CN103848400A - 一种无水氟化氢的制备方法 - Google Patents

一种无水氟化氢的制备方法 Download PDF

Info

Publication number
CN103848400A
CN103848400A CN201210506779.5A CN201210506779A CN103848400A CN 103848400 A CN103848400 A CN 103848400A CN 201210506779 A CN201210506779 A CN 201210506779A CN 103848400 A CN103848400 A CN 103848400A
Authority
CN
China
Prior art keywords
hydrogen fluoride
tower
sulfuric acid
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210506779.5A
Other languages
English (en)
Other versions
CN103848400B (zh
Inventor
吴云秀
饶仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Yongjing Technology Co Ltd
Original Assignee
FUJIAN SHAOWU YONGFEI CHEMICAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN SHAOWU YONGFEI CHEMICAL Co Ltd filed Critical FUJIAN SHAOWU YONGFEI CHEMICAL Co Ltd
Priority to CN201210506779.5A priority Critical patent/CN103848400B/zh
Publication of CN103848400A publication Critical patent/CN103848400A/zh
Application granted granted Critical
Publication of CN103848400B publication Critical patent/CN103848400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种无水氟化氢的制备方法,包括以下步骤:将混合硫酸(浓硫酸和发烟硫酸)和氟石粉分别加热后按照一定投料配比加入预反应器进行预反应后,送入转炉反应器中,在加热条件下进行反应,得到大量的粗氟化氢气体,经洗涤塔、冷凝器、精馏塔和脱气塔处理,制得纯净的氟化氢气体。转炉反应器中未反应完全的物料经返料处理,以及反应产生的粗氟化氢气体精制后未被收集的气体经两次循环吸收均可二次利用,因此显著提高了该制备方法的得率。

Description

一种无水氟化氢的制备方法
技术领域
本发明属于化工生产领域,具体涉及一种无水氟化氢的制备方法。
背景技术
无水氟化氢广泛应用于原子能、化工、石油等行业,是强氧化剂,可用来制取元素氟、各种氟制冷剂、无机氟化物、有机氟化物,也可配制成各种用途的有水氢氟酸。传统的无水氟化氢制备方法主要是将氟石粉和硫酸混合,在加热的条件下,直接产生氟化氢。
主要化学反应为:
CaF2(s)+H2SO4(l)→CaSO4(s)+2HF(g)        (1)
主要副反应为:
SiO2+4HF→SiF4+H2O→SiF4                         (2)
SiF4+2HF→H2SiF6                                 (3)
CaCO3+H2SO4→CaSO4+CO2+H2O                       (4)
CaS+H2SO4→CaSO4+H2S(g)                          (5)
MgS+H2SO4→MgSO4+H2S(g)                          (6)
Fe2O3+3H2SO4→Fe2(SO4)3+3H2O                     (7)
Al2O3+H2SO4→Al2(SO4)3+3H2O                      (8)
H2S+H2SO4→S+SO2+2H2O                            (9)
SO2+2H2S→3S+2H2O                                (10)
SO3+H2O+CaSO4→Ca(HSO4)2                         (11)
Ca(HSO4)2→CaSO4+H2SO4                           (12)
传统的无水氟化氢制备方法直接将物料进行加热处理,物料混合不均匀,不仅增加了不必要的反应能耗,而且主反应进行不充分,产品得率和纯度较低。通过反应前的预反应可以解决上述问题,但是从预反应器进入到转炉反应器的物料从低温条件转移到高温条件时,通过副反应(11)和(12),迅速产生大量硫酸,使反应物呈糊状,影响了主反应(1)的浓度分布和反应速率,以下称为“返混”现象。“返混”现象产生的糊状反应混合物,粘附在转炉内壁面,造成转炉的腐蚀,同时使转炉的传热效率下降,从而对转炉的耐腐蚀性、保养周期、加热温度等提出了更高的要求。
公布号为CN102471059A的发明专利申请公开了一种氟化氢制造方法,将氟化钙颗粒的平均粒径控制在1~40μm,硫酸温度控制在0~70℃,有效防止了“返混”现象的发生。但小粒径氟石粉产生的扬尘问题,又给氟化氢气体的后续纯化处理带来了困难。
公布号为CN85104494的发明专利申请也公开了一种制备氟化氢的方法,在硫酸与氟石发生预反应产生40-50%转化的粉状产物时,送入转炉发生反应,能够减少结块和炉壁腐蚀问题。但是该发明仍然不能完全避免“返混”现象的发生,同时还存在反应时间过长的问题。
发明内容
本发明的目的是克服以上现有技术的问题,提供一种无水氟化氢的制备方法,通过增加预反应器及调控转炉反应器的温度、返料处理、循环吸收等多种方式提高原料的利用率,得到的产物得率高,副产物低。
为实现上述目的,本发明一方面提供一种无水氟化氢的制备方法,包括利用混合硫酸和氟石粉反应制备无水氟化氢。
其中,所述的氟石粉需满足的质量标准为:粒度为150~200目(75%过200目)的氟石粉,氟石粉中CaF2含量≥97%,CaCO3含量≤1%,H2O含量≤0.1%,SiO2含量≤1.2%。
其中,所述的混合硫酸为浓硫酸和发烟硫酸的混合物,浓硫酸需符合国家标准GB534-89,H2SO4含量≥98%,其余是水和微量惰性物质;此外,洗涤塔中换热和吸收后的硫酸从洗涤塔塔底流入混酸槽可以用于制备混合硫酸。发烟硫酸主要理化性质与硫酸相同:比重1.917,结晶温度2.5℃,H2SO4+20%SO3(104.5%H2SO4),游离SO3≥20%(wt)。
特别是,所述的无水氟化氢按照如下顺序进行的步骤制备而成:
a)将混合硫酸和氟石粉分别加热后,按照一定投料重量比在预反应器中混合进行预反应,得到混合物料;
b)将混合物料连续进料到转炉反应器中,在加热条件下进行反应,得到粗氟化氢气体和固体物料,将得到的固体物料的一部分通过返料装置进料到转炉反应器再次反应,剩余固体物料进入二水石膏生产装置;
c)粗氟化氢气体经洗涤塔、冷凝器、精馏塔和脱气塔处理,得到纯净的氟化氢气体及剩余气体;
d)使用硫酸对剩余气体进行循环回收,以吸收氟化氢气体;
e)未被循环回收的剩余气体经水洗塔处理和尾气塔处理后,从尾气塔顶部排出。
其中,步骤a)所述的混合硫酸为浓硫酸和发烟硫酸的混合物,其重量比为硫酸:发烟硫酸=1:1.40~1.50;混合硫酸的加热时间为7~8分钟,加热温度为100~120℃;所述的氟石粉的加热时间为75~90分钟,加热温度为150~180℃。
特别是,步骤a)所述的氟石粉与混合硫酸的投料重量比是混合硫酸:氟石粉=1:1.20~1.29,混合温度为100~150℃,混合时间为10~15分钟。
在步骤b)中,转炉反应器的转速为1.0r/min~2.0r/min,炉内压力为-0.55~-0.45KPa,在此条件下,依次采用550~650℃和700~800℃两种温度对混合物料进行加热处理,处理时间总计为50~70分钟。
特别是,在步骤b)中产生的固体物料按55~65%的重量比经返料装置进料到转炉反应器,再次反应。
在步骤c)中,洗涤塔处理包括:粗氟化氢气体在洗涤塔内与硫酸进行热交换,同时吸收粗氟化氢气体中的硫酸、水分及颗粒物,洗涤塔中换热和吸收后的硫酸用于制备混合硫酸。
在步骤c)中,冷凝器处理包括三阶段的冷凝处理,其中第一阶段冷凝处理温度≤37℃,优选为15~37℃,更优选为30~37℃,第二阶段冷凝处理温度5~15℃,第三阶段冷凝处理温度为﹣2~5℃;
在步骤c)中,精馏塔处理包括:冷凝后的粗氟化氢气体从精馏塔底部进入,顶部排出,精馏塔的釜温为50~60℃,顶温为18~21℃;
在步骤c)中,脱气塔处理包括:蒸馏后的粗氟化氢气体从脱气塔底部进入,顶部排出;脱气塔的釜温为:19~21℃,顶温为-2~10℃。
在步骤d)中,使用硫酸对剩余气体进行回收包括吸收塔中的硫酸与第二冷凝器、精馏塔和脱气塔顶部排出的气体接触,吸收其中所含的氟化氢气体后,流入循环吸收槽,被循环吸收泵抽出,再次进入吸收塔进行二次吸收。
特别是,在步骤d)中,循环吸收泵的管路压力控制为2~2.5MPa。
本发明另一方面提供了一种无水氟化氢的制备方法,包括以下步骤:
a)预反应
a-1)将浓硫酸和发烟硫酸按照重量比1:1.40~1.50在混酸槽中混合后送入混酸加热器,加热时间为7~8分钟,加热温度为100~120℃;
a-2)将氟石粉送入烘粉炉,利用其外部夹套中转炉加热的余气进行加热,加热时间为75~90分钟,加热温度为150~180℃;
a-3)将分别加热后的混合硫酸和氟石粉按照重量比1:1.20~1.29加入预反应器进行混合,得到混合物料,混合温度为100~150℃,混合时间为10~15分钟。混合后产生的粗氟化氢气体占总量的4~6%,随混合物料一起进入转炉反应器。
b)反应:
将混合物料连续进料到转炉反应器,在加热条件下进行反应,将转炉内的温度控制为前温:550~650℃,中温:700~800℃,中后温:700~800℃,后温:700~800℃,转炉反应器的转速为1.0r/min~2.0r/min,转炉内的压力为-0.55~-0.45KPa,反应时间总计为50~70分钟,反应产生的气体为粗氟化氢气体,主要包括氟化氢气体,还夹带一些颗粒物、硫酸、水分和副反应产生的气体(SiF4、SO2、CO2等),产生的固体物料为硫酸钙和少量未反应完全的氟石粉。
控制前温可使反应产生的气体温度保持在300~350℃,从而减轻后系统提纯的压力;控制后温可使固体温度保持在200~260℃,从而提高反应的转化率。
将产生的固体物料的按55~65%的重量比通过返料装置进料到转炉反应器,与进料到转炉反应器的混合物料混合,再次反应。其余固体物料在渣斗中加入氢氧化钙,中和过量的硫酸,得到的硫酸钙渣从渣斗排出,进入二水石膏加工系统。
c)精制:
c-1)洗涤:反应产生的气体首先在洗涤塔内与硫酸进行热交换,同时吸收气体中的硫酸、水分及颗粒物。洗涤塔中换热和吸收后的硫酸从洗涤塔塔底进料到混酸加热器。
c-2)冷凝:洗涤后的气体依次进入三个阶段的冷凝处理,先进入初冷器进行初步冷凝,初冷器的出口气温≤37℃,优选为15~37℃,更优选为30~37℃;再进入第一冷凝器,第一冷凝器的出口气温为5~15℃;最后进入第二冷凝器,第二冷凝器的出口气温为﹣2~5℃。收集第一冷凝器和第二冷凝器冷凝的氟化氢液体,送入粗氟化氢贮槽,未冷凝的氟化氢气体进入吸收塔。
c-3)蒸馏:冷凝后的氟化氢液体从粗氟化氢贮槽进入精馏塔底部,精馏塔的釜温为50-60℃,顶温为18~21℃,氟化氢液体和低沸物在高温下从精馏塔顶部排出,其中塔顶排出物料中冷凝的液体部分进入脱气塔,塔顶排出物料中未冷凝的气体部分进入吸收塔;重组分的物料则从精馏塔底部排出,返回洗涤塔。
c-4)脱气:来自精馏塔塔顶的液体部分进入脱气塔底部,脱气塔的釜温为19~21℃,顶温为-2~10℃,氟化氢液体直接从底部排出,而SiF4、SO2、CO2等低沸物和少量的氟化氢气体在脱气塔顶部冷凝后从顶部排出,进入吸收塔。
d)回收:
d-1)第一次回收:从第二冷凝器、精馏塔和脱气塔顶部排出的气体进入吸收塔,与吸收塔中的硫酸接触,其中所含的氟化氢气体被硫酸吸收。
d-2)第二次回收:吸收塔塔底的硫酸流入循环吸收槽,被循环吸收泵抽出,再次进入吸收塔进行二次吸收,循环吸收槽设立溢流口,经过二次吸收的硫酸进入洗涤塔,其中,循环吸收泵的管路压力控制为2~2.5MPa。洗涤塔中换热和吸收后的硫酸从洗涤塔塔底流入混酸槽用于制备混合硫酸。
e)尾气处理:未被回收的剩余气体从吸收塔排出后,经水洗塔水处理和尾气塔碱处理后,从尾气塔顶部排出。
本发明与现有技术相比具有如下优点和效果:
1.本发明在反应前利用转炉的余热对物料进行加热,并进行预反应的处理,提高了氟石粉和混合硫酸的温度以及两者的接触面积,节约热能的同时,也为反应的进行作了充分的准备;
2.本发明在反应过程中设计的返料装置,提高了反应物的利用率、转化率和热利用率,减少了反应物的浪费,同时,将返料的比例控制在最佳范围内有助于保证适宜的投料配比,防止“返混”现象的产生;
3.本发明在精制过程中通过对洗涤、冷凝、蒸馏和脱气过程中温度的控制,实现了氟化氢气体和其他杂质气体的分离,从而得到了纯净的氟化氢产品;
4.本发明在反应结束后又对剩余气体进行了循环回收,从而使无水氟化氢的产量较之传统技术增加了25%~30%,反应的转化率可达到98~99%。
5.本发明方法可以重复多次的利用硫酸,从而减少了反应过程中硫酸的用量和废酸的排放。
附图说明
图1为本发明的制备流程图。
图2为本发明实施例1-4的制备流程图。
具体实施方式
下面结合具体实施例和附图2进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1
a)预反应
a-1)将浓硫酸和发烟硫酸按照重量比1:1.43混合后送入混酸加热器,加热时间为7分钟,加热温度为110℃;
a-2)将氟石粉送入烘粉炉,利用其外部夹套中转炉加热的余气进行加热,加热时间为75分钟,加热温度为175℃;
a-3)将加热后的混合硫酸和氟石粉按照重量比1:1.25加入预反应器进行混合,得到混合物料,混合温度为120℃,混合时间为12分钟。混合后产生的粗氟化氢气体占总量的6%,随加热的混合物料一起进入转炉反应器。
b)反应:
加热的混合物料被连续进料到转炉反应器,在加热条件下进行反应,将转炉内的温度控制为前温:600℃,中温:750℃,中后温:760℃,后温:770℃,转炉反应器的转速为1.5r/min,转炉内的压力为-0.50KPa,反应时间为60分钟,反应产生的气体为粗氟化氢气体,流入洗涤塔中进行精制。反应产生的固体物料为硫酸钙和少量未反应完全的氟石粉,在接近炉尾时,将产生的固体物料的60%(重量比)回送到炉体头部,进入返料装置,在进料点附近与进料装置送入炉内的物料混合,再次反应。反应完全的物料在渣斗中加入氢氧化钙,中和过量的硫酸,得到的硫酸钙渣从渣斗排出,进入二水石膏加工系统。
在180天的生产中,生产过程中没有出现“返混”现象。
c)精制:
c-1)洗涤:反应产生的气体首先在洗涤塔内与硫酸进行热交换,同时吸收气体中的硫酸、水及粉尘。
c-2)冷凝:洗涤后的气体依次进入三个阶段的冷凝处理,先进入初冷器进行第一次冷凝,初冷器的出口气温为30℃;再进入第一冷凝器进行第二次冷凝,第一冷凝器出口气温为5℃;最后进入第二冷凝器进行第三次冷凝,第二冷凝器的出口气温为﹣2℃。收集第一冷凝器和第二冷凝器冷凝的氟化氢液体,送入粗氟化氢贮槽,未冷凝的氟化氢气体进入吸收塔。
c-3)蒸馏:冷凝后的氟化氢液体从粗氟化氢贮槽进入精馏塔底部,精馏塔的釜温60℃,顶温为20℃,氟化氢液体和一些低沸物在高温下从精馏塔顶部排出,冷凝的液体部分进入脱气塔,未冷凝的气体部分进入吸收塔;重组分的物料则从精馏塔底部排出,返回洗涤塔。
c-4)脱气:从精馏塔顶部排出的液体部分和一些低沸物进入脱气塔底部,脱气塔的釜温为19℃,顶温为-2℃,在该温度条件下,SiF4、SO2、CO2等低沸物和少量的氟化氢气体在脱气塔顶部冷凝后从顶部排出,氟化氢液体直接从底部排出。
d)回收:
d-1)第一次回收:从第二冷凝器、精馏塔和脱气塔顶部排出的气体冷凝后都流入吸收塔,与吸收塔中的硫酸接触,其中所含的氟化氢气体被硫酸吸收。
d-2)第二次回收:硫酸从吸收塔流入循环吸收槽,被循环吸收泵抽出,再进入吸收塔进行二次吸收,循环吸收槽设立溢流口,经过二次吸收的硫酸溢流进入洗涤塔。其中,循环吸收泵的管路压力控制为2MPa,
e)尾气处理:未被循环回收的剩余气体从吸收塔排出后,经水洗塔水处理和尾气塔碱处理后,从尾气塔顶部排出。
反应原料的转化率为99%,按照国家标准《工业无水氟化氢》(GB7746-2011)》对制备的无水氟化氢进行检测,检测结果如表2所示。
实施例2
a)预反应
a-1)将浓硫酸和发烟硫酸按照重量比1:1.45混合后送入混酸加热器,加热时间为8分钟,加热温度为100℃;
a-2)将氟石粉送入烘粉炉,利用其外部夹套中转炉加热的余气进行加热,加热时间为80分钟,加热温度为180℃;
a-3)将加热后的混合硫酸和氟石粉按照投料重量比1:1.20加入预反应器进行混合,得到混合物料,混合温度为100℃,混合时间为15分钟。混合后产生的粗氟化氢气体占总量的4%,随混合物料一起进入转炉反应器。
b)反应:
反应阶段除了转炉内的温度控制为前温:550℃,中温:780℃,中后温:790℃,后温:800℃,转炉反应器的转速为1r/min,转炉内的压力为-0.55KPa,反应时间为70分钟,返料重量比为55%之外,其余与实施例1相同。
在180天的生产中,生产过程中没有出现“返混”现象。
c)精制:
精制阶段除了初冷器的出口气温为37℃;第一冷凝器的出口气温为10℃;第二冷凝器的出口气温为0℃,精馏塔的釜温为58℃,顶温为21℃,脱气塔的釜温为21℃,顶温为0℃之外,其余与实施例1相同。
d)回收:
回收阶段除了循环吸收泵的管路压力为2.5MPa之外,其余与实施例1相同。
e)尾气处理:与实施例1相同。
反应原料的转化率为98.5%,按照国家标准《工业无水氟化氢》(GB7746-2011)》对制备的无水氟化氢进行检测,检测结果如表2所示。
实施例3
a)预反应
预反应阶段除了浓硫酸和发烟硫酸的重量比为1:1.40,加热时间为7分钟,加热温度为120℃,氟石粉的加热时间为90分钟,加热温度为150℃,混合硫酸和氟石粉的投料重量比为1:1.29,混合温度为150℃,混合时间为10分钟,混合后产生的粗氟化氢气体占总量的5%之外,其余与实施例1相同。
b)反应:
反应阶段除了转炉内的温度控制为前温:650℃,中温:700℃,中后温:720℃,后温:750℃,转炉反应器的转速为2r/min,转炉内的压力为-0.45KPa,反应时间为50分钟,返料重量比为65%之外,其余与实施例1相同。
在180天的生产中,生产过程中没有出现“返混”现象。
c)精制:
精制阶段除了初冷器的出口气温为32℃;第一冷凝器的出口气温为15℃;第二冷凝器的出口气温为5℃,精馏塔的釜温为56℃,顶温为18℃,脱气塔的釜温为19℃,顶温为10℃之外,其余与实施例1相同。
d)回收:与实施例1相同。
e)尾气处理:与实施例1相同。
反应原料的转化率为98.2%,按照国家标准《工业无水氟化氢》(GB7746-2011)》对制备的无水氟化氢进行检测,检测结果如表2所示。
实施例4
a)预反应
预反应阶段除了混合硫酸的加热时间为8分钟,加热温度为115℃,氟石粉的加热时间为85分钟,加热温度为160℃,混合硫酸和氟石粉的投料重量比为1:1.27,混合温度为110℃,混合时间为14分钟,混合后产生的粗氟化氢气体占总量的5.5%之外,其余与实施例1相同。
b)反应:
反应阶段除了转炉内的温度控制为前温:580℃,中温:720℃,中后温:740℃,后温:760℃,转炉内的压力为-0.52KPa,反应时间为65分钟,返料比为62%之外,其余与实施例1相同。
在180天的生产中,生产过程中没有出现“返混”现象。
c)精制:
精制阶段除了初冷器的出口气温为15℃;第一冷凝器的出口气温为12℃;第二冷凝器的出口气温为2℃,精馏塔的釜温为50℃,顶温为19℃,脱气塔的釜温为19℃,顶温为6℃之外,其余与实施例1相同。
d)回收:
回收阶段除了循环吸收泵的管路压力为2.5MPa之外,其余与实施例1相同。
e)尾气处理:与实施例1相同。
反应原料的转化率为98%,按照国家标准《工业无水氟化氢》(GB7746-2011)》对制备的无水氟化氢进行检测,检测结果如表2所示。
表1:工业无水氟化氢的国家标准要求
Figure BDA00002512633500101
表2:本发明制备的无水氟化氢的检测结果
Figure BDA00002512633500102
由表2的检测结果可以看出,采用本发明方法制备的无水氟化氢,氟化氢质量分数均超过99.99%,水分质量分数≤0.002%,氟硅酸质量分数≤0.002%,二氧化硫质量分数≤0.002%,不挥发酸(H2SO4)质量分数≤0.002%。制备的无水氟化氢不仅满足国家标准(GB7746-2011)的质量要求,且其品质均优于Ⅰ类工业无水氟化氢。

Claims (10)

1.一种无水氟化氢的制备方法,其特征在于,包括以下步骤:
a)将混合硫酸和氟石粉分别加热后,按照一定投料重量比在预反应器中混合进行预反应,得到混合物料;
b)将混合物料连续进料到转炉反应器中,在加热条件下进行反应,得到粗氟化氢气体和固体物料,将得到的固体物料的一部分通过返料装置进料到转炉反应器再次反应,剩余固体物料进入二水石膏生产装置;
c)粗氟化氢气体经洗涤塔、冷凝器、精馏塔和脱气塔处理,得到纯净的氟化氢气体及剩余气体;
d)使用硫酸对剩余气体进行循环回收,以吸收氟化氢气体;
e)未被循环回收的剩余气体经水洗塔处理和尾气塔处理后,从尾气塔顶部排出。
2.根据权利要求1所述的方法,其特征在于,步骤a)所述的混合硫酸为浓硫酸和发烟硫酸的混合物,其重量比为硫酸:发烟硫酸=1:1.40~1.50;混合硫酸的加热时间为7~8分钟,加热温度为100~120℃。
3.根据权利要求1所述的方法,其特征在于,步骤a)中氟石粉的加热时间为75~90分钟,加热温度为150~180℃。
4.根据权利要求1所述的方法,其特征在于,步骤a)中氟石粉与混合硫酸的投料重量比是混合硫酸:氟石粉=1:1.20~1.29,混合温度为100~150℃,混合时间为10~15分钟。
5.根据权利要求1所述的方法,其特征在于,在步骤b)中,在转炉反应器转速为1.0r/min~2.0r/min和炉内压力为-0.55~-0.45KPa的条件下,依次采用550~650℃和700~800℃两种温度对混合物料进行加热处理,处理时间总计为50~70分钟。
6.根据权利要求1所述的方法,其特征在于,在步骤b)中,通过返料装置进料到转炉反应器再次反应的物料与产生的固体物料的重量比为55~65:100。
7.根据权利要求1所述的方法,其特征在于,在步骤c)中,冷凝器处理包括三阶段冷凝处理,其中第一阶段泠凝处理温度为37℃以下,第二阶段泠凝处理温度5~15℃,第三阶段泠凝处理温度为﹣2~5℃。
8.根据权利要求1所述的方法,其特征在于,在步骤c)中,精馏塔处理包括:冷凝后的粗氟化氢气体从精馏塔底部进入,顶部排出,精馏塔的釜温为50~60℃,顶温为18~21℃。
9.根据权利要求1所述的方法,其特征在于,在步骤c)中,脱气塔处理包括:蒸馏后的粗氟化氢气体从脱气塔底部进入,顶部排出;脱气塔的釜温为:19~21℃,顶温为:-2~10℃。
10.根据权利要求1所述的方法,其特征在于,在步骤d)中,使用硫酸对剩余气体进行回收包括吸收塔中的硫酸与第二冷凝器、精馏塔和脱气塔顶部排出的气体接触,吸收其中所含的氟化氢气体后,流入循环吸收槽,被循环吸收泵抽出,再次进入吸收塔进行二次吸收。其中,循环吸收泵的管路压力控制为2~2.5MPa。
CN201210506779.5A 2012-12-03 2012-12-03 一种无水氟化氢的制备方法 Active CN103848400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210506779.5A CN103848400B (zh) 2012-12-03 2012-12-03 一种无水氟化氢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210506779.5A CN103848400B (zh) 2012-12-03 2012-12-03 一种无水氟化氢的制备方法

Publications (2)

Publication Number Publication Date
CN103848400A true CN103848400A (zh) 2014-06-11
CN103848400B CN103848400B (zh) 2016-01-13

Family

ID=50856579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210506779.5A Active CN103848400B (zh) 2012-12-03 2012-12-03 一种无水氟化氢的制备方法

Country Status (1)

Country Link
CN (1) CN103848400B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947984A (zh) * 2016-05-20 2016-09-21 同济大学 一种从高浓度含氟废水中回收生产无水氟化氢生产工艺
CN106276801A (zh) * 2016-08-25 2017-01-04 衢州南高峰化工有限公司 一种无水氟化氢的生产设备及工艺
CN108298500A (zh) * 2017-01-12 2018-07-20 洛阳丰瑞氟业有限公司 一种提高无水氟化氢产量和质量生产工艺的改造方案
CN108892104A (zh) * 2018-10-17 2018-11-27 杨松 一种制备氟化氢工艺装置的使用方法
CN108910827A (zh) * 2018-10-17 2018-11-30 杨松 一种制备氟化氢工艺装置
CN108928804A (zh) * 2018-10-17 2018-12-04 杨松 一种制备氟化氢洗涤塔的使用方法
CN109248642A (zh) * 2018-10-17 2019-01-22 杨松 一种制备氟化氢颗粒层移动床过滤器的使用方法
CN110255502A (zh) * 2019-06-14 2019-09-20 贵州新东浩化工材料科技有限公司 白肥制氟化氢联产富钙及普钙工艺
CN110498430A (zh) * 2019-10-08 2019-11-26 内蒙古星汉氟都化工有限公司 一种以萤石粉为原料生产氟化钾的方法
CN112028022A (zh) * 2020-09-18 2020-12-04 宣城亨泰电子化学材料有限公司 一种制备电子级高纯氢氟酸的预处理方法
CN113321185A (zh) * 2021-05-20 2021-08-31 浙江瑞星氟化工业有限公司 一种无水氟化氢生产工艺
CN113479845A (zh) * 2021-08-10 2021-10-08 福建省清流县东莹化工有限公司 一种回收法制备无水氟化氢工艺及装置
CN113735062A (zh) * 2021-09-15 2021-12-03 青海西矿同鑫化工有限公司 一种稀土回收萤石制备氟化氢的方法
WO2024045244A1 (zh) * 2022-08-31 2024-03-07 福建省龙氟新材料有限公司 用于无水氟化氢生产的能源管理控制系统及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214926A (zh) * 2007-12-28 2008-07-09 华陆工程科技有限责任公司 一种新的无水氢氟酸生产工艺
CN101913565A (zh) * 2010-08-12 2010-12-15 衢州市鼎盛化工科技有限公司 一种以萤石粉和硫酸生产氟化氢的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214926A (zh) * 2007-12-28 2008-07-09 华陆工程科技有限责任公司 一种新的无水氢氟酸生产工艺
CN101913565A (zh) * 2010-08-12 2010-12-15 衢州市鼎盛化工科技有限公司 一种以萤石粉和硫酸生产氟化氢的方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105947984A (zh) * 2016-05-20 2016-09-21 同济大学 一种从高浓度含氟废水中回收生产无水氟化氢生产工艺
CN106276801A (zh) * 2016-08-25 2017-01-04 衢州南高峰化工有限公司 一种无水氟化氢的生产设备及工艺
CN106276801B (zh) * 2016-08-25 2019-08-02 衢州南高峰化工股份有限公司 一种无水氟化氢的生产设备及工艺
CN108298500A (zh) * 2017-01-12 2018-07-20 洛阳丰瑞氟业有限公司 一种提高无水氟化氢产量和质量生产工艺的改造方案
CN109248642B (zh) * 2018-10-17 2020-07-28 杨松 一种制备氟化氢颗粒层移动床过滤器的使用方法
CN108892104A (zh) * 2018-10-17 2018-11-27 杨松 一种制备氟化氢工艺装置的使用方法
CN108910827A (zh) * 2018-10-17 2018-11-30 杨松 一种制备氟化氢工艺装置
CN108928804A (zh) * 2018-10-17 2018-12-04 杨松 一种制备氟化氢洗涤塔的使用方法
CN109248642A (zh) * 2018-10-17 2019-01-22 杨松 一种制备氟化氢颗粒层移动床过滤器的使用方法
CN110255502A (zh) * 2019-06-14 2019-09-20 贵州新东浩化工材料科技有限公司 白肥制氟化氢联产富钙及普钙工艺
CN110498430A (zh) * 2019-10-08 2019-11-26 内蒙古星汉氟都化工有限公司 一种以萤石粉为原料生产氟化钾的方法
CN112028022A (zh) * 2020-09-18 2020-12-04 宣城亨泰电子化学材料有限公司 一种制备电子级高纯氢氟酸的预处理方法
CN113321185A (zh) * 2021-05-20 2021-08-31 浙江瑞星氟化工业有限公司 一种无水氟化氢生产工艺
CN113479845A (zh) * 2021-08-10 2021-10-08 福建省清流县东莹化工有限公司 一种回收法制备无水氟化氢工艺及装置
CN113479845B (zh) * 2021-08-10 2022-12-27 福建省清流县东莹化工有限公司 一种回收法制备无水氟化氢工艺及装置
CN113735062A (zh) * 2021-09-15 2021-12-03 青海西矿同鑫化工有限公司 一种稀土回收萤石制备氟化氢的方法
WO2024045244A1 (zh) * 2022-08-31 2024-03-07 福建省龙氟新材料有限公司 用于无水氟化氢生产的能源管理控制系统及其控制方法

Also Published As

Publication number Publication date
CN103848400B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
CN103848400B (zh) 一种无水氟化氢的制备方法
AU2006298109B2 (en) Process for production of silicon tetrafluoride, and apparatus for the process
CN102923664B (zh) 一种气固-液相联合反应法生产氟化氢的方法
CA2973506C (en) System and method for producing high-purity vanadium tetraoxide powder
US20180002190A1 (en) System and Method for Purifying Vanadium Pentoxide
CN103896215A (zh) 一种采用萤石-硫酸法来制备氟化氢的方法
CN108675911B (zh) 一种降低电石渣产生的电石乙炔生产工艺
CN103663510A (zh) 一种盐酸处理粉煤灰制备氧化铝的方法
CN104495953A (zh) 一种盐析法资源化处理工业废盐酸的工艺
CN105314599A (zh) 一种利用氟硅酸生产无水氟化氢和白炭黑的方法
CN101134588A (zh) 氟化铝的生产方法
CN102827313A (zh) 酸相法合成氯化聚乙烯联产甘油法合成环氧氯丙烷的方法
US4460551A (en) Process and device for manufacturing synthetic anhydrous calcium sulphate and pure hydrofluoric acid
CN1283548C (zh) 一种磷肥副产物综合利用的方法
CN105565322B (zh) 一种由硅、氢气和四氯化硅反应得到的气/固混合体的处理方法和装置
CN104556168B (zh) 一种将粉煤灰中氧化铝活化溶出的方法
CN100582010C (zh) 一种制备氟化铝、无水硫酸镁、氟化钠的方法
CN107364879B (zh) 从硫酸镁溶液中回收镁元素和钙元素的方法
CN105152171A (zh) 多晶硅生产过程中含氯硅烷浆料连续回收专用系统及方法
CN104445275B (zh) 一种回收利用烟气净化废液制备铵盐的工艺
CN107188129A (zh) 含氟化钙废料制备氟化氢和四氟化硅的方法
CN106006557B (zh) 一种氯硅烷残液生产氯化氢气体的方法
CN102531263A (zh) 一种环氧化合物生产过程皂化废水的处理方法
CN104788304B (zh) 无机酸酸化甲酸盐制备高纯无水甲酸的方法
CN103387479B (zh) 醇法分离精制三氧化二砷过程中水的脱除及醇水混合液分离方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200512

Address after: 354000 Jinling Road 6, Jintang Industrial Park, Shaowu City, Nanping, Fujian

Patentee after: FUJIAN YONGJING TECHNOLOGY Co.,Ltd.

Address before: 354001, No. 18, new ammonia Road, Shaowu, Fujian, Nanping

Patentee before: FUJIAN SHAOWU YONGFEI CHEMICAL Co.,Ltd.

TR01 Transfer of patent right