CN103837491B - 带钢表面涂层含水率红外光谱测量模型的建立方法 - Google Patents

带钢表面涂层含水率红外光谱测量模型的建立方法 Download PDF

Info

Publication number
CN103837491B
CN103837491B CN201210474942.4A CN201210474942A CN103837491B CN 103837491 B CN103837491 B CN 103837491B CN 201210474942 A CN201210474942 A CN 201210474942A CN 103837491 B CN103837491 B CN 103837491B
Authority
CN
China
Prior art keywords
infrared
moisture content
coating
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210474942.4A
Other languages
English (en)
Other versions
CN103837491A (zh
Inventor
朱子平
陈敏
张晓峰
王君祥
施振岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Baosteel Industry Technological Service Co Ltd
Original Assignee
Shanghai Baosteel Industry Technological Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Baosteel Industry Technological Service Co Ltd filed Critical Shanghai Baosteel Industry Technological Service Co Ltd
Priority to CN201210474942.4A priority Critical patent/CN103837491B/zh
Publication of CN103837491A publication Critical patent/CN103837491A/zh
Application granted granted Critical
Publication of CN103837491B publication Critical patent/CN103837491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种带钢表面涂层含水率红外光谱测量模型的建立方法,即本方法首先确定涂层样品含水率的测量波长并进行红外光谱吸收值校准,确定涂层样品的测量面积、红外光谱采集方式、红外光谱采集次数,对多个涂层样品含水率采用化学法测量和红外测量,对多个测量值采用回归计算,得到红外光谱测量带钢表面涂层含水率的一次或多次回归线性曲线,并对该曲线的红外光谱测量精度进行验证,得到能反映带钢表面涂层含水率的红外光谱测量模型。本方法建立带钢表面涂层含水率红外测量模型,可快速检测样品表面涂层含水率,无需进行样品涂层收集、人工测量等工序,极大提高工作效率,有效提高涂层涂覆的工艺控制水平和涂层质量。

Description

带钢表面涂层含水率红外光谱测量模型的建立方法
技术领域
本发明涉及一种带钢表面涂层含水率红外光谱测量模型的建立方法。
背景技术
在带钢生产工艺中,为了提高带钢表面性能常需要在其表面涂覆一层涂层,而检测其表面涂层含水率是衡量涂层质量的重要指标。
目前带钢表面涂层含水率测量主要依赖于化学检测,化学检测方法是将样品表面涂层刮下收集,在1000℃下烘烤60min,根据样品加热前后的重量差得到含水率。由于带钢涂层极易吸附环境中水分,致使影响样品检测的可靠性,此外化学检测操作复杂、测量周期长、人为因素影响大、不能满足实时检测的要求,无法反映涂层涂覆的工作控制状况,涂层的工艺质量得不到有效控制。
发明内容
本发明所要解决的技术问题是提供一种带钢表面涂层含水率红外光谱测量模型的建立方法,利用本方法建立带钢表面涂层含水率红外测量模型,可快速检测样品表面涂层含水率,无需进行样品涂层收集、人工测量等工序,极大提高工作效率,有效提高涂层涂覆的工艺控制水平和涂层质量。
为解决上述技术问题,本发明带钢表面涂层含水率红外光谱测量模型的建立方法包括如下步骤:
步骤一、采用红外光谱测量仪对带钢样品进行红外光谱全谱扫描,得到样品待测元素特征波长红外光谱图谱,图谱中表征样品含水率红外波长,取含水率红外波长两侧平坦处作为样品含水率测量波长基线,两侧平坦处的连线作为含水率红外背景吸收,此三点波长区间为红外测定波长范围;根据红外背景吸收和样品含水率红外波长处的吸收值,采用三波长法得到红外波范围内含水率红外吸收值;
步骤二、确定带钢涂层样品面积,并保证化学法含水率测量精度≤0.2%,样品中涂层重量在1~2克,并使样品面积S不小于红外单色光照射面积S1的4倍,样品面积按下式选取,
S=G/(d×ρ)
式中,S为样品面积,G为涂层重量,d为涂层厚度,ρ为涂层密度;
步骤三、样品含水率均匀性是确保涂层含水率红外测量与化学法测量一致性的保证,选取带钢样品中含水率分布均匀的沿轧制方向部位作为红外测量与化学测量的样品;
步骤四、确定红外光谱测量仪的测量次数,由于红外单色光照射到样品时,会产生椭圆型光斑,其面积为S1,根据样品面积S确定红外测量的次数,并且使测量次数N满足4<N<S/S1;
步骤五、采用红外光谱测量仪在红外测定波长范围内,对涂层样品按顺时针方向四周环绕进行测定含水率红外吸收值,测量次数满足步骤四要求,各次测量的含水率红外吸收值的平均值表征为涂层样品中含水率红外吸收值;
步骤六、将经红外测定的涂层样品进行人工剥离,剥离的涂层样品采用化学检测方法测定含水率;
步骤七、选取40~60个有代表性带钢涂层样品,分别按步骤五和步骤六对涂层样品进行含水率红外光谱测量和化学法测量,对红外光谱法含水率测定值和其对应的化学法含水率测定值采用回归计算,得到红外光谱测量带钢表面涂层含水率的一次或多次回归线性曲线,并计算回归曲线相关系数;
步骤八、对回归线性曲线精度进行验证,取11~25个涂层样品,进行涂层样品含水率的化学测量和红外测量,计算化学测量值与红外测量值的统计值的标准偏差S,得到带钢表面涂层含水率红外光谱测量精度为1.96S;
步骤九、应用回归曲线测量带钢表面涂层含水率量,并给出测量精度,得到带钢表面涂层含水率的红外光谱测量模型,利用该红外光谱测量模型,得到带钢表面涂层含水率含量及测量误差,并置信度为0.95。
由于本发明带钢表面涂层含水率红外光谱测量模型的建立方法采用了上述技术方案,即本方法首先确定涂层样品含水率的测量波长并进行红外光谱吸收值校准,确定涂层样品的测量面积、红外光谱采集方式、红外光谱采集次数,对多个涂层样品含水率采用化学法测量和红外测量,对多个红外采集值及相应化学测量值采用回归计算,得到红外光谱测量带钢表面涂层含水率的一次或多次回归曲线,并对该曲线的红外光谱测量精度进行验证,得到能反映带钢表面涂层含水率的红外光谱测量模型。本方法建立带钢表面涂层含水率红外测量模型,可快速检测样品表面涂层含水率,无需进行样品涂层收集、人工测量等工序,极大提高工作效率,有效提高涂层涂覆的工艺控制水平和涂层质量。
附图说明
下面结合附图和实施方式对本发明作进一步的详细说明:
图1为本方法的流程图;
图2为本方法中红外光谱测量仪的全谱扫描图谱。
具体实施方式
如图1所示,本发明带钢表面涂层含水率红外光谱测量模型的建立方法包括如下步骤:
步骤一、采用红外光谱测量仪对带钢样品进行红外光谱全谱扫描,得到样品待测元素特征波长红外光谱图谱,如图2所示,图谱中表征样品含水率红外波长1,取含水率红外波长1两侧平坦处2、3作为样品含水率测量波长基线,两侧平坦处2、3的连线4作为含水率红外背景吸收,红外波长1、红外波长2及红外波长3的区间为红外测定波长范围,根据红外背景吸收和样品含水率红外波长处的吸收值,采用三波长法得到红外波范围内含水率红外吸收值;
步骤二、确定带钢涂层样品面积,并保证化学法含水率测量精度≤0.2%,样品中涂层重量在1~2克,并使样品面积S不小于红外单色光照射面积S1的4倍,,样品面积按下式选取,
S=G/(d×ρ)
式中,S为样品面积,G为涂层重量,d为涂层厚度,ρ为涂层密度;
步骤三、样品含水率均匀性是确保涂层含水率红外测量与化学法测量一致性的保证,选取带钢样品中含水率分布均匀的沿轧制方向部位作为红外测量与化学测量的样品;如带钢的传动侧、中部、操作侧及涂层样品的上下表面等部位;
步骤四、确定红外光谱测量仪的测量次数,由于红外单色光照射到样品时,会产生椭圆型光斑,其面积为S1,根据样品面积S确定红外测量的次数,并且使测量次数N满足4<N<S/S1;例如:样品面积S为100cm2,红外照射面积S1为5cm2,则取样测量次数为4<N<20;
步骤五、采用红外光谱测量仪在红外测定波长范围内,对涂层样品按顺时针方向四周环绕进行测定含水率红外吸收值,测量次数满足步骤四要求,其中每次红外测量至少测量10遍,其10遍测量的平均值为该次测量的红外测量的含水率红外吸收值,各次测量的含水率红外吸收值的平均值表征为涂层样品中含水率红外吸收值;
步骤六、将经红外测定的涂层样品进行人工剥离,剥离的涂层样品采用化学检测方法测定含水率;
步骤七、选取40~60个有代表性带钢涂层样品,分别按步骤五和步骤六对涂层样品进行含水率红外光谱测量和化学法测量,对红外光谱法含水率测定值和其对应的化学法含水率测定值采用回归(最小二乘法)计算,得到红外光谱测量带钢表面涂层含水率的一次或多次回归线性曲线,并计算回归曲线相关系数;
步骤八、对多元回归线性曲线精度进行验证,取11~25个带钢涂层样品,进行涂层样品的化学测量和红外测量,计算化学测量值与红外测量值的统计值的标准偏差S,得到带钢表面涂层含水率红外光谱测量精度为1.96*S;红外测量过程中,对红外测量仪标准板进行定期校正,以保证红外测量仪在工作基准范围内,确保测量的准确性;
步骤九、应用回归曲线测量带钢表面涂层含水率量,并给出测量精度,得到带钢表面涂层含水率的红外光谱测量模型,利用该红外光谱测量模型,得到带钢表面涂层含水率含量及测量误差,并置信度为0.95。
本方法建立了带钢表面涂层含水率的红外光谱测量模型,红外光谱测量模型具有可传递性、可应用于相同涂层及不同工艺涂层的含水率测定,实现了红外光谱法测定带钢表面涂层中的含水,具有快速、简便、准确等优点,可以替代传统的化学检测法并可应用于生产线在线连续化检测等。红外光谱法能实时检测带钢表面不同部位、不同方向含水率的分布情况,真实反映带钢表面含水率分布,具有化学检测法不可替代的作用,对提高带钢涂布工艺控制水平和产品质量具有重要的指导意义。

Claims (1)

1.一种带钢表面涂层含水率红外光谱测量模型的建立方法,其特征在于本方法包括如下步骤:
步骤一、采用红外光谱测量仪对带钢样品进行红外光谱全谱扫描,得到样品待测元素特征波长红外光谱图谱,图谱中表征样品含水率红外波长,取含水率红外波长两侧平坦处作为样品含水率测量波长基线,两侧平坦处的连线作为含水率红外背景吸收,此三点波长区间为红外测定波长范围;根据红外背景吸收和样品含水率红外波长处的吸收值,采用三波长法得到红外波范围内含水率红外吸收值;
步骤二、确定带钢涂层样品面积,并保证化学检测法含水率测量精度≤0.2%,样品中涂层重量在1~2克范围内,样品面积按下式选取,
S=G/(d×ρ)
式中,S为样品面积,G为涂层重量,d为涂层厚度,ρ为涂层密度;
步骤三、样品含水率均匀性是确保涂层含水率红外测量与化学法测量一致性的保证,选取带钢样品中含水率分布均匀的沿轧制方向部位作为红外测量与化学测量的涂层样品;
步骤四、确定红外光谱测量仪的测量次数,由于红外单色光照射到样品时,会产生椭圆型光斑,其面积为S1,根据样品面积S确定红外测量的次数,并且使测量次数N满足4<N<S/S1;
步骤五、采用红外光谱测量仪在红外测定波长范围内,对涂层样品按顺时针方向四周环绕进行测定含水率红外吸收值,测量次数满足步骤四要求,各次测量的含水率红外吸收值的平均值表征为涂层样品中含水率红外吸收值;
步骤六、将经红外测定的涂层样品进行人工剥离,剥离的涂层样品采用化学检测法测定含水率;
步骤七、选取40~60个有代表性带钢涂层样品,分别按步骤五和步骤六对涂层样品进行含水率红外光谱测量和化学法测量,对红外光谱法含水率测定值和其对应的化学法含水率测定值采用回归计算,得到红外光谱测量带钢表面涂层含水率的一次或多次回归线性曲线,并计算回归曲线相关系数;
步骤八、对回归线性曲线精度进行验证,取11~25个涂层样品,进行涂层样品含水率的化学测量和红外测量,计算化学测量值与红外测量值的统计值的标准偏差S,得到带钢表面涂层含水率红外光谱测量精度为1.96S;
步骤九、应用回归曲线测量带钢表面涂层含水率量,并给出测量精度,得到带钢表面涂层含水率的红外光谱测量模型,利用该红外光谱测量模型,得到带钢表面涂层含水率含量及测量误差,并置信度为0.95。
CN201210474942.4A 2012-11-21 2012-11-21 带钢表面涂层含水率红外光谱测量模型的建立方法 Active CN103837491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210474942.4A CN103837491B (zh) 2012-11-21 2012-11-21 带钢表面涂层含水率红外光谱测量模型的建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210474942.4A CN103837491B (zh) 2012-11-21 2012-11-21 带钢表面涂层含水率红外光谱测量模型的建立方法

Publications (2)

Publication Number Publication Date
CN103837491A CN103837491A (zh) 2014-06-04
CN103837491B true CN103837491B (zh) 2018-11-23

Family

ID=50801208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210474942.4A Active CN103837491B (zh) 2012-11-21 2012-11-21 带钢表面涂层含水率红外光谱测量模型的建立方法

Country Status (1)

Country Link
CN (1) CN103837491B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519867B2 (en) 2019-12-09 2022-12-06 Honeywell International Inc. X-ray-based determining of weights for coated substrates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786657A (zh) * 2004-12-07 2006-06-14 三星电机株式会社 用于金属表面上的有机涂膜的厚度测量方法
JP2010121998A (ja) * 2008-11-18 2010-06-03 Sumitomo Metal Mining Co Ltd 水分量測定方法及び水分量測定装置
CN101806730A (zh) * 2010-04-13 2010-08-18 江苏大学 一种醋糟有机基质含水量的检测方法
CN102112831A (zh) * 2008-08-06 2011-06-29 空中客车运营有限公司 用于非接触式检测涂料涂层的干燥度的设备及其方法
CN102455282A (zh) * 2010-10-25 2012-05-16 北京农业信息技术研究中心 测量土壤含水量的方法
CN102539389A (zh) * 2011-12-23 2012-07-04 广东工业大学 一种瓦楞原纸湿度检测装置
NL2013295A (en) * 2013-08-02 2015-02-03 Tno A coating composition comprising a dye and a method to detect moisture in objects.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786657A (zh) * 2004-12-07 2006-06-14 三星电机株式会社 用于金属表面上的有机涂膜的厚度测量方法
CN102112831A (zh) * 2008-08-06 2011-06-29 空中客车运营有限公司 用于非接触式检测涂料涂层的干燥度的设备及其方法
JP2010121998A (ja) * 2008-11-18 2010-06-03 Sumitomo Metal Mining Co Ltd 水分量測定方法及び水分量測定装置
CN101806730A (zh) * 2010-04-13 2010-08-18 江苏大学 一种醋糟有机基质含水量的检测方法
CN102455282A (zh) * 2010-10-25 2012-05-16 北京农业信息技术研究中心 测量土壤含水量的方法
CN102539389A (zh) * 2011-12-23 2012-07-04 广东工业大学 一种瓦楞原纸湿度检测装置
NL2013295A (en) * 2013-08-02 2015-02-03 Tno A coating composition comprising a dye and a method to detect moisture in objects.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
红外技术在烟用纸张材料含水率快速测定中的应用;陶冶;《中国烟草学会2012年学术年会》;20120911;第9-19页 *

Also Published As

Publication number Publication date
CN103837491A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN104062257B (zh) 一种基于近红外光谱测定溶液中总黄酮含量的方法
CN103175806B (zh) 一种基于近红外光谱分析的干粉灭火剂含水率检测方法
CN103196838B (zh) 一种海岸河口富营养化高光谱遥感监测方法
CN103018195B (zh) 近红外光谱测定pbx炸药中pctfe含量的方法
CN106645037A (zh) 基于高光谱技术检测煤矸石充填复垦重构土壤重金属含量的方法
CN103776777B (zh) 一种用近红外光谱技术识别不同生长方式人参及对人参中组分含量测定的方法
CN109085136B (zh) 近红外漫反射光谱测定水泥生料氧化物成分含量的方法
Liu et al. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China
CN110987846B (zh) 一种基于iPLS-PA算法的硝酸盐浓度预测方法
CN104390932B (zh) 基于红外差谱技术的木材含水率检测方法
CN105548070A (zh) 一种苹果可溶性固形物近红外检测部位补偿方法及系统
CN106596469B (zh) 一种基于粗糙面反射率谱反演材料复折射率的方法
CN108037084B (zh) 一种适用于光度法原理水质自动分析仪的抗干扰测量方法
CN105606566A (zh) 一种透明介质膜层折射率及厚度在线测量方法
CN103344597B (zh) 一种抗调味干扰的莲藕内部成分近红外无损检测的方法
CN103592255A (zh) 一种基于近红外光谱技术的阿胶化皮液中总蛋白含量的软测量方法
WO2020186844A1 (zh) 自适应表面吸收光谱分析方法、系统、存储介质、设备
CN104132909A (zh) 诃子中没食子酸含量的近红外快速测定方法
CN103646175A (zh) 一种目标光谱辐射亮度的计算方法
CN103837491B (zh) 带钢表面涂层含水率红外光谱测量模型的建立方法
CN107991265A (zh) 一种基于信息融合的小麦粉粉质参数快速检测方法
CN100501378C (zh) 一种测量全氟磺酰树脂磺酰单体含量的方法
CN111896497B (zh) 一种基于预测值的光谱数据修正方法
CN106442396A (zh) 基于近红外技术的甘蔗渣蔗糖含量快检方法
CN110567385A (zh) 基于高光谱技术的建筑反射隔热涂料施工厚度检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 3520 Tongji Road, Baoshan District, Shanghai, 201900

Patentee after: Baowu equipment Intelligent Technology Co., Ltd

Address before: 201900, 335, Pu Pu Road, Shanghai, Baoshan District

Patentee before: SHANGHAI BAOSTEEL INDUSTRY TECHNOLOGICAL SERVICE Co.,Ltd.

CP03 Change of name, title or address