装出的电池电化学能力也比较好。
纳米金属氧化物与质子交换膜树脂以及表面活性剂的加入量,这三种物质的比例有严格的控制才能使表面活性剂起到有效防止纳米颗粒团聚的作用,制备出的质子交换膜均匀性更好且自湿效果好。
优选地,所述质子交换膜树脂为全氟磺酸树脂、磺化聚芳醚砜、磺化聚醚醚酮、氟化磺化聚苯乙烯、氟化磺化聚芳醚砜以及氟化磺化聚芳醚酮的一种或几种,这几种质子交换膜树脂均有耐热性能好、化学稳定性和机械强度高等特点,比较常用且成本低。
优选地,所述纳米金属氧化物为SiO2、TiO2、ZrO2、磺化处理过的SiO2、磺化处理过的TiO2以及磺化处理过的ZrO2中的一种或几种,这些纳米金属氧化物的保水能力好,改性后的质子交换膜的自湿性能提升。
优选地,所述纳米金属氧化物的粒径均在30-50nm,为了保证质子交换膜具有一定的保水能力,纳米颗粒度有严格的控制以使得保水能力最强。
优选地,所述多孔薄膜为聚四氟乙烯膜、聚偏氟乙烯膜、聚丙烯膜、聚砜膜或聚酰亚胺膜中的任意一种,这几种多孔薄膜具有耐酸碱耐高温的特点。
优选地,所述有机溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜以及1-甲基-2-吡咯烷酮中的一种或几种,这几种有机溶剂溶解效果好,混合后均匀。
优选地,所述表面活性剂为萘酚聚氧乙烯醚、苯乙烯-马来酸酐树脂、聚乙烯吡咯烷酮和十二烷基苯磺酸钠中的一种或几种,这几种表面活性剂常用且分散效果好。
优选地,所述步骤(B)与步骤(C)之间还包括如下步骤:将所述多孔薄膜用无水乙醇和双氧水的混合溶液进行清洗后用去离子水冲洗干净,再用无水乙醇和硫酸的混合溶液清洗后用去离子水冲洗干净后烘干,多孔薄膜在使用前需要先进行除杂,排出杂离子的干扰避免影响质子交换膜的性能。
优选地,所述多孔薄膜的孔径为0.1-0.8μm;厚度为5-40μm;孔隙率为70%-90%。
优选地,所述步骤(B)中,所述纳米金属氧化物与所述质子交换膜树脂的质量比为为0.1:1-50,所述表面活性剂的加入量为所述纳米金属氧化物与所述质子交换膜树脂的质量之和的0.1-3%。
本发明还提供了一种用上述质子交换膜的制备方法制备出的质子交换膜。
本发明实施例提供的一种质子交换膜及其制备方法,其在制备质子交换膜时添加了表面活性剂,有效防止了纳米颗粒发生团聚,纳米金属氧化物在外力的作用下分散开,然后可以迅速吸附表面活性剂,防止了纳米小颗粒重新聚集进而提升了纳米金属氧化物的保水能力,提高了制备的质子交换膜的均匀性以及自湿能力。
附图说明
图1示出了本发明对比例1与实施例3制备出的质子交换膜组装的电池的电化学性能测试图。
具体实施方式
下面通过具体的实施例子结合附图对本发明做进一步的详细描述。
实施例1
质子交换膜的制备方法如下:
(A)以N,N-二甲基甲酰胺为溶剂,将全氟磺酸树脂溶解,制备成5%的全氟磺酸树脂溶液。
(B)将磺化SiO2和聚乙烯基吡咯烷酮加入到全氟磺酸树脂溶液中搅拌均匀得到质子交换膜溶液,其中全氟磺酸树脂、磺化SiO2和聚乙烯基吡咯烷酮的质量比为1:0.1:0.0011;
(C)将得到的质子交换膜溶液流延成膜得到质子交换膜。
实施例2
(A)以二甲基亚砜与N,N-二甲基甲酰胺的混合溶液为溶剂,将磺化聚芳醚砜溶解,制备成1%的磺化聚芳醚砜溶液。
(B)将颗粒度为50nm的磺化TiO2和苯乙烯-马来酸酐树脂加入到磺化聚芳醚砜溶液中超声2小时混合均匀后得到质子交换膜溶液,其中磺化聚芳醚砜、磺化TiO2和苯乙烯-马来酸酐树脂的质量比为100:0.1:5.005;
(C)将聚偏氟乙烯膜用无水乙醇和双氧水的混合溶液进行清洗后用去离子水冲洗干净,再用无水乙醇和硫酸的混合溶液清洗后用去离子水冲洗干净后烘干,其中聚偏氟乙烯膜的孔径为0.8μm,厚度为5μm;孔隙率为70%。
(D)将得到的质子交换膜溶液浇铸到聚偏氟乙烯膜内得到质子交换膜。
实施例3
(A)以1-甲基-2-吡咯烷酮溶液为溶剂,将氟化磺化聚苯乙烯溶解,制备成20%的氟化磺化聚苯乙烯溶液。
(B)将颗粒度为30nm的磺化ZrO2与SiO2的混合物和十二烷基苯磺酸钠加入到氟化磺化聚苯乙烯溶液中超声2小时混合均匀后得到质子交换膜溶液,其中氟化磺化聚苯乙烯、磺化ZrO2与SiO2的混合物和十二烷基苯磺酸钠的质量比为50:0.1:1.503;
(C)将聚酰亚胺膜用无水乙醇和双氧水的混合溶液进行清洗后用去离子水冲洗干净,再用无水乙醇和硫酸的混合溶液清洗后用去离子水冲洗干净后烘干,其中聚酰亚胺膜的孔径为0.1μm,厚度为40μm;孔隙率为90%。
(D)将得到的质子交换膜溶液浇铸到聚酰亚胺膜内得到质子交换膜。
对比例1
质子交换膜的制备方法如下:
(A)以N,N-二甲基甲酰胺为溶剂,将全氟磺酸树脂溶解,制备成5%的全氟磺酸树脂溶液。
(B)将磺化SiO2加入到全氟磺酸树脂溶液中搅拌均匀得到质子交换膜溶液,其中全氟磺酸树脂、磺化SiO2的质量比为1:0.1;
(C)将聚四氟乙烯膜用无水乙醇和双氧水的混合溶液进行清洗后用去离子水冲洗干净,再用无水乙醇和硫酸的混合溶液清洗后用去离子水冲洗干净后烘干,其中聚酰亚胺膜的孔径为0.1μm,厚度为40μm;孔隙率为90%。
(D)将得到的质子交换膜溶液浇铸到聚四氟乙烯膜内得到质子交换膜。
实验例1
将实施例1-3与对比例1做出的质子交换膜的性能进行对比,具体结果如下:
表1质子交换膜的性能测试
从表1可以看出,本发明加入分散剂制备的质子交换膜表面光滑,质子交换膜溶液存放4小时后基本无变化,而对比例1未加入分散剂的质子交换膜表面有小颗粒,且溶液存在沉降现象。同时,可以看到加入分散剂的质子交换膜保水能力更强,这主要是由于分散剂的加入使纳米金属氧化物在质子交换膜内分布更加均匀,使金属氧化物的保水功效得以全部表现。
实验例2
将实施例3组装的电池的电学性能与对比例1组装出的电池的电学性能进行对比,组装电池的方法如下:将制得的质子交换膜先后经过5%的H2O2和1mol/L稀硫酸处理,再按照一定比例把催化剂Pt/C和5%全氟磺酸树脂溶液混合然后用超声波制成墨水状,均匀的涂在已经处理过的质子交换膜的两面,烘干后制得三合一膜电极,最后将三合一电极组装成电池。
图1中横坐标为电流密度,纵坐标为电池的电压,具体测试结果如图1所示,从图1中可以看出,本发明实施例3采用制备的具有保湿功能的质子交换膜组装成燃料电池后,电化学性能要好于未加入分散剂制备的质子交换膜组装的燃料电池。其原因主要是本发明制备的质子交换膜中的纳米粒子分散更加均匀,质子交换膜的电导率也较为一致,膜的保水性能均匀,使得电池在自增湿条件下,具有良好的电化学性能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种质子交换膜的制备方法,其特征在于,包括以下步骤:
(A)将质子交换膜树脂溶解在有机溶剂中得到质量浓度为1-20%的混合溶液;
(B)将纳米金属氧化物、表面活性剂依次加入所述混合溶液中,搅拌均匀得到质子交换膜溶液;其中所述纳米金属氧化物与所述质子交换膜树脂的质量比为0.1:1-0.1:100,所述表面活性剂的加入量为所述纳米金属氧化物与所述质子交换膜树脂的质量之和的0.1-5%;
(C)将质子交换膜溶液流延成膜或者将质子交换膜溶液浇铸到多孔薄膜内形成均匀的质子交换复合膜;所述纳米金属氧化物为TiO2、ZrO2、磺化处理过的TiO2以及磺化处理过的ZrO2中的一种或几种,其中所述纳米金属氧化物的粒径为30-50nm。
2.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述质子交换膜树脂为全氟磺酸树脂、磺化聚芳醚砜、磺化聚醚醚酮、氟化磺化聚苯乙烯、氟化磺化聚芳醚砜以及氟化磺化聚芳醚酮的一种或几种。
3.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述多孔薄膜为聚四氟乙烯膜、聚偏氟乙烯膜、聚丙烯膜、聚砜膜或聚酰亚胺膜中的任意一种。
4.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述有机溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲基亚砜以及1-甲基-2-吡咯烷酮中的一种或几种。
5.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述表面活性剂为萘酚聚氧乙烯醚、苯乙烯-马来酸酐树脂、聚乙烯吡咯烷酮和十二烷基苯磺酸钠中的一种或几种。
6.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述步骤(B)与步骤(C)之间还包括如下步骤:
将所述多孔薄膜用无水乙醇和双氧水的混合溶液进行清洗后用去离子水冲洗干净,再用无水乙醇和硫酸的混合溶液清洗后用去离子水冲洗干净后烘干。
7.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述多孔薄膜的孔径为0.1-0.8μm;厚度为5-40μm;孔隙率为70%-90%。
8.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于,所述步骤(B)中,所述纳米金属氧化物与所述质子交换膜树脂的质量比为为0.1:1-50,所述表面活性剂的加入量为所述纳米金属氧化物与所述质子交换膜树脂的质量之和的0.1-3%。
9.一种权利要求1-8任一项所述质子交换膜的制备方法制备出的质子交换膜。
CN201410165369.8A 2014-04-23 2014-04-23 一种质子交换膜及其制备方法 Expired - Fee Related CN103904344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410165369.8A CN103904344B (zh) 2014-04-23 2014-04-23 一种质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410165369.8A CN103904344B (zh) 2014-04-23 2014-04-23 一种质子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN103904344A CN103904344A (zh) 2014-07-02
CN103904344B true CN103904344B (zh) 2016-02-10

Family

ID=50995567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410165369.8A Expired - Fee Related CN103904344B (zh) 2014-04-23 2014-04-23 一种质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103904344B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882625A (zh) * 2015-04-24 2015-09-02 哈尔滨工业大学(威海) 一种钒电池用高分散纳米SiO2复合膜及其制备方法
CN104945644B (zh) * 2015-06-29 2017-10-27 复旦大学 SiO2@sPS改性的聚合物杂化质子交换膜及其制备方法
CN107221692B (zh) * 2016-09-27 2019-10-22 中科院大连化学物理研究所张家港产业技术研究院有限公司 一种具有高抗氧化能力的聚苯并咪唑/磷酸多层复合高温质子交换膜及其制备方法
CN107978780B (zh) * 2016-10-21 2020-10-16 中国科学院大连化学物理研究所 一种有机-无机多层复合型质子交换膜的制备及膜和应用
CN108242553A (zh) * 2016-12-27 2018-07-03 天津风伟雨众能源科技有限公司 燃料电池用保水型质子交换膜的制备方法
CN108559264B (zh) * 2018-03-14 2019-08-09 吉林大学 一种交联型聚芳醚砜基介电复合材料及其制备方法和用途
CN108511777A (zh) * 2018-04-04 2018-09-07 华南理工大学 具有三维高比表面积表面的质子交换膜的构建方法及其基于这种质子交换膜的高性能膜电极
CN111048811B (zh) * 2019-01-29 2020-09-18 南京攀峰赛奥能源科技有限公司 一种复合质子交换膜、制备方法以及质子交换膜燃料电池
CN112144076B (zh) * 2020-09-18 2023-08-22 碳能科技(北京)有限公司 一体化膜电极及其制备方法和应用
CN113793962B (zh) * 2021-08-11 2023-09-19 广州市乐基智能科技有限公司 一种燃料电池粘结剂及其制备方法、应用
CN114188555B (zh) * 2021-12-03 2023-11-10 中国科学院大连化学物理研究所 一种增强型质子交换膜连续制备工艺
CN114864978B (zh) * 2022-06-16 2023-05-05 电子科技大学 高增湿氢燃料电池增湿器中空纤维膜材料及其制备方法和应用
CN115275291B (zh) * 2022-07-13 2024-08-13 东风汽车集团股份有限公司 Ptfe膜的制备方法、ptfe膜、质子交换膜、燃料电池
CN115651420B (zh) * 2022-10-19 2024-05-24 深圳圣安技术有限公司 一种全氟磺酸质子交换膜及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
CN1265478C (zh) * 2004-06-11 2006-07-19 中山大学 直接醇类燃料电池的改性质子交换膜及其制备方法
CN1253952C (zh) * 2004-11-15 2006-04-26 武汉理工大学 具有自增湿功能的多层纳米复合质子交换膜的制备方法
CN101777655B (zh) * 2009-12-07 2012-09-19 山东华夏神舟新材料有限公司 一种燃料电池用无机复合金属氧化物掺杂的含氟质子交换膜
CN102709576B (zh) * 2012-06-11 2014-08-13 武汉理工大学 一种高温燃料电池用复合质子交换膜及其制备方法

Also Published As

Publication number Publication date
CN103904344A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN103904344B (zh) 一种质子交换膜及其制备方法
CN108878993A (zh) 一种减缓质子交换膜电化学降解的方法
CN103855408B (zh) 一种改善质子交换膜燃料电池阳极水管理的膜电极
CN103219533A (zh) 一种液流电池用石墨烯复合离子交换膜及其制备方法
CN104362311A (zh) 一种硅碳复合微球负极材料及其制备方法
CN103296297B (zh) 一种燃料电池用有机-无机复合质子交换膜的制备方法
CN103358612B (zh) 直接甲醇燃料电池用的阻醇膜及其制法
CN103682210B (zh) 一种有机-无机多孔复合膜在液流储能电池中的应用
CN111146482A (zh) 一种自增湿质子交换膜及其制备方法和应用
CA2658373A1 (en) Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
CN102468494A (zh) 一种全钒液流电池电极及其制备方法,以及全钒液流电池
CN106159291B (zh) 质子交换膜燃料电池催化电极、具有其的电池及制备方法
CN105161738A (zh) 钒电池用复合膜及其连续化生产的方法和用途
KR101146191B1 (ko) 나노 복합체 전해질 막의 제조방법, 그로부터 제조된 나노 복합체 전해질 막 및 그를 구비한 막-전극 어셈블리
CN102479959A (zh) 一种燃料电池用自增湿质子交换膜及制备方法
CN108511777A (zh) 具有三维高比表面积表面的质子交换膜的构建方法及其基于这种质子交换膜的高性能膜电极
CN101867050A (zh) 复合质子交换膜
CN100434478C (zh) 一种基于亲水性碳纳米管的中温质子导电材料及其制备方法
CN106159284A (zh) 一种有序纳米结构膜电极及其制备方法
CN109860630A (zh) 纳米纤维催化剂浆料的制备方法、催化层制备及ccm膜的制备方法
Zhang et al. Sulfonated poly (ether ether ketone)/TiO2 double-deck membrane for vanadium redox flow battery application
Zhao et al. Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery
KR101084073B1 (ko) 연료전지용 전극, 이를 포함하는 막-전극 어셈블리, 및 연료전지
CN102838777B (zh) 一种speek/pani/pma复合质子交换膜的回收方法
CN106009017A (zh) 一种支化磺化聚酰亚胺/二维层状材料复合质子导电膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100000 room 2, unit 12, No. 1, building 4, Kai Yang Road, Chaoyang District, Beijing.

Patentee after: Beijing nine Valley Tiancheng Technology Co.,Ltd.

Address before: 100000 room 2, unit 12, No. 1, building 4, Kai Yang Road, Chaoyang District, Beijing.

Patentee before: BEIJING JIUGU CHAOWEI TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180523

Address after: 441499 651 Chu Du Avenue, Yicheng Economic Development Zone, Xiangyang, Hubei

Patentee after: Hubei Laidou Energy Storage Technology Co.,Ltd.

Address before: 100000 room 2, unit 12, No. 1, building 4, Kai Yang Road, Chaoyang District, Beijing.

Patentee before: Beijing nine Valley Tiancheng Technology Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Proton exchange membrane and preparation method thereof

Effective date of registration: 20191220

Granted publication date: 20160210

Pledgee: Xiamen longneng Financial Leasing Co.,Ltd.

Pledgor: Hubei Laidou Energy Storage Technology Co.,Ltd.

Registration number: Y2019110000007

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210