CN113233882A - 一种体导电石英的制备方法 - Google Patents
一种体导电石英的制备方法 Download PDFInfo
- Publication number
- CN113233882A CN113233882A CN202110531522.4A CN202110531522A CN113233882A CN 113233882 A CN113233882 A CN 113233882A CN 202110531522 A CN202110531522 A CN 202110531522A CN 113233882 A CN113233882 A CN 113233882A
- Authority
- CN
- China
- Prior art keywords
- quartz
- conductive
- composite material
- peg
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
本发明涉及一种体导电石英的制备方法,主要包括以下步骤:(1)将二氧化硅纳米颗粒、银纳米颗粒与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合,将混合物搅拌均匀后,蒸发溶剂,得到固体热塑性纳米复合材料;(2)使用挤出机将固体复合材料塑化并挤出,将固体热塑性纳米复合材料变成颗粒状的原料;(3)将原料在120℃‑150℃下压模成型,得到生胚;(4)将生坯浸入35‑50℃的水中8‑12小时,进行初步溶剂脱脂,去除大部分PEG粘合剂;(5)在550℃‑650℃环境下保温1小时,进行第二次溶剂脱脂,去除残留的PEG粘合剂;(6)将脱脂后的材料在1200℃‑1300℃的真空环境下烧结,得到体导电石英。本发明制备工艺简单高效,制备过程能耗低,制备的体导电石英结构精度高、表面粗糙度小,具有广泛的应用前景。
Description
技术领域
本发明涉及材料制备技术领域,具体涉及一种体导电石英的制备方法。
背景技术
石英是一种以二氧化硅为主要成分的非金属矿物,在玻璃、陶瓷、耐火材料、机械铸造、冶金和化工等传统行业领域有着广泛的应用。同时,随着科学技术的进步,石英因其具有良好的机械和热学特性作,在航天、航空、航海、军事、通讯等高科技领域具有很高的应用前景。
由于石英的塑形技术一直没有取得突破性的进展,现有技术加工微米级石英结构,存在工艺复杂,成本高,精度低,表面粗糙度大等问题。此外,由于石英导电性差,为了实现特殊场合下的特定功能,如静电驱动、电容检测等,还需对石英结构进行表面金属化处理。表面金属化处理只能提高石英材料表面的导电性,无法提高材料内部的导电性,并且会严重影响石英结构的品质因数。相较于表面导电,体导电材料具有更好的导电与电容特性,更适用于高精度微小结构。因此提出一种高精度的体导电石英的制备方法具有重要意义。
发明内容
(一)要解决的技术问题
基于上述问题,本发明提供一种高精度的体导电石英的制备方法。
(二)技术方案
基于上述的技术问题,本发明采取的技术方案是通过压模工艺将掺杂了导电成分的热塑性纳米复合材料定型,再利用烧结的方法将热塑性材料转变为具有体导电性的石英玻璃结构。体导电石英的制备方法,主要包括以下步骤:
(1)将二氧化硅纳米颗粒、导电成分与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合,将混合物搅拌均匀后,蒸发溶剂,得到固体热塑性复合材料;
(2)造粒,使用挤出机将固体复合材料塑化并挤出,将固体热塑性纳米复合材料变成颗粒状的原料;
(3)将原料在120℃-150℃下压模成型,得到生胚;
(4)将生坯浸入35-50℃的水中8-12小时,进行初步溶剂脱脂,去除大部分PEG粘合剂;
(5)在550℃-650℃环境下保温1小时,进行第二部溶剂脱脂,去除残留的PEG粘合剂;
(6)将脱脂后的材料在1200℃-1300℃的真空环境下烧结,得到体导电石英;
本发明采取的技术方案还包括:
分层体导电石英的制备方法,主要包括以下步骤:
(1)将二氧化硅纳米颗粒、导电成分与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合,将混合物搅拌均匀后,蒸发溶剂,得到含有导电成分的固体复合材料;
(2)使用挤出机将固体复合材料塑化并挤出,得到含有导电成分的原料1;
(3)将二氧化硅纳米颗粒与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合。将混合物搅拌均匀后,蒸发溶剂,得到不含导电成分的固体复合材料;
(4)使用挤出机将固体复合材料塑化并挤出,得到不含导电成分的原料2;
(5)将原料1在120℃-150℃下压模成型,得到生坯1。不将生坯1脱模,再加入原料2在120℃-150℃下二次压模成型,得到生坯2;
(6)将生坯2浸入35-50℃的水中8-12小时,进行初步溶剂脱脂,去除大部分PEG粘合剂;
(7)在550℃-650℃环境下保温1小时,进行第二部溶剂脱脂,去除残留的PEG粘合剂;
(8)将脱脂后的材料在1200℃-1300℃的真空环境下烧结,得到分层体导电的石英结构,其中不含导电成分的石英层绝缘,含导电成分的石英层具有较好的体导电性。
进一步地,所述导电成分为金属纳米颗粒,可以是银纳米颗粒、金纳米颗粒、铜纳米颗粒等。
(三)有益效果
本发明的上述技术方案具有如下优点:
(1)本发明所述的制备方法,工艺简单高效,制备过程能耗低。
(2)本发明所述制备方法制备的体导电石英具有结构精度高、导电性好、品质因数高等优点。
Claims (5)
1.一种体导电石英的制备方法,其特征在于:主要包括以下步骤:
(1)将二氧化硅纳米颗粒、导电成分与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合,将混合物搅拌均匀后,蒸发溶剂,得到固体热塑性复合材料;
(2)造粒:使用挤出机将固体复合材料塑化并挤出,将固体热塑性纳米复合材料变成颗粒状的原料;
(3)将原料在120℃-150℃下压模成型,得到生胚;
(4)将生坯浸入35-50℃的水中8-12小时,进行初步溶剂脱脂,去除大部分PEG粘合剂;
(5)在550℃-650℃环境下保温1小时,进行第二次溶剂脱脂,去除残留的PEG粘合剂;
(6)将脱脂后的材料在1200℃-1300℃的真空环境下烧结,得到体导电石英。
2.根据权利要求1所述的制备方法,其特征在于:所选用的导电成分为金属纳米颗粒,可以是银纳米颗粒、金纳米颗粒、铜纳米颗粒等。
3.根据权利要求1所述的制备方法,其特征在于:所述体导电石英可以是分层体导电石英,由权利要求1中所述的体导电石英和普通石英两种材料组成。
4.根据权利要求3所述的分层体导电石英,其特征在于:包括双层石英结构,由权利要求1所述的体导电石英和普通石英两种材料组成。
5.根据权利要求4所述的分层体导电石英,其特征在于,制备方法包括以下步骤:
(1)将二氧化硅纳米颗粒、导电成分与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合,将混合物搅拌均匀后,蒸发溶剂,得到含有导电成分的固体复合材料;
(2)使用挤出机将固体复合材料塑化并挤出,得到含有导电成分的原料1;
(3)将二氧化硅纳米颗粒与聚乙烯醇缩丁醛(PVB)溶液和聚乙二醇(PEG)溶液混合。将混合物搅拌均匀后,蒸发溶剂,得到不含导电成分的固体复合材料;
(4)使用挤出机将固体复合材料塑化并挤出,得到不含导电成分的原料2;
(5)将原料1在120℃-150℃下压模成型,得到生坯1。不将生坯1脱模,再加入原料2在120℃-150℃下二次压模成型,得到生坯2;
(6)将生坯2浸入35-50℃的水中8-12小时,进行初步溶剂脱脂,去除大部分PEG粘合剂;
(7)在550℃-650℃环境下保温1小时,进行第二部溶剂脱脂,去除残留的PEG粘合剂;
(8)将脱脂后的材料在1200℃-1300℃的真空环境下烧结,得到分层体导电石英结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110531522.4A CN113233882A (zh) | 2021-05-17 | 2021-05-17 | 一种体导电石英的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110531522.4A CN113233882A (zh) | 2021-05-17 | 2021-05-17 | 一种体导电石英的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113233882A true CN113233882A (zh) | 2021-08-10 |
Family
ID=77134544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110531522.4A Pending CN113233882A (zh) | 2021-05-17 | 2021-05-17 | 一种体导电石英的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113233882A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455838A (zh) * | 2022-02-22 | 2022-05-10 | 浙江工商大学 | 一种飞灰或二次飞灰的易挥发重金属固定方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307342A (zh) * | 2000-02-03 | 2001-08-08 | 日本碍子株式会社 | 正温度电阻系数复合材料 |
CN103663985A (zh) * | 2013-12-17 | 2014-03-26 | 佛山市粤峤陶瓷技术创新服务中心 | 一种导电平板玻璃的制造方法 |
CN104402237A (zh) * | 2014-11-11 | 2015-03-11 | 中国人民解放军国防科学技术大学 | 一种低成本的导电玻璃及其制备方法 |
CN106914613A (zh) * | 2017-03-31 | 2017-07-04 | 合肥悦兰信息技术有限公司 | 以纳米二氧化硅为基体改性生产导电颗粒的方法 |
US20170217840A1 (en) * | 2014-08-11 | 2017-08-03 | Hohai University | Method for coating metal nanoparticles on oxide ceramic powder surface |
US20200002236A1 (en) * | 2017-03-07 | 2020-01-02 | Wince Co., Ltd. | Conductive ceramic composition having excellent electrical conductivity |
CN111960819A (zh) * | 2020-08-14 | 2020-11-20 | 东莞信柏结构陶瓷股份有限公司 | 一种ZrO2基导电陶瓷及其制备方法 |
-
2021
- 2021-05-17 CN CN202110531522.4A patent/CN113233882A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307342A (zh) * | 2000-02-03 | 2001-08-08 | 日本碍子株式会社 | 正温度电阻系数复合材料 |
CN103663985A (zh) * | 2013-12-17 | 2014-03-26 | 佛山市粤峤陶瓷技术创新服务中心 | 一种导电平板玻璃的制造方法 |
US20170217840A1 (en) * | 2014-08-11 | 2017-08-03 | Hohai University | Method for coating metal nanoparticles on oxide ceramic powder surface |
CN104402237A (zh) * | 2014-11-11 | 2015-03-11 | 中国人民解放军国防科学技术大学 | 一种低成本的导电玻璃及其制备方法 |
US20200002236A1 (en) * | 2017-03-07 | 2020-01-02 | Wince Co., Ltd. | Conductive ceramic composition having excellent electrical conductivity |
CN106914613A (zh) * | 2017-03-31 | 2017-07-04 | 合肥悦兰信息技术有限公司 | 以纳米二氧化硅为基体改性生产导电颗粒的方法 |
CN111960819A (zh) * | 2020-08-14 | 2020-11-20 | 东莞信柏结构陶瓷股份有限公司 | 一种ZrO2基导电陶瓷及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455838A (zh) * | 2022-02-22 | 2022-05-10 | 浙江工商大学 | 一种飞灰或二次飞灰的易挥发重金属固定方法 |
CN114455838B (zh) * | 2022-02-22 | 2023-07-25 | 浙江工商大学 | 一种飞灰或二次飞灰的易挥发重金属固定方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102219523B (zh) | 一种低温共烧陶瓷吸波材料及其制造方法 | |
CN113292350B (zh) | 一种常压低温固化的镧铝系磷酸盐复合材料及其制备方法、应用 | |
CN107032826B (zh) | 一种空心氧化铝球/碳化硅增强铜基复合材料的制备方法 | |
CN103073269A (zh) | 一种氧化铝陶瓷及其制造方法 | |
CN105294138A (zh) | 一种双峰氧化铝微粉及其制备方法 | |
CN113233882A (zh) | 一种体导电石英的制备方法 | |
CN105802516A (zh) | 醇溶型耐高温磷酸盐胶黏剂的制备方法 | |
CN105000889B (zh) | 一种前驱体转化法制备含铁硅碳氮陶瓷的方法 | |
CN113087520A (zh) | 一种微波介质陶瓷光敏树脂浆料及其制备方法和应用 | |
CN104211320A (zh) | 一种微波复合介质基板制备方法 | |
CN102076133A (zh) | 微波用大功率陶瓷输出帽及其生产方法 | |
CN109108288B (zh) | 一种粉末注射成形制备空心球金属基轻质复合材料的方法 | |
CN104550975A (zh) | 一种快速注射成型制备硅铝合金电子封装材料的方法 | |
CN105131516A (zh) | 一种用于3d打印制备碳/碳复合材料的粉末材料的制备 | |
CN113149626B (zh) | 一种石英陶瓷注射成型用喂料及其制备方法 | |
CN101165001B (zh) | 片状氧化铝颗粒结合炭纤维组合增韧碳化硅陶瓷制造方法 | |
CN1275905C (zh) | 一种制备高热导率和高尺寸精度氮化铝陶瓷零部件的方法 | |
CN102503143A (zh) | 含纳米氧化钇的熔融石英陶瓷材料的制备方法 | |
CN112679214B (zh) | 用于5g通信的陶瓷介质天线及其制备方法 | |
CN115286410A (zh) | 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法 | |
CN111499359A (zh) | 一种氧化铝陶瓷生产工艺 | |
CN109206015B (zh) | 一种低温、低电压阳极键合基板材料及其制备方法 | |
CN103170631B (zh) | 一种制备小尺寸、薄壁Nb-W-Mo-Zr合金零件的方法 | |
CN110699566A (zh) | CaMn7O12增强低膨胀高热导铜基复合材料及其制备方法 | |
CN113527082B (zh) | 一种电子功能陶瓷及其制造方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210810 |