CN1037427C - 激光气相合成氮化铁超细粉的方法 - Google Patents

激光气相合成氮化铁超细粉的方法 Download PDF

Info

Publication number
CN1037427C
CN1037427C CN94112440A CN94112440A CN1037427C CN 1037427 C CN1037427 C CN 1037427C CN 94112440 A CN94112440 A CN 94112440A CN 94112440 A CN94112440 A CN 94112440A CN 1037427 C CN1037427 C CN 1037427C
Authority
CN
China
Prior art keywords
laser
reaction
iron
laser gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94112440A
Other languages
English (en)
Other versions
CN1117020A (zh
Inventor
梁勇
赵新清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN94112440A priority Critical patent/CN1037427C/zh
Publication of CN1117020A publication Critical patent/CN1117020A/zh
Application granted granted Critical
Publication of CN1037427C publication Critical patent/CN1037427C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种激光气相合成氮化铁超细粉的方法,其特征在于:以Fe(CO)5为铁源,以NH3为反应气,反应气通过加热的铁源,加热温度30~70℃,进入连续二氧化碳激光气相反应器,在氩气或氮气氛下激光气相合成反应方程式为:
工艺参数为:激光功率密度:1000~10000W/cm2,反应压力:10000~100000Pa,NH:流量:70~300ml/min。本发明产品粒度细小均匀,杂质少,且工艺简单。

Description

激光气相合成氮化铁超细粉的方法
本发明涉及氮化铁超细粉的制备,特别提供了一种用激光气相合成的办法生产氮化铁超细粉的技术。
氮化铁微粉是近年来出现的新的磁记录材料和催化剂材料,由于其优良的磁记录特性(即高矫顽力和饱和磁化强度及高声噪比和防氧化特性),而成为声像记录及通讯领域引入注目的新材料。目前制备氮化铁(Fe4N)微粉的方法主要有以下二种:1)蒸发—冷凝法:在NH3-H2气氛中蒸发铁固体,形成的铁蒸气和[N]在高温区反应,生成Fe4N和少量的γ-Fe和α-Fe。此法成本高,粒子均匀性差,易出现杆状等不规则微粒,γ-Fe和α-Fe微粒不易去除,从而影响了粉体的性能:2)铁微粒氮化法:用FeOOH或α-Fe微粒在NH3-H2气氛中加热保温几个至几十个小时,使之形成氮化铁微粉,此法生产周期长,工艺复杂,但可以获得针状微粒(粒径>200nm),磁性能优良,但是用此法不能一步结合成,首先需制α-Fe和α-FeOOH微粒。
本发明的目的在于提供一种粒度细小均匀,杂质少,且工艺简单的氮化铁微粒制备技术。
本发明提供了一种激光气相合成氮化铁超细粉的方法,其特征在于:
——以Fe(CO)5为铁源;
——以NH3为反应气;
——反应气通过加热的铁源,加热温度30~70℃
进入连续二氧化碳激光气相反应器,在氩气或氮气氛下激光气相合成反应方程式为:     (3)工艺参数为:激光功率密度:  1000~10000W/cm2
        反应压力:10000~100000Pa
         NH3流重:70~300ml/min。
本发明采用连续二氧化碳激光源诱发NH3和Fe(CO)5的气相热分解反应,一步合成氮化铁纳米微粉,其原理如下:NH3吸收激光束的能量,并把一部分吸收的光能传给Fe(CO)5分子,使得NH3和Fe(CO)5同时分解,然后化合形成FeNx。用此法合成的氮化铁微粉,气体流速、流量可控,反应压力、温度可调,从而可制备出成分不同的多相氮化铁物相,如γ′-Fe4N、Fe2N、Fe3N纳米微粒,氮化铁微粒中即可以是其中的一种单相,也可是上述几种的混合物。该种超细氮化铁微粒具有细小(10~40nm),分布均匀,纯度高,颗粒圆整,易分散等特点,微粒连接成链状,具有优良的磁性能,适合做磁记录材料。下面详述本发明。
附图1为反应装置示意图;
附图2为氮化铁粉的形貌。
实施例1
所用反应装置见图1,铁源Fe(CO)5放在一罐(1)中,反应气氨通过罐(1),带走铁源并进入到反应室(2)中,激光束会集于反应气流处,反应气流正下方对应于一收集管(3),收集管通过一过滤器(4)与真空泵相连,与激光束入口镜片(5)相对的为激光吸收片(6),该片(5)近旁为保护气入口,可通入氩气或氮气以保护镜片。
反应器的固定参数为:喷嘴直径3mm,聚焦点在喷咀正下方3.5mm处,光斑直径5mm。
铁源Fe(CO)5被加热到30℃,激光功率500W,功率密度2547W/cm2,反应压力50000Pa,氨气NH3流量300ml/min。合成粉未为γ′-Fe4N,粒径在20~30nm,磁性测试为Hc=600Oe,σs=120emu/g,形貌见图2。
实施例2
固定参数同实例1,激光功率为300W,功率密度1528W/cm2,Fe(CO)5温度为50℃,NH3流量200ml/min,反应室压力20000Pa,合成的氮化铁的粒径在20~40nm,含有少量α-Fe的Fe4N微粒,产率25g/h。
实施例3
固定参数同实例1,Fe(CO)5温度70℃,反应室压力70000Pa,激光功率800W,功率密度4071W/cm2,NH3流量200ml/min,合成含Fe4N和Fe3N的复合氮化铁粉,粒子直径在20~30nm,产率40g/h。

Claims (1)

1.一种激光气相合成氮化铁超细粉的方法,其特征在于:
——以Fe(CO)5为铁源;
——以NH3为反应气;
——反应气通过加热的铁源,加热温度30~70℃,进入连续二氧化碳激光气相反应器,在氩气或氮气氛下激光气相合成反应方程式为:     (3)工艺参数为:激光功率密度:  1000~10000W/cm2
        反应压力:10000~100000Pa
        NH3流量:70~300ml/min。
CN94112440A 1994-08-15 1994-08-15 激光气相合成氮化铁超细粉的方法 Expired - Fee Related CN1037427C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN94112440A CN1037427C (zh) 1994-08-15 1994-08-15 激光气相合成氮化铁超细粉的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN94112440A CN1037427C (zh) 1994-08-15 1994-08-15 激光气相合成氮化铁超细粉的方法

Publications (2)

Publication Number Publication Date
CN1117020A CN1117020A (zh) 1996-02-21
CN1037427C true CN1037427C (zh) 1998-02-18

Family

ID=5036123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94112440A Expired - Fee Related CN1037427C (zh) 1994-08-15 1994-08-15 激光气相合成氮化铁超细粉的方法

Country Status (1)

Country Link
CN (1) CN1037427C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090992C (zh) * 1998-03-10 2002-09-18 中国科学院金属研究所 一种激光气相合成纳米粉反应装置
CN101607701B (zh) * 2009-07-24 2011-01-05 东北大学 纳米化、强磁场双促进法制备氮化铁材料的方法及装置
CN101891163A (zh) * 2010-07-07 2010-11-24 北京科技大学 一种超细球形氮化铁粉末的制备方法
CN102275922B (zh) * 2011-06-08 2013-03-13 浙江大学 从农业废弃物制备SiC/氮化铁纳米复合材料及其方法
CN102963872B (zh) * 2011-09-02 2014-11-26 浩华科技实业有限公司 一种制备氮化铁系微粉的装置及方法
CN105692571A (zh) * 2014-11-28 2016-06-22 鞍钢股份有限公司 一种激光照射制备氮化镁的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872292A (en) * 1952-03-25 1959-02-03 Gen Aniline & Film Corp Method of making iron nitrides
SU1011507A1 (ru) * 1981-09-14 1983-04-15 Предприятие П/Я Р-6102 Способ получени нитрида железа состава @
CN2144534Y (zh) * 1992-12-25 1993-10-27 中国科学院金属研究所 激光气相合成超细粉的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872292A (en) * 1952-03-25 1959-02-03 Gen Aniline & Film Corp Method of making iron nitrides
SU1011507A1 (ru) * 1981-09-14 1983-04-15 Предприятие П/Я Р-6102 Способ получени нитрида железа состава @
CN2144534Y (zh) * 1992-12-25 1993-10-27 中国科学院金属研究所 激光气相合成超细粉的装置

Also Published As

Publication number Publication date
CN1117020A (zh) 1996-02-21

Similar Documents

Publication Publication Date Title
Choi et al. Preparation of iron nanoparticles by chemical vapor condensation
Gürmen et al. Synthesis of nanosized spherical cobalt powder by ultrasonic spray pyrolysis
Wang et al. A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes
KR20050085704A (ko) 반응 챔버 플라스마 반응기 시스템으로 증발-응축 방법을사용하는 나노입자의 제조 방법
Borsella et al. Laser‐driven synthesis of nanocrystalline alumina powders from gas‐phase precursors
Koltypin et al. Sonochemical synthesis of iron nitride nanoparticles
CN1037427C (zh) 激光气相合成氮化铁超细粉的方法
Stopić et al. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis
CN1948145A (zh) 连续合成大直径单壁碳纳米管的方法
JP2010512463A (ja) 鉄または鉄酸化物のナノ粉末粒子の製造方法
CN110255626A (zh) 基于气相沉积制备表面活性洋葱状碳纳米球的方法
US20070160522A1 (en) Method of preparing carbon nanotube from liquid phased-carbon source
Wang et al. Synthesis of dendritic silver nanostructures by means of ultrasonic irradiation
CN104368825A (zh) 一种形状可控铁钴合金磁性纳米粒子的制备方法
CN116712976B (zh) 一种碳化铁负载复合碳基材料及其制备方法和应用
CN1413908A (zh) 一种合成氨的方法
CN108326320B (zh) 一种制备金铜合金纳米粒子的方法
CN1058920C (zh) 室温奥氏体铁超微粒子的制备技术
Gijare et al. Impact of Catalyst on the Synthesis of Carbon Nano Materials from Castor Seeds by Chemical Vapour Deposition Method
Zhang et al. Surfactant-controlled synthesis of Fe nanorods in solution
Lee et al. Synthesis of gold nanoparticles using pluronic® F127NF under microwave irradiation and catalytic effects
Miura et al. A shape-selective catalyst utilizing a molecular sieving carbon with sharp pore distribution
KR100478144B1 (ko) 탄소나노튜브의 제조방법
JPH04202602A (ja) 金属磁性粉の製造法
CN1590573A (zh) 纳米级钨钴混合粉末的生产工艺

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee