CN103725001A - 一种航天用低电阻率聚酰亚胺复合材料的制备方法 - Google Patents

一种航天用低电阻率聚酰亚胺复合材料的制备方法 Download PDF

Info

Publication number
CN103725001A
CN103725001A CN201310738208.9A CN201310738208A CN103725001A CN 103725001 A CN103725001 A CN 103725001A CN 201310738208 A CN201310738208 A CN 201310738208A CN 103725001 A CN103725001 A CN 103725001A
Authority
CN
China
Prior art keywords
powder
resistivity
polyimide
low
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310738208.9A
Other languages
English (en)
Other versions
CN103725001B (zh
Inventor
邱孜学
李睿
刘继奎
吕凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI RESEARCH INSTITUTE OF SYNTHETIC RESINS
Beijing Institute of Control Engineering
Original Assignee
SHANGHAI RESEARCH INSTITUTE OF SYNTHETIC RESINS
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI RESEARCH INSTITUTE OF SYNTHETIC RESINS, Beijing Institute of Control Engineering filed Critical SHANGHAI RESEARCH INSTITUTE OF SYNTHETIC RESINS
Priority to CN201310738208.9A priority Critical patent/CN103725001B/zh
Publication of CN103725001A publication Critical patent/CN103725001A/zh
Application granted granted Critical
Publication of CN103725001B publication Critical patent/CN103725001B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种航天用低电阻率聚酰亚胺复合材料的制备方法,其特点在于,4,4’-二氨基二苯醚和二苯醚四甲酸二酐按等摩尔比例,在溶剂二甲基乙酰胺和沉淀剂甲苯或二甲苯混合试剂中于室温下进行聚合1-2小时,过滤出沉淀,得到聚酰亚胺粉料,接着于200℃-240℃热处理2-3小时使之亚胺化,获得聚酰亚胺粉料,50-70重量份聚酰亚胺粉料,23-37重量份晶须和6-24重量份玻璃纤维粉在混合器中均匀混合获得低电阻率聚酰亚胺复合材料粉料;把该模塑粉盛入模压模具中,在360℃-400℃和60-80MPa条件下模压成所需的制件;该制件具有体积电阻率1×1012-1×1015Ω.cm、表面电阻率1×1012-1×1015Ω,介电强度≥15KV/mm、拉伸强度≥70MPa、耐60(60Co)γ-射线剂量5×107rad(si)。

Description

一种航天用低电阻率聚酰亚胺复合材料的制备方法
一、技术领域
本发明涉及一种航天用低电阻率聚酰亚胺复合材料的制备方法,更确切地说涉及3,3’,4,4’-二苯醚四甲酸二酐和4,4’-二氨基二苯醚按等摩尔比反应制备可熔性聚酰亚胺复合材料的制备方法。
二、背景技术
航空航天用聚酰亚胺必须具有耐高低温、耐辐照和适中的电绝缘性能和高的力学性能。要求体积电阻率在1×1012-1×1015Ω.cm,表面电阻率在1×1012-1×1015Ω范围内,防止太空中的带电粒子使聚酰亚胺材料带电或被击穿。综观聚酰亚胺类模塑料的电性能如下表:
Figure BDA0000448021880000011
目前国内常用的一种航天用具有高电阻率的聚酰亚胺,其电阻率为1×1016-1×1017Ω.cm,表面电阻率为1×1015-1×1016Ω。它们用作航天器部件例如:太阳能电池板、太阳能板驱动机构导电环,由于处于太空等离子环境和空间高能电子辐射下,致使带电粒子沉积在聚酰亚胺零件表面及内部,达到一定程度形成一定电位差,造成内带电和把材料击穿,以致破坏航天器,危害较大。所以,这种情况必须避免。
现有技术美国国家航空和航天局手册-4002(NASA-HDBK-4002),欧洲通讯卫星系统(FCSS-E-ST-20-06)都提到避免航天器内部带电问题。降低绝缘材料的电阻率能有效降低太空高能带电子粒子潜入所造成的静电高压。
所以选择低电阻率、耐辐射、耐高低温、机械强度高、尺寸稳定性好,又能有效胶接和机加工的聚酰亚胺就非常必要了。
三、发明内容
为了克服高电阻率聚酰亚胺容易积累电荷进而导致高压放电问题,提供一种低电阻率聚酰亚胺复合材料,满足航天工业的应用要求。
本发明的技术方案为:4,4’-二氨基二苯醚和二苯醚四甲酸二酐按等摩尔比例,在溶剂二甲基乙酰胺和沉淀剂甲苯或二甲苯混合试剂中于室温下进行聚合1-2小时,过滤出沉淀,得到聚酰亚胺粉料,接着于200℃-240℃热处理2-3小时使之亚胺化,获得聚酰亚胺粉料;50-70重量份聚酰亚胺粉料,23-37重量份晶须和6-24重量份玻璃纤维粉在混合器中均匀混合获得低电阻率聚酰亚胺复合材料粉料;把该模塑粉盛入模压模具中,在360℃-400℃和60-80MPa条件下模压成所需的制件;该制件具有体积电阻率1×1012-1×1015Ω.cm、表面电阻率1×1012-1×1015Ω,介电强度≥15KV/mm、拉伸强度≥70MPa、耐60(60Co)γ-射线剂量5×107rad(si),可在200℃F长期使用。
本发明中所述的增强剂晶须是从氧化锌、氧化铝和钛酸钾组成的群体中任选一种或两种以上的混合物,它们的晶须长度分为10~20μm,直径为0.2~0.5μm。晶须在复合材料组成中,不但起增强剂作用,而且,它能有效地降低可熔聚酰亚胺的电阻率。
本发明中所述的玻璃纤维粉为S型玻璃纤维粉。它具有高强度专供航天应用。
本发明在制备聚酰胺酸过程中采用溶剂沉淀聚合,使操作简便化,这是和现有技术完全不同的聚合方法。在亚胺化过程中省去了化学亚胺化步骤,在降低成本方面显得重要。
按照本发明实施制备的聚酰亚胺复合材料,符合太阳帆板驱动机构导电环的技术要求。其性能制备如下表:
Figure BDA0000448021880000021
低电阻率的聚酰亚胺复合材料能有效较快地释放所带的电荷。该材料机加工性能好,可加工成各种形状的制件。该材料工作温度在200℃以上,尺寸稳定性好,经历-50~+100℃热循环试验没有发生明显变形。在60Coγ射线5×107Rad(si)剂量照射后,体积电阻率变化不超过一个数量级,力学强度没有明显变化。
四、具体实施方案
为了更好地实施本发明特举例说明之,但实施例决不是对本发明的限制。
实施例1
2Kg(10mol)4,4’-二氨基二苯醚,3.1Kg(10mol)3,3’,4,4’-二苯醚四甲酸二酐溶解在15000ml二甲基乙酰胺和20000ml甲苯中于室温反应1.5小时,加热脱水;接着过滤出沉淀,、水洗三次沉淀,于120℃烘3小时,继之于200℃-240℃热亚胺化2.5小时,获得聚酰亚胺粉料。把60重量份聚酰亚胺粉料,30重量份氧化锌晶须和15重量份S型玻璃纤维粉在混合容器中混合均匀,获得低电阻率聚酰亚胺复合材料模塑粉。把该模塑粉按模具大小投入适中的量于360-400℃和60-80MPa条件下,模压成所需的制件。该制件具有体积电阻率2.5×1014Ω.cm,表面电阻率6.1×1013Ω,介电强度17.7KV/mm,介电常数(1MHz,20℃)4.58,拉伸强度102MPa,工作温度210℃。
该制件能用环氧胶粘剂粘接,进行车、铣、钻等机加工,及在-50℃~+100℃热变化X小时不发生明显变形。
60Coγ射线5×107Rad(si)照射后,体积电阻率变化6.7×1014Ω.cm,表面电阻率2.1×1015Ω,介电强度8.97KV/mm,介电常数(1MHz,20℃)4.96,拉伸强度(20℃),90MPa。
实施例2
除聚合反应1小时,样件制备投料比为聚酰亚胺粉料70重量份,氧化铝晶须23重量份、玻璃纤维粉6重量份,热亚胺化3小时外,其它配料比和操作步骤和实施例1一样。结果加工样件指标为:体积电阻率4.5×1014Ω.cm,表面电阻率6.2×1013Ω,介电强度19KV/mm,介电常数(1MH2,20℃)4.73,拉伸强度95MPa,工作温度205℃。
60Coγ射线5×107Rad(si)辐照后,性能指标变化为:体积电阻率6.7×1014Ω.cm,表面电阻率为2.1×1015Ω,介电强度8.97KV/mm,介电常数(1MHz,20℃)4.96,拉伸强度(20℃),90MPa。
实施例3
除聚合反应2小时,样件制备投料比为聚酰亚胺粉料50重量份,钛酸钾晶须37重量份,玻璃纤维粉24重量份,热亚胺化2小时外,其它配料比和操作步骤和实施例1一样。结果样件性能指标为:5×1014Ω.cm,表面电阻率6.1×1013Ω,介电强度19.5KV/mm,介电常数(1MH2,20℃)4.58,拉伸强度108MPa,工作温度220℃。60Coγ射线5×107Rad(si)辐照后,性能指标变化为:体积电阻率4.5×1014Ω.cm,表面电阻率6×1012Ω,介电强度19KV/mm,介电常数(1MHz,20℃)5,拉伸强度105MPa,工作温度221℃。

Claims (3)

1.一种航天用低电阻率聚酰亚胺复合材料的制备方法,其特征在于,4,4’-二氨基二苯醚和二苯醚四甲酸二酐按等摩尔比例,在溶剂二甲基乙酰胺和沉淀剂甲苯或二甲苯混合试剂中于室温下进行聚合1-2小时,过滤出沉淀,得到聚酰亚胺粉料,接着于200℃-240℃热处理2-3小时使之亚胺化,获得聚酰亚胺粉料;50-70重量份聚酰亚胺粉料,23-37重量份晶须和6-24重量份玻璃纤维粉在混合器中均匀混合获得低电阻率聚酰亚胺复合材料粉料;把该模塑粉盛入模压模具中,在360℃-400℃和60-80MPa条件下模压成所需的制件;该制件具有体积电阻率1×1012-1×1015Ω.cm、表面电阻率1×1012-1×1015Ω,介电强度≥15KV/mm、拉伸强度≥70MPa、耐60(60Co)γ-射线剂量5×107rad(si),可在200℃F长期使用。
2.根据权利要求1所述的一种航天用低电阻率聚酰亚胺复合材料的制备方法,其特征在于,所述的增强剂晶须是从氧化锌、氧化铝和钛酸钾组成的群体中任选一种或两种以上的混合物,它们的晶须长度分为10~20μm,直径0.2~0.5μm。
3.根据权利要求1所述的一种航天用低电阻率聚酰亚胺复合材料的制备方法,其特征在于,所述的玻璃纤维粉为S型玻璃纤维粉。
CN201310738208.9A 2013-12-27 2013-12-27 一种航天用低电阻率聚酰亚胺复合材料的制备方法 Active CN103725001B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310738208.9A CN103725001B (zh) 2013-12-27 2013-12-27 一种航天用低电阻率聚酰亚胺复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310738208.9A CN103725001B (zh) 2013-12-27 2013-12-27 一种航天用低电阻率聚酰亚胺复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN103725001A true CN103725001A (zh) 2014-04-16
CN103725001B CN103725001B (zh) 2016-08-17

Family

ID=50449311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310738208.9A Active CN103725001B (zh) 2013-12-27 2013-12-27 一种航天用低电阻率聚酰亚胺复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN103725001B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733257A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 玻纤改性耐磨型聚酰亚胺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215741A (zh) * 1997-10-23 1999-05-05 上海市合成树脂研究所 钛酸钾晶须增强聚酰亚胺复合材料
CN1301779A (zh) * 1999-12-29 2001-07-04 中国科学院长春应用化学研究所 联苯基聚酰亚胺超高温工程塑料专用料的制备方法
CN1445260A (zh) * 2003-04-11 2003-10-01 上海市合成树脂研究所 聚酰亚胺模塑粉的制备方法
CN1676548A (zh) * 2004-04-01 2005-10-05 中国科学院化学研究所 一种短纤维增强聚酰亚胺复合材料及制备方法和用途
CN101092988A (zh) * 2007-07-09 2007-12-26 南京工业大学 热塑性聚合物基推力垫圈及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215741A (zh) * 1997-10-23 1999-05-05 上海市合成树脂研究所 钛酸钾晶须增强聚酰亚胺复合材料
CN1301779A (zh) * 1999-12-29 2001-07-04 中国科学院长春应用化学研究所 联苯基聚酰亚胺超高温工程塑料专用料的制备方法
CN1445260A (zh) * 2003-04-11 2003-10-01 上海市合成树脂研究所 聚酰亚胺模塑粉的制备方法
CN1676548A (zh) * 2004-04-01 2005-10-05 中国科学院化学研究所 一种短纤维增强聚酰亚胺复合材料及制备方法和用途
CN101092988A (zh) * 2007-07-09 2007-12-26 南京工业大学 热塑性聚合物基推力垫圈及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卓昌明: "《塑料应用技术手册》", 31 May 2013, article "聚酰亚胺的基本性能数据", pages: 456-459 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733257A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 玻纤改性耐磨型聚酰亚胺

Also Published As

Publication number Publication date
CN103725001B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN104479161A (zh) 一种膜电容器用聚偏氟乙烯/聚丙烯复合薄膜及制备方法
EP2902449A1 (en) Conductive composition and conductive molded body using same
CN108724900A (zh) 一种干法微波复合介质板的制备方法
CN104231439B (zh) 一种聚丙烯/镀镍玻璃纤维导电复合材料及其制备方法
WO2021006602A1 (ko) 높은 방열성 및 전기절연성을 가지는 금속-폴리머 복합재료의 제조 방법 및 이에 의해 제조된 복합재료
CN109943090A (zh) 一种钛酸钡/耐热树脂复合介电薄膜及其制备方法
CN104072998A (zh) 一种高介电常数液体硅橡胶基础胶料及于组合物中应用
CN114316509B (zh) 一种peek基复合吸波3d打印丝材及其制备方法
CN101397486A (zh) 一种双组分环氧树脂胶粘剂及其制备方法
CN103242660B (zh) 一种制备高介电薄膜的方法
CN114103305B (zh) 一种高Tg高导热的金属基覆铜板及其加工工艺
CN103725001A (zh) 一种航天用低电阻率聚酰亚胺复合材料的制备方法
CN104194250B (zh) 一种电路用导电塑料的制备方法
CN103788393A (zh) 一种导电聚酰亚胺薄膜制备方法
CN103408949B (zh) 超高硬度混炼胶及其制备方法
CN106046739A (zh) 一种导电复合材料及其制备方法
CN103419439A (zh) 一种低介电常数cem-3覆铜板的制造方法
Huang et al. Synthesis, mechanical property, and thermal stability of reduced graphene oxide–zinc oxide/cyanate ester/bismaleimide resin composites
CN107365498B (zh) 超导磁体用高温成型绝缘材料及制备方法
Zhou et al. Covalently cross-linked CaCu3Ti4O12 and poly (arylene ether nitrile) hybrids with enhanced high temperature energy storage properties
CN114316522A (zh) 一种高性能液晶聚合物复合材料及其应用
CN109401142B (zh) 一种具有海岛结构的pvdf基复合材料及其制备方法
CN113233882A (zh) 一种体导电石英的制备方法
Liu et al. Polyamide-imide/polyimide alloy with enhanced energy density and efficiency
CN102617982B (zh) 一种碳纳米管/尼龙纤维改性环氧树脂复合材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant