CN103824898A - 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列 - Google Patents

基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列 Download PDF

Info

Publication number
CN103824898A
CN103824898A CN201410062013.1A CN201410062013A CN103824898A CN 103824898 A CN103824898 A CN 103824898A CN 201410062013 A CN201410062013 A CN 201410062013A CN 103824898 A CN103824898 A CN 103824898A
Authority
CN
China
Prior art keywords
cigs
indium gallium
copper indium
gallium selenide
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410062013.1A
Other languages
English (en)
Inventor
马荔
张彬
周桃
郑茂俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201410062013.1A priority Critical patent/CN103824898A/zh
Publication of CN103824898A publication Critical patent/CN103824898A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种自组装无电沉积制备铜铟镓硒三维纳米结构阵列的制备方法,通过将背面溅射有金属钼四周带铝支撑的多孔氧化铝模板作为CIGS生长基底,浸入以铜、铟、镓和硒离子的混合液作为铜铟镓硒生长液中使得铜铟镓硒在CIGS生长基底上自组装生长,经退火后得到三维纳米结构的CIGS材料。本发明丰富了纳米结构CIGS的制备方法,为以后进一步制备高效率,大面积,低功耗,低成本的纳米太阳能电池和p-n结器件研究提供了材料支持。制备方法相对简单,不需要需昂贵的真空设备,对周围环境没有特殊要求,适宜工业普及。

Description

基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列
技术领域
本发明涉及的是一种太阳能电池材料技术领域的纳米材料,具体是一种适用于纳米结构的p-n结太阳能电池的基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列。 
背景技术
化合物半导体黄铜矿铜铟镓硒是制备薄膜太阳能电池的理想材料。它有较高的可见光光吸收系数,可调的带隙宽度,长期的稳定性、可靠性、高温特性和弱光特性。铜铟镓硒目前-实验室最高转换效率记录超过了20%。然而,高转换效率的CIGS薄膜电池是由真空技术-共蒸发方法制备的CIGS多晶薄膜作为吸收层来实现的,但由于共蒸发工艺所需要昂贵的设备系统、材料利用率不高等特点不适合做大规模的推广。 
近二三十年来,铜铟镓硒的研究者们一直在追求探索高效、低成本、可控的方法合成铜铟镓硒材料,并研究其相应物理化学性质,以此推动铜铟镓硒材料电池的发展。金属预制层硒化法、电化学沉积技术、喷雾热解方法、量子点丝网印刷及旋涂法,微粒沉积技术、气相输运技术、机械化学等方法都被用来合成CIGS(铜铟镓硒)材料。但是,许多非真空工艺在降低成本的可以合成CIGS材料,其对应光伏器件转换效率不是很高 
由于共蒸发法设备及制备成本高制约了铜铟镓硒薄膜太阳能电池的广泛应用,因此,寻找低成本、低功耗、环境友好的制备铜铟镓硒薄膜电池一直是研究的热点。在制备铜铟镓硒材料的多种方法中,溶液法被普遍认为是一种极具潜力的制备铜铟镓硒的方法,最有可能代替以真空设备为基础的共蒸发法,相对于共蒸发法,溶液法具有环境要求少,简单易操作性,高效的沉积速率,设备及材料成本低,具有大规模制备的商业潜力和可行性。 
同时,近年来,研究过程中纳米结构的太阳能电池对比平板薄膜太阳能电池有着巨大的优势,比如更高的光吸收光俘获特性,少的能量损失,好的载流子输运特性等,都吸引着研究者的广泛关注和研究。 
经过对现有技术的检索发现,中国专利文献号CN101700872A,公开日2010.05.05,公开了一种铜铟镓硒纳米线阵列及其制备方法。该技术是在玻璃或硅片基底上制备金属电极层后,利用有序纳米模板做生长掩膜在衬底上的金属电极上电沉积制备有序的纳米线结构铜铟镓硒P型吸收层材料阵列。并通过化学腐蚀或物理刻蚀的方法从上至下部分去除模板,露出纳米线阵列,该阵列可用于与N型窗口层及金属电极组成具有光电转换性能的异质结。但该技术去除模板相对复杂,采用电沉积成本高,对制备的CIGS阵列形貌不能很好的控制。 
发明内容
本发明针对现有技术存在的上述不足,提出一种基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列,其形貌可根据氧化铝模板的孔径大小和溅射金属钼层的厚度来实现可调。本发明丰富了纳米结构CIGS的制备方法,为以后进一步制备高效率,大面积,低功耗,低成本的纳米太阳能电池和p-n结器件研究提供了材料支持。制备方法相对简单,不需要需昂贵的真空设备,对周围环境没有特殊要求,适宜工业普及。 
本发明是通过以下技术方案实现的: 
本发明涉及一种自组装无电沉积制备铜铟镓硒三维纳米结构阵列的制备方法,将背面溅射有金属钼四周带铝支撑的多孔氧化铝模板作为CIGS生长基底,浸入以铜、铟、镓和硒离子的混合液作为铜铟镓硒生长液中使得铜铟镓硒在CIGS生长基底上自组装生长,经退火去除模板后得到三维纳米结构的CIGS材料。 
所述的金属钼四周带铝支撑的多孔氧化铝模板包括:低场草酸氧化铝模板和高场磷酸氧化铝模板。 
所述的铜铟镓硒生长液是指:按Cu2+:SeO3 2-=3:10~1:2,In3+:Ga3+=1:5~4:5,Cu2+:(In3++Ga3+)=7:10~5:6,的摩尔比例,将CuCl2,InCl3,CaCl3,H2SeO2溶液加入到电阻率为18MΩ·cm的去离子水中,经充分搅拌,并用NaOH溶液调节pH值至2.0~2.3,配置成铜铟镓硒生长液。 
所述的CIGS生长基底是指:通过两步阳极氧化法制备出四周带铝支撑的多孔的纳米氧化铝模板,接着利用磁控溅射方法,在阳极氧化铝的背面溅射一层金属钼。 
所述的两步阳极氧化法的具体过程为:将经过电化学抛光的铝片进行一次阳极氧化后去除凹坑,并重复进行一次阳极氧化,最后去除阻碍层后得到低场草酸氧化铝模板或高场磷酸氧化铝模板。 
所述的铝片是指:剪裁成直径为2cm的纯铝圆片,该铝片放入丙酮浸泡半小时以去除表面的油脂,并经过超声清洗5分钟,最后用去离子水冲洗并干燥。 
所述的电化学抛光是指:将铝片放入含有体积比为1:4的高氯酸和乙醇混合溶液的夹具中,在10V恒压下电化学抛光3-5分钟,抛光后的铝片表面粗糙度降低。 
所述的夹具为圆柱形结构,直径为2cm,上端的开口直径为1.7cm,下端封闭。 
所述的阳极氧化是指:草酸模板的低场氧化或磷酸模板的高场氧化,其中:草酸模板的低场氧化是指:在15℃环境下采用40V的阳极电压在0.3M/L浓度的草酸溶液中一次腐蚀2小时;磷酸模板的高场氧化在-5℃环境下采用195V的阳极电压在0.25M/L浓度的磷酸溶液一次腐蚀100秒。 
所述的去除凹坑是指:采用混合溶液浸泡以消除铝片表面上的周期性凹坑,具体为:采用含有6wt.%的磷酸和1.8wt.%的铬酸的混合溶液,在60℃环境下浸泡4小时。 
所述的去除阻碍层是指:将完成两次阳极氧化后的铝片置于磷酸溶液中,在35-45℃环境下浸泡40分钟,具体为:对于低场草酸氧化铝模板需要在35℃下浸泡40分钟;对于高场磷酸氧化铝模板需要在45℃下浸泡40分钟。 
所述的磷酸溶液的浓度为5wt.%。 
所述的完成两次氧化后的铝片优选为在其背面滴加体积比为3:1的饱和硫酸铜和盐酸的混合溶液以去除背面剩余的铝。 
所述的磁控溅射方法的具体过程为:将本底真空抽到10-3pa.以下,功率调至30-100w,溅射2-20分钟,靶材采用高纯的钼,溅射的钼在多孔氧化铝模板上形成了一层多孔的金属钼层,可以根据溅射时间的长短调控金属钼层的孔径。 
所述的退火是指:将自组装生长后的CIGS生长基底放入真空炉中,在450-600℃,1.0-3Pa以下退火30分钟。 
所述的去除模板的方法具体过程为:将退火后的样品放入5wt%的磷酸溶液中浸泡50分钟,去除模板,获得独立的纳米结构阵列。 
本发明涉及上述方法制备得到的铜铟镓硒三维纳米结构阵列,其中:基于低场草酸氧化铝模板制备的铜铟镓硒三维纳米结构阵列的外孔径为70-120nm,内孔径为可调控的0-70nm;基于高场磷酸氧化铝模板制备的铜铟镓硒三维纳米结构阵列的外孔径200-275nm,内孔径为可调控的0-200nm。 
技术效果 
与现有技术相比,本发明的优点是:1)生长过程中不引进其它不利元素杂质,对铜铟镓硒的制备不产生不利影响;2)无需特殊气氛环境,工艺简单,操作方便,长短可根据时间的长短控制,30分钟就可以生长到1μm-1.5μm;3)在周围气环境下生长铜铟镓硒可以有更高的生长速度,因此适用于大面积、低成本的制备高性能铜铟镓硒材料。4)生长的纳米结构的铜铟镓硒成分可以根据配置溶液的摩尔配比来调节,这样可以制备出不同能带宽度的铜铟镓硒材料。5)制备的纳米结构铜铟镓硒阵列的参数可以根据采用不同孔径的氧化铝模板和溅射钼层的时间来控制。6)去除模板简单容易。7)采用无电沉积,成本低。 
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。 
实施例1 
本实施例包括以下步骤: 
1、用CuCl2,InCl3,CaCl3,和H2SeO2溶液按照Cu2+:In3+:Ga3+:SeO3 2=1:3:4:2的摩尔比例配制原始混合溶液。 
2、将原始混合溶液充分均匀搅拌,用NaOH溶液调节溶液的pH值至2.0,得到铜铟镓硒的生长液。 
3、用两步阳极氧化制备的高场磷酸氧化铝模板作为基底,直径为20nm,用磁控溅射的方法溅射一层金属钼,本底真空为4×1.0-4Pa,工作气压为12Mtorr,功率为30w,溅射时间4分钟,这样作为生长铜铟镓硒纳米阵列的基底。 
4、室温下,将步骤三做好的基底放入,pH值为2.0的铜铟镓硒生长液中。生长30分钟。接着将生长后的样品,取出后用去离子水冲洗并用一定流速的氮气吹干。 
5、将得到的样品,放入管式炉中,450℃退火半小时。这样就得到了致密的纳米结构的铜铟镓硒阵列。 
将样品放入5wt%的磷酸溶液中浸泡50分钟,去除模板,获得独立的纳米结构阵列。 
实施例2 
1、将CuCl2,InCl3,CaCl3,和H2SeO2溶液按照Cu2+:In3+:Ga3+:SeO3 2=1:2:4:2的摩尔比例配制原始混合溶液。 
2、将原始混合溶液充分均匀搅拌,用NaOH溶液调节溶液的pH值至2.1,得到铜铟镓硒的生长液。 
3、用两步阳极氧化制备的高场磷酸氧化铝模板作为基底,直径为250nm,用磁控溅射的方法溅射一层金属钼,本底真空为3×1.0-4Pa,工作气压为8mtorr,功率为50w,溅射时间20分钟,这样作为生长铜铟镓硒纳米阵列的基底。 
4、室温下,将步骤三做好的基底放入,pH值为2.1的铜铟镓硒生长液中。生长40分钟。接着将生长后的样品,取出后用去离子水冲洗并用一定流速的氮气吹干。 
5、将得到的样品,放入管式炉中,500℃退火20分钟。这样就得到了致密的纳米结构的铜铟镓硒阵列。 
6、将样品放入5wt%的磷酸溶液中浸泡50分钟,去除模板,获得独立的纳米结构阵列。实施例3 
1、用CuCl2,InCl3,CaCl3,和H2SeO2溶液按照Cu2+:In3+:Ga3+:SeO3 2=1:3:4:3的摩尔比例配制原始混合溶液。 
2、将原始混合溶液充分均匀搅拌,用NaOH溶液调节溶液的pH值至2.2,得到铜铟镓硒的生长液。 
3、用两步阳极氧化制备的高场磷酸氧化铝模板作为基底,直径为190nm,用磁控溅射的方法溅射一层金属钼,本底真空为6×1.0-4Pa,工作气压为10mtorr,功率为80w,溅射时间10分钟,这样作为生长铜铟镓硒纳米阵列的基底。 
4、室温下,将步骤三做好的基底放入,pH值为2.2的铜铟镓硒生长液中。生长5分钟。接着将生长后的样品,取出后用去离子水冲洗并用一定流速的氮气吹干。 
5、将得到的样品,放入管式炉中,550℃退火半小时。这样就得到了致密的纳米结构的铜铟镓硒阵列。 
将样品放入5wt%的磷酸溶液中浸泡50分钟,去除模板,获得独立的纳米结构阵列。 
实施例4 
1、用CuCl2,InCl3,CaCl3,和H2SeO2溶液按照Cu2+:In3+:Ga3+:SeO3 2=1:2:3:2的摩尔比例配制原始混合溶液。 
2、将原始混合溶液充分均匀搅拌,用NaOH溶液调节溶液的pH值至2.2,得到铜铟镓硒的生长液。 
3、用两步阳极氧化制备的低场草酸氧化铝模板作为基底,直径为70nm,用磁控溅射的方法溅射一层金属钼,本底真空为8×1.0-4Pa,工作气压为12mtorr,功率为100w,溅射时间3分钟,这样作为生长铜铟镓硒纳米阵列的基底。 
4、室温下,将步骤三做好的基底放入,pH值为2.3的铜铟镓硒生长液中。生长30分钟。接着将生长后的样品,取出后用去离子水冲洗并用一定流速的氮气吹干。 
5、将得到的样品,放入管式炉中,600℃退火30分钟。这样就得到了致密的纳米结构的铜铟镓硒阵列。 
将样品放入5wt%的磷酸溶液中浸泡50分钟,去除模板,获得独立的纳米结构阵列。 

Claims (9)

1.一种自组装无电沉积制备铜铟镓硒三维纳米结构阵列的制备方法,其特征在于,将背面溅射有金属钼四周带铝支撑的多孔氧化铝模板作为CIGS生长基底,浸入以铜、铟、镓和硒离子的混合液作为铜铟镓硒生长液中使得铜铟镓硒在CIGS生长基底上自组装生长,经退火后得到三维纳米结构的CIGS材料;
所述的金属钼四周带铝支撑的多孔氧化铝模板包括:低场草酸氧化铝模板和高场磷酸氧化铝模板。
2.根据权利要求1所述的方法,其特征是,所述的铜铟镓硒生长液是指:按Cu2+:SeO3 2-=3:10~1:2,In3+:Ga3+=1:5~4:5,Cu2+:(In3++Ga3+)=7:10~5:6,的摩尔比例,将CuCl2,InCl3,CaCl3,H2SeO2溶液加入到电阻率为18MΩ·cm的去离子水中,经充分搅拌,并用NaOH溶液调节pH值至2.0~2.3,配置成铜铟镓硒生长液。
3.根据权利要求1所述的方法,其特征是,所述的CIGS生长基底是指:通过两步阳极氧化法制备出四周带铝支撑的多孔的纳米氧化铝模板,接着利用磁控溅射方法,在阳极氧化铝的背面溅射一层金属钼。
4.根据权利要求3所述的方法,其特征是,所述的两步阳极氧化法的具体过程为:将经过电化学抛光的铝片进行一次阳极氧化后去除凹坑,并重复进行一次阳极氧化,最后去除阻碍层后得到低场草酸氧化铝模板或高场磷酸氧化铝模板;
所述的阳极氧化是指:草酸模板的低场氧化或磷酸模板的高场氧化,其中:草酸模板的低场氧化是指:在15℃环境下采用40V的阳极电压在0.3M/L浓度的草酸溶液中一次腐蚀2小时;磷酸模板的高场氧化在-5℃环境下采用195V的阳极电压在0.25M/L浓度的磷酸溶液一次腐蚀100秒。
5.根据权利要求4所述的方法,其特征是,所述的去除凹坑是指:采用混合溶液浸泡以消除铝片表面上的周期性凹坑,具体为:采用含有6wt.%的磷酸和1.8wt.%的铬酸的混合溶液,在60℃环境下浸泡4小时。
6.根据权利要求4所述的方法,其特征是,所述的去除阻碍层是指:将完成两次阳极氧化后的铝片置于磷酸溶液中,在35-45℃环境下浸泡40分钟,具体为:对于低场草酸氧化铝模板需要在35℃下浸泡40分钟;对于高场磷酸氧化铝模板需要在45℃下浸泡40分钟。
7.根据权利要求3所述的方法,其特征是,所述的磁控溅射方法的具体过程为:将本底真空抽到10-3pa以下,功率调至30-100w,溅射2-20分钟,靶材采用高纯的钼,溅射的钼在多孔氧化铝模板上形成了一层多孔的金属钼层,可以根据溅射时间的长短调控金属钼层的孔径。
8.根据权利要求1所述的方法,其特征是,所述的退火是指:将自组装生长后的CIGS生长基底放入真空炉中,在450-600℃,1.0-3Pa的条件下退火30分钟。
9.一种根据上述任一权利要求所述方法制备得到的铜铟镓硒三维纳米结构阵列,其阵列外孔径为70-120nm以及200-275nm,内孔径为0-200nm。
CN201410062013.1A 2014-02-24 2014-02-24 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列 Pending CN103824898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410062013.1A CN103824898A (zh) 2014-02-24 2014-02-24 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410062013.1A CN103824898A (zh) 2014-02-24 2014-02-24 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列

Publications (1)

Publication Number Publication Date
CN103824898A true CN103824898A (zh) 2014-05-28

Family

ID=50759855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410062013.1A Pending CN103824898A (zh) 2014-02-24 2014-02-24 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列

Country Status (1)

Country Link
CN (1) CN103824898A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087997A (zh) * 2014-06-16 2014-10-08 北京工业大学 异酸异压二次氧化制备规则小孔径阳极氧化铝模板的方法
CN105810848A (zh) * 2016-03-16 2016-07-27 京东方科技集团股份有限公司 一种量子点层的制备方法及含有量子点层的qled显示装置、制备方法
CN107598177A (zh) * 2017-09-04 2018-01-19 哈尔滨工业大学 一种尺寸可控球状镓粒子的制备方法
CN107665996A (zh) * 2017-09-22 2018-02-06 常州信息职业技术学院 三维多孔镍中空纤维电极材料、制备方法及基于该电极的电池
CN109817734A (zh) * 2018-12-26 2019-05-28 北京铂阳顶荣光伏科技有限公司 一种铜铟镓硒薄膜太阳能电池用吸收层的制备方法
EP3472871A4 (en) * 2016-06-21 2020-01-29 NewSouth Innovations Pty Limited PHOTOVOLTAIC DEVICE WITH COPPER-BASED CHALCOGENIDE AND METHOD FOR SHAPING THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191555A (zh) * 2011-04-29 2011-09-21 上海交通大学 铜铟硒纳米管阵列膜的制备方法
US20120227811A1 (en) * 2009-09-08 2012-09-13 The University Of Western Ontario Electrochemical method of producing copper indium gallium diselenide (cigs) solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120227811A1 (en) * 2009-09-08 2012-09-13 The University Of Western Ontario Electrochemical method of producing copper indium gallium diselenide (cigs) solar cells
CN102191555A (zh) * 2011-04-29 2011-09-21 上海交通大学 铜铟硒纳米管阵列膜的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087997A (zh) * 2014-06-16 2014-10-08 北京工业大学 异酸异压二次氧化制备规则小孔径阳极氧化铝模板的方法
CN105810848A (zh) * 2016-03-16 2016-07-27 京东方科技集团股份有限公司 一种量子点层的制备方法及含有量子点层的qled显示装置、制备方法
US9780257B1 (en) 2016-03-16 2017-10-03 Boe Technology Group Co., Ltd. Method of preparing quantum dot layer, QLED display device having the quantum dot layer and method of preparing the same
EP3472871A4 (en) * 2016-06-21 2020-01-29 NewSouth Innovations Pty Limited PHOTOVOLTAIC DEVICE WITH COPPER-BASED CHALCOGENIDE AND METHOD FOR SHAPING THEREOF
CN107598177A (zh) * 2017-09-04 2018-01-19 哈尔滨工业大学 一种尺寸可控球状镓粒子的制备方法
CN107598177B (zh) * 2017-09-04 2019-10-11 哈尔滨工业大学 一种尺寸可控球状镓粒子的制备方法
CN107665996A (zh) * 2017-09-22 2018-02-06 常州信息职业技术学院 三维多孔镍中空纤维电极材料、制备方法及基于该电极的电池
CN109817734A (zh) * 2018-12-26 2019-05-28 北京铂阳顶荣光伏科技有限公司 一种铜铟镓硒薄膜太阳能电池用吸收层的制备方法

Similar Documents

Publication Publication Date Title
CN103824898A (zh) 基于溶液法实现的自组装无电沉积制备铜铟镓硒三维纳米结构阵列
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN106381481B (zh) 一种金属掺杂二硫化钼薄膜的制备方法
CN106960883A (zh) 一种全无机钙钛矿太阳能电池及其制备方法
Luo et al. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN106384669A (zh) 一种光电响应型碳量子点修饰氧化锌光阳极的制备方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN102637777A (zh) 一种太阳电池光吸收层Cu2O纳米薄膜的化学制备工艺
CN104233433B (zh) 一种制备氧化亚铜薄膜的方法
CN108281550A (zh) 基于镁掺杂二氧化钛的钙钛矿太阳能电池及其制备方法
CN101944556A (zh) 一种高均匀度铜铟镓硒吸收层制备方法
CN103715280B (zh) 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法
JP2011159729A (ja) 導電性酸化亜鉛積層膜の製造方法、光電変換素子の製造方法
CN103151397B (zh) 一种微米/纳米二级表面阵列及其制备方法和用途
CN104269461A (zh) n型In2S3缓冲层的成膜方法及其应用
CN102191555B (zh) 铜铟硒纳米管阵列膜的制备方法
CN102629632B (zh) 一种cigs纳米结构薄膜光伏电池及其制备方法
CN103996542B (zh) 一种光电化学太阳能电池光电极微纳结构制造工艺
CN102881832B (zh) 一种反型有机太阳能电池的制备方法
CN104051576A (zh) 半导体纳米线有序阵列分布的制备方法
CN102181928A (zh) 一种直流电沉积法制备ZnNi/Ni-ZnO纳米管的方法
CN106024930A (zh) 一种基于高质量均匀分布预制铜层的铜铟镓硒薄膜太阳能电池及其制备方法
Chan et al. Growth of copper zinc tin sulfide nano-rods by electrodeposition using anodized aluminum as the growth mask
CN103715283B (zh) 一种太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140528